
V4: Protein phosphorylation during cell cycle 

  

Olsen Science  
Signaling 3 (2010) 

Protein phosphorylation and dephosphorylation are highly controlled 
biochemical processes that respond to various intracellular and extracellular 
stimuli.  
 
Phosphorylation status modulates protein activity,  
- influencing the tertiary and quaternary structure of a protein,  
- controlling subcellular distribution, and  
- regulating interactions with other proteins. 
 
Regulatory protein phosphorylation is a transient modification that is often of low 
occupancy or “stoichiometry”  
 
This means that only a fraction of a particular protein may be phosphorylated on a 
given site at any particular time, and that occurs on regulatory proteins of low 
abundance, such as protein kinases and transcription factors. 
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CDK inhibitors 

  

Besson et al. Develop Cell 14, 
159 (2008) 

V1, V3: Progression through the cell-division cycle is regulated by the coordinated 
activities of cyclin/cyclin-dependent kinases (CDK) complexes. 
 
One level of regulation of these cyclin-CDK complexes is provided by their binding 
to CDK inhibitors (CKIs). 
 
There are two important families of CKIs: 
 
Members of INK4 gene family (p16INK4a , p15INK4b , p18INK4c , and p19INK4d ) bind 
to CDK4 and CDK6 and inhibit their kinase activities by interfering with their 
association with D-type cyclins. 
 
CKIs of the Cip/Kip family bind to both cyclin and CDK subunits and can 
modulate the activities of cyclin D-, E-, A-, and B-CDK complexes. 
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Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 
159 (2008) 

Cip/Kip family members: 
 
p21 Cip1/Waf1/Sdi1 (p21, encoded by cdkn1a) 
p27 Kip1 (p27, encoded by cdkn1b) 
p57 Kip2 (p57, encoded by cdkn1c) 
 
Cip/Kip family members have a general importance in restraining proliferation 
during development, differentiation, and response to cellular stresses. 
 
However, each Cip/Kip has specific biological functions. 
 
Different anti-proliferative signals tend to cause elevated expression of only a 
subset of the Cip/Kip proteins. 
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Review (V1): Crystal structure 

Nikola Pavletich 
(crystallographer) 

p27(Kip1)-CyclinA-Cdk2 Complex 

p27 (Kip1) is shown bound to the 
CyclinA-Cdk2 complex, provoking 
profound changes in the kinase 
active site and rendering it inactive 
(by blocking the ATP-binding site).  
 
p27 also interacts with the secondary 
substrate recognition site on the 
cyclin.  
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Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 
159 (2008) 
www.wikipedia.org 

p21 is an important transcriptional target of p53 and mediates DNA-damage-
induced cell-cycle arrest in G1 and G2. 
 
p27 binds to and prevents the activation of cyclinE-CDK2 
or cyclinD-CDK4 complexes, and thus controls the 
cell cycle progression at G1. 
 
 
In contrast to p21 and p27, p57 has a tissue-restricted  
expression pattern during embryogenesis and in the adult.  
p57 is the only CKI that is required for embryonic development.  
 
The gene coding for p57 (cdkn1c ) is genetically imprinted with preferred 
expression of the maternal allele. 
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http://en.wikipedia.org/wiki/File:Protein_CDKN1B_PDB_1jsu.png


Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 
159 (2008) 

Initially, p21, p27, and p57 were considered as tumor suppressors based on 
their ability to block cell proliferation. 
 
However, p21, p27, and p57 are also involved in the regulation of cellular 
processes beyond cell-cycle regulation, including transcription, apoptosis and 
migration.  
 
These processes may be oncogenic under certain circumstances. 
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In tumors, inactivating mutations of the cdkn1b gene (p27)  are extremely rare. 
 
p27 is downregulated by other mechanisms, including proteolytic degradation,  
decreased transcription, cytoplasmic mislocalization, and by miRNAs. 



Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 
159 (2008) 

The Cip/Kip proteins are intrinsically unstructured. 
 
They adopt specific tertiary conformations only after binding to other proteins. 
 
This may explain why CKIs are capable of interacting with a wide diversity of 
proteins to regulate various cellular functions. 
 
The binding specificity of Cip/Kip proteins appears to be modulated by 
phosphorylation at specific residues, and by binding to other proteins. 
 
Phosphorylation of Cip/Kip proteins also affects their stability and their 
subcellular localization. 
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Cip/Kip Proteins and Apoptosis (cell death) 

  

Besson et al. Develop Cell 14, 
159 (2008) 

Cip/Kip proteins can inhibit apoptosis 
indirectly via the inhibition of 
cyclin-CDK complexes 
On the other hand, p21 and p27 are 
targeted for cleavage by caspases to 
promote cyclin-CDK activation during 
the apoptotic process.  
 
Upregulation of the CKIs by cytotoxic 
agents can participate in the resistance 
of tumor cells to anticancer treatments.  
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p21and p57 may also directly prevent the induction of apoptosis by interfering with 
activation of the stress-signaling pathways; for instance, both bind to and inhibit 
the activity of JNK1/SAPK, and p21 can also inhibit ASK1/MEKK5.  
 
p21 may also block the processing of pro-caspase-3 into its active form. 



Transcriptional Regulation by Cip/Kip Proteins 

  

Besson et al. Develop Cell 14, 
159 (2008) 

The CKIs p21, p27, and p57 can repress 
E2F-mediated transcription indirectly 
via the inhibition of cyclin-CDK complexes, 
thereby maintaining Rb-family proteins 
(Rb/p110, p107, and p130) in a 
hypophosphorylated state in which they 
sequester E2F transcription factors.  
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Cip/Kip proteins also regulate TFs directly. For instance, p57 and p27 can interact 
with MyoD and Neurogenin-2 (Ngn-2), respectively, stabilizing them and promoting 
transcription of their target genes.  
 
On the other hand, p21 binds to E2F1, c-Myc, and STAT3 to inhibit their activities. 
p21 may also derepress p300/CBP targets by inhibiting the transcriptional 
repression domain of p300. 



  

Besson et al. Develop Cell 14, 
159 (2008) 

In the cytosol, p27 can bind to RhoA, preventing its activation by its GEFs (guanine-nucleotide exchange 
factors), leading to decreased actin stress fiber and focal-adhesion formation and resulting in several cell types 
in increased migration, invasion, and metastasis. PI3K-AKT induction of cytoplasmic localization of p27 is also 
involved in the inhibition of PTEN activation via p27-mediated inhibition of the RhoA-ROCK pathway.  
 
p21 cytoplasmic localization is induced by phosphorylation on T145 and S153 by Akt and PKC, respectively. 
Cytoplasmic p21 can bind to ROCK, inhibiting its kinase activity, resulting in decreased actin stress fibers 
formation.  
Cytoplasmic p57 can bind to LIMK and induce its translocation into the nucleus, resulting in loss of actin stress 
fibers. 
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In the nucleus, Cip/Kip proteins primarily 
function to restrict the activities of cyclin-CDK 
complexes.  
 
Phosphorylation of p27 on Ser-10 promotes 
its binding to the exportin CRM1 and nuclear 
export.  
 
On the other hand, phosphorylations on T157 
(by Akt) or T198 (by Akt or p90Rsk) promote 
binding to 14-3-3 proteins and prevent the 
reentry of p27 in the nucleus.  



Cell Cycle and the Phosphoproteome 

  

Aim: Analyze all proteins that are modified by phosphorylation during different 
stages of the cell cycle of human HeLa cells. 
 
Ion-exchange chromatography + HPLC +  MS + sequencing led to the identifi-
cation of 6695 proteins.  
From this 6027 quantitative cell cycle profiles were obtained.  
 
A total of 24,714 phosphorylation events were identified.  
20,443 of them were assigned to a specific residue with high confidence. 
 
Finding: about 70% of all proteins get phosphorylated. 
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Review: protein quantification by SILAC 

Schwanhäuser et al. Nature 473, 337 (2011) 

Quantification protein turnover and levels.  
Mouse fibroblasts are transferred to medium with 
heavy amino acids (SILAC) 
.  
Protein turnover is quantified by mass spectrometry 
and next-generation sequencing, respectively. 

SILAC: „stable isotope labelling by 
amino acids in cell culture“ means that 
cells are cultivated in a medium 
containing heavy stable-isotope 
versions of essential amino acids.  
 
When non-labelled (i.e. light) cells are 
transferred to heavy SILAC growth 
medium, newly synthesized proteins 
incorporate the heavy label while pre-
existing proteins remain in the light 
form. 
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Rates of protein translation 

Schwanhäuser et al. Nature 473, 337 (2011) 

Mass spectra of peptides for 
two proteins. 
 
Top: high-turnover protein 
Bottom: low-turnover protein. 
 
Over time, the heavy to light 
(H/L) ratios increase. 
 
H-concentration of high-turnover 
protein saturates. 
That of low-turnover protein still 
increases. 
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Quantitative proteomic analysis 

  

Olsen Science 
Signaling 3 (2010) 

HeLa S3 cells were SILAC-labeled with  
3 different isotopic forms (light – medium –heavy) 
of arginine and lysine.  
 
3 individual populations of heavy and light SILAC 
cells were synchronized with a thymidine block 
(analog of thymine, blocks entry into S phase).  
Cells were then collected at six different time 
points across the cell cycle after release from the 
thymidine arrest.   
 
2 samples were collected after a cell cycle arrest 
with nocodazole and release. (Nocodazole 
interferes with polymerization of microtubules.) 
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Cells were lysed and mixed in equal amounts using an asynchronously growing cell 
population as the internal standard to allow normalization between experiments.  
3 independent experiments were performed to cover six cell cycle stages. 



FACS profiles of individual HeLa populations 

  

Olsen Science 
Signaling 3 (2010) 

Cells were fixed and collected 
by centrifugation. 
 
Then the DNA content of the 
cells was determined with 
propidium iodide. 
 
This is the basis for classifying 
the state along the cell cycle. 
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Quantification of cell cycle markers 

  

Olsen Science 
Signaling 3 (2010) 

Immunoblot analysis of known 
cell cycle marker proteins in the 
different cell populations. 
 
The abundance of a fifth of the 
proteome changed by at least 
fourfold throughout the 
cell cycle (difference between 
lowest and highest abundance). 
 
Because a fourfold change 
also best accounted for the 
dynamics of already described 
cell cycle components, this ratio 
was used as a threshold for 
subsequent analysis. 
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Monitoring of protein abundance by MS 

  

Olsen Science 
Signaling 3 (2010) 

Representative MS data showing how the abundance of 
the proteins was monitored in three experiments (Exp. 1, 
Exp. 2, Exp. 3) to obtain information from the 6 stages of 
the cell cycle.  
 
The data show the MS analysis of a tryptic SILAC peptide 
triplet derived from the cell cycle marker protein Geminin.  
 
Relative peptide abundance changes were normalized to 
the medium SILAC peptide derived from the asynchro-
nously grown cells in all three experiments. The inset 
shows the combined six-time profile of Geminin over the 
cell cycle. 
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Bioinformatics Workflow (1) 

Olsen Science 
Signaling 3 (2010) 
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Bioinformatics Workflow (2) 

  

Olsen Science 
Signaling 3 (2010) 
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Bioinformatics Workflow (3) 

  

Olsen Science 
Signaling 3 (2010) 
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For each protein a peak time 
index was calculated by 
weighted mean of its maximal 
expression at time point ti  w.r.t 
its adjacent time points 
ti-1 and ti+1.  
 
 
 
 
The proteins were then 
clustered according to their 
increasing peak time indices. 



Bioinformatics Workflow (4) 
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Olsen Science 
Signaling 3 (2010) 



  

Olsen Science 
Signaling 3 (2010) 
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Dynamics of the proteome during the cell cycle 

Proteins whose abundance changed at least 
fourfold during the cell cycle were clustered in 
all cell cycle stages by calculating a time peak 
index by weighted mean of the ratio of 
maximal abundance.  
 
For each cell cycle stage, there are clear 
patterns of up- and down-regulation.  



Determine protein peaks 

  

Olsen Science 
Signaling 3 (2010) 

(B) A circularized representation of the data shown in (A) was used to determine the 
angle in the cell cycle where the abundance of particular proteins peaks. 
Coordinately regulated protein complexes and organellar proteins at each cell cycle 
stage are indicated around the circle. 
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Comparison of mRNA and protein dynamics 

  

Olsen Science 
Signaling 3 (2010) 

Comparison of mRNA and protein dynamics during the cell cycle. Measured 
protein dynamics were correlated to published mRNA data.  
 
Proteins were grouped on the y axis in four categories from top to bottom:  
 - unchanging mRNA and protein 
 - changing mRNA and unchanging protein 
 - unchanging mRNA and changing protein 
 - and changing mRNA and changing protein.  
The x axis shows clustered gene ontology (GO) biological process terms enriched 
in at least one of the above four categories. High and low represent statistical over- 
or underrepresentation, respectively. 
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Olsen Science 
Signaling 3 (2010) SS 2013 - lecture 4  

25 
Modeling of Cell Fate 

Absolute phosphorylation site stochiometry 
Now we want to derive the phosphorylation state of protein residues during the cell cycle. 
We need to substract out the changes of protein abundance. 
-> we want to know (1) and (2) below 



Available experimental data 

Olsen Science 
Signaling 3 (2010) 

To determine phosphorylation sites that show dynamic profiles due to changes in phosphory-
lation state rather than due to changes in protein abundance, we consider the measured 
phosphopeptide H/L ratios. 
  
From the experiment we have:  
- the SILAC ratio x for phosphopeptide 
- the SILAC ratio y for non-phosphopeptide (the unphosphorylated version of the 

phosphopeptide),  
- and protein ratio z (the total amount of the protein in both phosphorylated and 

nonphosphorylated forms). 
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Olsen Science 
Signaling 3 (2010) 
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Absolute phosphorylation site stochiometry 



Example: Dynamic phosphorylation of CDK1 

  

Olsen Science 
Signaling 3 (2010) 

Dynamic profile of two CDK1 
phosphopeptides during the cell 
cycle. 
 
The activating site T161 peaks 
in mitosis, whereas 
phosphorylation of the inhibitory 
sites T14 and Y15 is decreased 
in mitosis 
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Total phosphosite occupancy in different stages of cell cycle 

  

Olsen Science 
Signaling 3 (2010) 

Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more. 
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Differential phosphorylation 

  

Olsen Science 
Signaling 3 (2010) 
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Gene ontology (GO) analysis of protein and phosphoproteins subcellular 
localization. All proteins identified by MS were clustered according to their GO 
annotation for sub-cellular localization (Blue bars). The same clustering was done for 
all phosphoproteins (Red bars).  

y-axis : percentage of the 
indicated sub-cellular fractions 
from the total.  
 
Compared to the proteome 
distribution, phosphorylated 
proteins are over-represented 
in the nucleus and under-
represented amongst 
mitochondrial and secreted 
proteins. 



Dynamics of the Phosphoproteome 

  

Olsen Science 
Signaling 3 (2010) 

Dynamics of the phosphoproteome 
during the cell cycle.  
 
Clustering of regulated phosphorylation 
sites in all cell cycle stages. 
 
More than half of all identified 
regulated phosphorylation sites  
peak in mitosis. 
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Who phosphorylates? -> NetPhorest algorithm 

  

Miller Science 
Signaling 1 (2008) 
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NetPhorest algorithm 

  

Miller Science 
Signaling 1 (2008) 
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Analyze in vivo protein-phosphorylation 
sites that are linked to at least one kinase 
[Phospho.ELM] or phospho-binding 
domain [DOMINO]. 

map both in vivo and in vitro data onto phylogenetic trees of the kinase and 
phospho-binding domains, which capture how similar the domains are to one 
another and thereby how likely they are to have similar substrate specificities. 

Analyze in vitro assays that 
interrogate kinase specificity by 
degenerate peptide libraries 



NetPhorest algorithm 

  

Miller Science 
Signaling 1 (2008) 
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NetPhorest algorithm: applications 

  

Miller Science 
Signaling 1 (2008) 
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Cell Cycle-regulated kinase substrates 

  

Olsen Science 
Signaling 3 (2010) 
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The NetPhorest algorithm was used to 
predict kinase-substrate relationships of all 
serine and threonine phosphorylated 
proteins. 
 
The heat map shows over- (yellow) and 
underrepresentation (blue) of predicted 
kinase substrates during different stages 
of the cell cycle compared to a background 
of phosphorylation sites that did not change 
with the cell cycle.  
 
Predicted CDK2 and CDK3 substrates were 
most highly phosphorylated in M phase. 
 
ATM_ATR substrates are high in S phase. 



PPI network of DDR kinase substrates 

  

Olsen Science 
Signaling 3 (2010) 

Substrates of the DNA damage response (DDR) kinases ATM, the related 
kinase ATR, and DNA-dependent protein kinase (DNA-PK) are significantly 
overrepresented in S phase. 
This is likely due to coupling between DNA replication and repair.. 
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Figure shows the protein-protein 
interaction network of DDR 
kinase substrates. 
 
The network was extracted from 
the STRING database 
 
The color-coded nodes belong to 
10 significant protein clusters. 



Proteomic phenotyping of phosphorylation site stochiometry 

  

Olsen Science 
Signaling 3 (2010) 
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Phenotypic 
phosphoproteome 
comparison organized 
by GO biological process 
for mitotic (left) and S 
phase (right) cells.  
 
Proteins involved in 
metabolic processes have 
high-occupancy 
phosphorylation sites 
during mitosis, but low-
occupancy sites during S 
phase  

color scale: yellow, high overrepresentation; dark blue, high underrepresentation.  
The phospho proteins were divided into five quantiles on the basis of their maximum 
phosphorylation-site occupancy and analyzed for GO category (biological process and cellular 
compartment) enrichment by hypergeometric testing. 



GO cellular compartment analysis 

  

Olsen Science 
Signaling 3 (2010) 
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Proteomic 
phenotype 
analysis of GO 
cellular 
compartment 
level.  



Summary 
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Phosphorylation of protein residues is an important mechanism to regulate protein 
structure, protein activity, protein localization, and protein interactions. 
 
About 70% of all cellular proteins are phosphorylated to some extent. 
 
Phosphorylation is a dynamic state variable during the cell cycle. 
 
Phosphorylation levels are controlled by the ca. 518 different human kinases as 
well as by phosphatases. 
 
-> these are important potential drug targets (problem is achieving specificity) 


