What are gene-regulatory networks (GRNs)?
How does one generate GRNs?

Can one set-up GRNSs for cancerogenesis based on available data?
What can these GRNs be used for?

Limitations of current GRN models.
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Example of a gene regulatory network.

Solid arrows: direct associations between
genes and proteins (via transcription and
translation), between proteins and proteins
(via direct physical interactions), between
proteins and metabolites (via direct physical
interactions or with proteins acting as
enzymatic catalysts), and the effect of
metabolite binding to genes (via direct
interactions).

Lines show direct effects, with arrows
standing for activation, and bars for inhibition.
Dashed lines: indirect associations between
genes that result from the projection onto
'‘gene space'. E.g. gene 1 deactivates gene 2
via protein 1 resulting in an indirect
interaction between gene 1 and gene 2
(drawn after [Brazhnik00]).

Modeling of Cell Fate



Review (bioinformatics lll) — GRN of E. coli

RegulonDB: database with information on transcriptional regulation and operon
organization in E.coli; 105 regulators affecting 749 genes

— 7 regulatory proteins (CRP, FNR, IHF, FIS, ArcA, NarL and Lrp) are sufficient
to directly modulate the expression of more than half of all E.coli genes.

— Out-going connectivity follows a
power-law distribution

— In-coming connectivity follows

exponential distribution (Shen-Orr).
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Current Opinion in Micrabiology

Martinez-Antonio, Collado-Vides, Curr Opin Microbiol 6, 482 (2003)

SS 2013 - lecture 12

Modeling of Cell Fate

3




Regulation of transcription factors in E. coli

The TF regulatory network in E.coli.

When more than one TF regulates a gene, EJE , E ITE. b=k me

the order of their binding sites is as given in e T i
the figure. An arrowhead is used to indicate
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Horizontal bars indicates negative regulation ‘1 gl g
when the position of the binding site is Sl ic o ’
known. In cases where only the nature of T g
regulation is known, without binding site o g

information, + and — are used to indicate
positive and negative regulation.

The DBD families are indicated by circles of
different colours as given in the key. The
names of global regulators are in bold.

Babu, Teichmann, Nucl. Acid Res. 31, 1234 (2003)
SS 2013 - lecture 12 Modeling of Cell Fate
4



(1) ,by hand” based on individual experimental observations

(2) Infer GRNs by computational methods from gene expression data

Here we will follow this recent open-access paper

Briefings in Bioinformatics Advance Access published May 21, 2013
BRIEFINGS IN BIQINFORMATICS. page | of I¥ dait10.10 73, bibjbbr 034

Supervised, semi-supervised and
unsupervised inference of gene
regulatory networks

Stefan R. Maetschke, Piyush B. Madhamshettiwar, Melissa J. Davis and Mark A. Rogan

Submitted: 15th January 2013; Recerved {in revised form): 15th Apeil 2013
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Unsupervised methods do not use any data to adjust internal parameters.

Supervised methods, on the other hand, exploit all given data to optimize
parameters such as weights or thresholds.

Semi-supervised methods use only part of the data for parameter optimization, for
instance, a subset of known network interactions.
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Inference methods (to infer = dt. aus etwas ableiten/folgern) aim to recreate the
topology of a genetic regulatory network e.g. based on expression data only.

The accuracy of a method is assessed by the extent to which the network it infers is
similar to the true regulatory network.

We quantify similarity by the area under the Receiver Operator Characteristic
curve (AUC)

1 i
AUC = 5 E (Xp — X1 (Y + Y1)
=1

where X, is the false-positive rate and Y, is the true positive rate for the k-th output in
the ranked list of predicted edge weights.

An AUC of 1.0 indicates a perfect prediction, while an AUC of 0.5 indicates a
performance no better than random predictions.
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Authors performed evaluations on simulated, steady-state expression data,
generated from subnetworks extracted from E. coli and Saccharomyces cerevisiae
networks.

This allowed them to assess the accuracy of an algorithm against a perfectly known
true network.

The programs GeneNetWeaver and SynTReN were used to extract subnetworks and
to simulate gene expression data.
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Review (bioinfo Ill):
Mathematical reconstruction of Gene Reaulatorv Networks

B Synthetic gene expression data - C Network inference
Steady state and time series

DREAM: Dialogue on Reverse Engineerging
Assessment and Methods

Aim:

systematic evaluation of methods for
reverse engineering of network topologies
(also termed network-inference methods).

Problem:

correct answer is typically not known for real
biological networks

Approach:
generate synthetic data

Marbach et al. PNAS 107, 6286 (2010)

Simulation

A In silico gene networks

SS 2013 - lecture 12 Modeling of Cell Fate
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Transcriptional regulatory networks are modelled consisting of genes, mRNA, and proteins.

The state of the network is given by the vector of mMRNA concentrations x and protein
concentrations y.

We model only transcriptional regulation, where regulatory proteins (TFs) control the
transcription rate (activation) of genes (no epigenetics, microRNAs etc.).

The gene network is modeled by a system of differential equations

dx;

—! — .. .- —ARNA . i

dt n?! f! (y) 1 X
dy;
_!:_,__i_Pr()t,_q
dt Fi * X i Yi

where m; is the maximum transcription rate, r; the translation rate, A/i¥ and A/ are the
MRNA and protein degradation rates and f{.) is the so-called input function of gene .

Marbach et al. PNAS 107, 6286 (2010)
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Review (bioinfo lll): Synthetic networks

The challenge was structured as three separate subchallenges with networks of 10, 50,
and 100 genes, respectively. For each size, five in silico networks were generated.

These resembled realistic network structures by extracting modules from known
transcriptional regulatory network for Escherichia coli (2x) and for yeast (3x).

Example network E.coli Example network yeast

— Excitatory
B — |Inhibitory

Marbach et al. PNAS 107, 6286 (2010)
SS 2013 - lecture 12 Modeling of Cell Fate
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Unsupervised methods are either based on correlation or on mutual information.

Correlation-based network inference methods assume that correlated expression
levels between two genes are indicative of a regulatory interaction.

Correlation coefficients range from -1 to 1.

A positive correlation coefficient indicates an activating interaction, while a negative
coefficient indicates an inhibitory interaction.

The common correlation measure by Pearson is defined as
cov{ X, Xj)

orr(Xe X)) = S T (x)

where X;and X; are the expression levels of genes iand j, cov(.,.) denotes the
covariance, and o is the standard deviation (see lecture V11) —

SS 2013 - lecture 12 Modeling of Cell Fate
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Pearson’s correlation measure assumes normally distributed values.
This assumption does not necessarily hold for gene expression data.

Therefore rank-based measures are frequently used.
The measures by Spearman and Kendall are the most common.

Spearman’s method is simply Pearson’s correlation coefficient for the ranked
expression values

mﬂ(X?qu] - ﬁifﬁ(ﬁf:j%rj
2aln — 1)

Kendall’s t coefficient is computed as (X, X) =
(3 =<*7

where X";and X’; are the ranked expression profiles of genes jand j.

Con(.) denotes the number of concordant value pairs (i.e. where the ranks for both
elements agree). dis(.) is the number of disconcordant value pairs in X";and X;.
Both profiles are of length n.

SS 2013 - lecture 12 Modeling of Cell Fate
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WGCNA is a modification of correlation-based inference methods that amplifies high
correlation coefficients by raising the absolute value to the power of 8 (‘softpower’).

Wy = |corr( X, J{f]|ﬁ

with B > 1.

Because softpower is a nonlinear but monotonic transformation of the correlation
coefficient, the prediction accuracy measured by AUC will be no different from that of
the underlying correlation method itself.

SS 2013 - lecture 12 Modeling of Cell Fate
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Relevance networks (RN) introduced by Butte and Kohane measure the mutual
information (MI) between gene expression profiles to infer interactions.

The MI I between discrete variables X;and X; is defined as

1055) = X Tt sos( 222
( ,r:] ;;}ix;gp( ,r:] = (f&?f]p(xj:l

where p(x;, X;) is the joint probability distribution of X; and X; (both variables fall
into given ranges) and

p(x;) and p(x;) are the marginal probabilities of the two variables (ignoring the value
of the other one).

X;and X;are required to be discrete variables.

SS 2013 - lecture 12 Modeling of Cell Fate
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Z-SCORE is a network inference strategy by Prill et al. that takes advantage of
knockout data.

It assumes that a knockout affects directly interacting genes more strongly than
others.

The z-score z; describes the effect of a knockout of gene iin the k-th experiment on
gene j as the normalized deviation of the expression level X of gene j for experiment
k from the average expression (X)) of gene ;.

XK — )
T e(X)

=

SS 2013 - lecture 12 Modeling of Cell Fate
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In contrast to unsupervised methods, e.g. correlation methods, the supervised
approach does not directly operate on pairs of expression profiles but on feature
vectors that can be constructed in various ways.

The authors computed the outer product of two gene expression profiles X;and X;
to construct feature vectors:

x = ng‘"

A sample set for the training of the SVM is then composed of feature vectors X;
that are labeled y, = +1 for gene pairs that interact and y, = -1 for those that do not

interact.

SS 2013 - lecture 12 Modeling of Cell Fate
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Labelling of samples

supervised unsupervised
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Figure 2: QOriginal labeling of samples for supervised,
unsupervised, semi-supervised and positives-only pre-
diction methods. All the six samples within a sample
set are generated by a four-node network with three
interactions.
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Obtained AUC curves for unsupervised methods

1.0

A simple Pearson'‘s correlation
gives the second-best

knock=-out
performance.

all

Except for the z-score method,
accuracies are generally low.
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Supervised learning methods
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all

give much better results than
unsupervised methods.

100 indicates the

percentage of labeled data).
The only exception is the
excellent performance

of the z-score method

for knock-out data.
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Application to ovarian cancer data

Madhamshettiwar ef of. Genome Medicine 2012, 41
httpffgenomemedicine.comfcontentf4/5/41

Genome Medicine

RESEARCH Open Access

Gene regulatory network inference: evaluation
and application to ovarian cancer allows the
prioritization of drug targets

Piyush B Madhamshettiwar ™, Stefan R Maetschike'? Melissa J Davis"*®, Antonio Reverter® and Mark A Ragan®
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Application to ovarian cancer data

Table 1 Accuracies of unsupervised and supervised GRNI

methods on different datasets

Unsupervised SIREME

method

Datasets Method AUC AUC
CREAMZ [knockdown): genes 100, samples MEMET 255 2.0
1080

DREAM4 (rultifactorial): genes 190, samples GEMIE o079 DED
1000

Overy normal: genes 2450, samples 12 R 055 082
vary normal: genes 282, samples 12 Rl O 085
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Application to ovarian cancer data

SS 2013 - lecture 12
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The ovarian gene regulatory network
inferred using the program SIRENE,
showing target genes (rectangles) and
TFs (circles). 2 clusters of genes
(shaded blue, in the centre of the
figure) switch regulators between the
two conditions, controlled by SP3 or
NFB1 in normal and by E2F1 in
cancer.

Bold nodes are known to have protein
products that are targeted by anti-
cancer drugs.

Edge colors: green, normal; orange,
cancer; blue, both.

Edge line type: bold, literature and
TFBS; solid, literature; dashed, TFBS:;
dotted, no evidence.
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To identify the proteins regarded as anti-cancer drug targets, we input all 178
proteins from our GRN to CancerResource.

61% of the proteins from our network are targeted by at least one anticancer drug.

In many cases a single drug targets multiple proteins, or conversely multiple
drugs target a single protein.

SS 2013 - lecture 12 Modeling of Cell Fate
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Application to ovarian cancer data

Table 2 Druggability analysis results

Angiogenesis genes:
MF<B1 targets

Gaene name Gene type Targeted drugs
Top 10 target genes
GBCHE Erzyrme Bicalutamide, genistein, chaline, isoflurophate, hexafluarenium, demecanium bromide,
echathiophate iodide, butyric acid
CORY Protein kinase Lycopene, genistein, favopinidal
ORET Receptar ligand Cedtabine
CCR? GFCR Cedtakine
TR Erzyrme Fluarauradil, quercetin
HEDT 62 Enzyrme MADH
HEE Transparter Irom dextran complex
Angiogenesis genes:
SP3 targets
THAFS Birding protein Salinomycin, deditakine, sulindac, adaphostin
CAVT Birding protein Cedtabine, progesterone, mifepristone
CALE2 Birding protein Oraliplating fluorouracil
LAME T Receptar ligand Benzamidine, carebastine, anistreplase, tenedeplase
O Erzyrme Owaliplating gemcitabine, docetaxel, s1(combination), capecitabine, dsplatin, fluorourad, tegatur,

carboplating paclitael, genistein, enfuvirtide, raltitrexed, amifostine, ininotecan, methotrexate,
mitoguazone, uradl

KD Feceptar with Epigallocatechin gallate, resveratral, sorafenik, sunitinik, bevadzumak, siralimus, conivaptan,
£NZyme activity zonampanel, SUSESE, vatalanik, vandetanik, axitinib, cediranik, trapaxin, maotesanik, E #0805,
erlatinily, Cal455455, geldananmyan
FGFI3 Receptar ligand Bicalutamide
PRAXT Trarsoription factor Alitretinain
A0 Erzyrme [zareznillin, norcanthariding MSC336528

Genes and anti-cancer drugs targeting their products were obfained using Cancer Resource and Pharm{GKE webtools and databases. GPCR, G-protein-coupled
receptor.
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Network inference is a very important active research field.

Inference methods allow to construct the topologies of gene-regulatory networks
solely from expression data (unsupervised methods).

Supervised methods show far better performance.
Performance on real data is lower than on synthetic data because regulation in cells

is not only due to interaction of TFs with genes, but also depends on epigenetic
effects (DNA methylation, chromatin structure/histone modifications, and miRNAs).
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