
V8: Modelling the switching of cell fate 

  
Aim : develop models for the architecture of coupled epigenetic and genetic 
networks which describe large changes in cellular identity (e.g., induction of 
pluripotency by reprogramming factors). 
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Chronology of stem cell research  
•1998 – embryonic stem cells  
In 1998, James Thomson (US) isolated for the first time embryonic stem cells from surplus 
embryos „left over“ in fertilization clinics. 

Since then, the research has progressed at an incredible speed. 

 

Ethics „pro“: 

ESC have the potential to grow replacement tissue for patients with diabetes, Parkinson or 
other diseases. 

 

Ethics „contra“: 

The technique requires destroying embryos. This has big ethical consequences. 

In Germany, experimentation with humans is considered problematic due to the medical 
experiments pursued during the Nazi time. 

 

Therefore, the above methods are forbidded by law in Germany! 

Researchers are looking for new ways to generate stem cells without ethical problems. 
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Chronology of stem cell research  
•2006 - Induced pluripotent stem cells (iPS)  
The first solution was presented in August 2006 by the two Japanese Kazutoshi 
Takahashi and Shinya Yamanaka.  

 

Using 4 control genes, they reprogrammed cells from mouse tail into a sort of embryonic 
state. The product was termed induced pluripotent stem cells (iPS cells). 

Drawback: if used for medical treatment later, the inserted genes could enhance the risk 
of cancer.  
 

•2007 – human iPS cells  
In 2007, similar success was managed with human skin cells. 

Fewer and fewer control genes are necessary to generate iPS cells. 
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How can one show that iPS cells have stem cell potential? 

  

Kim et al. Cell 136, 411 (2009) 
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Need to show that iPS cells implanted into an early embryo give rise to all  
3 different types of tissue (endoderm, ektoderm, mesoderm).  
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Chronology of stem cell research  
• February 2009 – only one reprogramming gene required  
In February 2009, Hans Schöler presented iPS cells of mice that were reprogrammed from 
neural stem cells using only a single control gene. 
 

• March 2009 – Reprogramming gene removed  
Begin of March 2009: 2 teams of researchers present iPS cells that do not contain 
additional control genes in the genome.  

Control genes were first inserted into the genome of human skin cells, and later removed. 
 

• March 2009 – Reprogramming gene not in genome  
End of March 2009: James Thomsom showed that control genes do not need to be inserted 
into the genome of the cells. He introduced an additional plasmid (ring genome) into the cell 
that was later removed. 
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Chronology of stem cell research   
• April 2009 – Reprogramming of mouse cells without genes 
Ende of April 2009: Sheng Ding (US) and others succeed to reprogram skin cells of mice into 
iPS without gene manipulations using proteins only. 

 

This eliminates the risk of cancer due to insertion of genes. 
 

• May 2009 – Reprogramming of human cells without genes  
US-korean team around Robert Lanza manages to reprogram human cells into iPS cells 
using proteins (TFs) only. 
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Characteristics of cell reprogramming 

Generally: reprogramming efficiency is very low  
(few percent success rate). 

 

Successful reprogramming may take very different times  

between days and weeks! 

 

Cell reprogramming seems to be a stochastic process! 
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Modelling cell differentiation 

Consider only developmentally important genes. 

 

Each set of genes responsible for maintenance of a particular cellular identity  

(e.g. Oct4, Sox2 for pluripotency) is described as a single module. 

 

Arrange gene modules in a hierarchy. 

 

For simplicity, from each cell state emanate two branches (Cayley tree). 
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Specification of genetic and epigenetic states  
that describe cellular states 

  

Each node of the hierarchy represents an ensemble of master-regulatory genes that govern a 
particular cellular state. E.g. genes in the top node are known master regulators of the 
embryonic stem cell state (e.g. Oct4, Sox2, Nanog).  
 
When a cell is in the ES state, only these 3 genes will be expressed while other genes will not.  
 
Similarly, when a cell is fully differentiated, genes in one of the bottom modules will be 
expressed but not any other gene in the network.  
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Only the master-
regulatory genes that 
govern cell state are 
arranged in a hierarchy 
(house keeping, stress-
response and many 
other genes are not 
considered).  



Separate Genetic and Epigenetic Networks 

  

Cellular identity is determined by both epigenetic (chromatin marks, DNA methylation) and 
genetic (expression profile) states.  
 
Shown are examples of two states (ES state and ‘‘left’’ pluripotent progenitor).   
 
2 lattices are needed to describe the state of gene expression and the epigenome:  
the top lattice reflects the expression levels of master-regulatory proteins in the ES/progenitor 
state and the bottom lattice reflects the epigenetic state of master-regulatory genes in the 
ES/progenitor state. 
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Ising model 

  
The Ising model named after the physicist Ernst Ising, is a mathematical model of 
ferromagnetism in statistical mechanics.  
 
The model consists of discrete variables that represent magnetic dipole moments of 
atomic spins that can be in one of two states (+1 or −1).  
 
The spins are arranged in a graph, usually, a lattice, allowing each spin to interact 
with its neighbors.  
 
The model allows the identification of phase transitions, as a simplified model of 
reality.  
 
The two-dimensional square-lattice Ising model is one of the simplest statistical 
models to show a phase transition.[ 
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http://en.wikipedia.org/wiki/Ising_model


Ising model 

  
Consider a set of lattice sites Λ, each with a set of adjacent sites forming a lattice. 
  
For each lattice site j ∈ Λ there is a discrete variable σj  ∈ {+1, −1}.  
A spin configuration σ = (σj)j∈Λ is an assignment of spin valuse to each lattice site. 
 
For any two adjacent sites i, j ∈ Λ one has an interaction Jij, and a site i ∈ Λ has an 
external magnetic field hi.  
The energy of a configuration σ is given by the Hamiltonian Function 
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where the first sum is over pairs of adjacent spins.  
<ij> indicates that sites i and j are nearest neighbors.  
µ is the magnetic moment of a spin that interacts with the magnetic field.  
 
The parallel arrangement of spins is energetically preferred. Rearrangements 
arise from thermal fluctuations. 
Solve analytically or by Monte-Carlo simulations. 
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Review (Comput Chemistry): Metropolis Algorithm 
The most often used technique to select conformers by Monte-Carlo methods 
(„importance sampling“) is the Metropolis Algorithm: 

 

(1) construct starting configuration of molecule 

(2) perform random change of degree of freedom (e.g. torsion angle or spin flip)  

(3) compute change in energy E due to conformation change. 

(4) if E < 0 accept new configuration 

     if  E > 0 compute probability 

 generate random number r  [0,1] 

 accept new configuration if w  r, otherwise reject. 

 

Because Boltzmann-weighted energy difference is compared to a random 
number, sometimes high-energy conformers get accepted.  

This yields an ensemble of conformations with an energy distribution according 
to a Boltzmann distribution. 
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Adaptation of Ising model to switching of cell fate 

  
Define an epigenetic lattice where a discrete epigenetic state is associated with 
each node (-1,0,+1).  
 
Sepigen = -1 corresponds to closed chromatin,  
Sepigen = 0  : bivalent chromatin and  
Sepigen = +1 : open chromatin.  
 
The genetic lattice describes expression of proteins from master-regulatory 
modules. 
 
It has discrete gene expression states associated with each node (0, +1).  
 
Sgen = 0 : absence of any protein expression from the given gene,  
Sgen =+1 : maximum protein expression from the gene. 
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“Epigenetic energy function” of cell fate 
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Si
ep : epigenetic spin state of i-th module,  

Si
gen : protein expression level of i-th module.  

 
Angular brackets : average expression level 
of j-th module obtained during the preceding 
interphase, and could include protein products 
of ectopic genes or signaling events.  
 
|Si

ep | : absolute value of Si
ep .  

G > 0 : parameter that represents the strength with which the protein atmosphere 
can modify the epigenetic state by altering histone marks.  
H > 0 : parameter that represents the strength of the DNA methylation constraint.  
a > 0 : constant that favors values of Si

ep < a if proteins expressed by gene j are 
present. 



“Genetic energy function” of cell fate 
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Angular brackets : average value of epigenetic state of the i-th module obtained 
during the preceding telophase.  
 
F > 0: constant that represents how strongly a protein is expressed or repressed if it 
is in open chromatin state or in heterochromatin, respectively.  
 
b > 0 : constant; protein expression is favored if <Si

ep>  > b.  
 
The form of the first term implies that protein expression is more strongly repressed 
if a gene is packaged in heterochromatin compared to if it is bivalently marked.  
 
J represents the strength of mutual repression by other proteins. 



Monte Carlo simulation of cell fate 
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As in the standard Monte-Carlo algorithm, the lattice spins (+1/0/-1 on the epigenetic lattice; 
+1/0 on the genetic lattice) are initialized randomly.  
 
The Monte-Carlo move consists of  
1) randomly choosing a node on the lattice;  
 
2) randomly deciding on the choice of a new value of Si for this node  
(i.e. if Si

epigen was 0 then it can become -1 or +1 with equal probability);  
 
3) the energy for this configuration is computed according to the appropriate Hamiltonian 
(energy function);  
 
4) attempted changes in state are accepted with probability equal to  
min [1, exp {-H(Si). 
  
The parameter  is analogous to the inverse temperature 1/kT used in simulation of thermal 
systems, and sets the scale for the parameters, F, G, H and J. 
 
Run enough MC steps in each phase until running averages of Sgen /Sepigen converge. 



Simplified model for progression through cell cycle 

  

In the interphase gene expression profile is governed by the stable epigenetic marks on the 
master-regulatory genes.  
 
In the telophase, however, protein environment can change the epigenetic marks of the 
master-regulatory genes.  
 
Differentiation signals (newly expressed proteins) determine future epigenetic marks created 
during telophase due to the action of the new protein environment. 
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For simplicity, the cell cycle is 
divided into two generalized 
phases, interphase and telophase.  
 
Gene expression occurs during 
the interphase, while cell division 
and associated processes occur in 
the telophase.  



Transcriptional dynamics during interphase 

Gene expression is influenced by epigenetic marking of the corresponding gene and 
interactions between expressed proteins. 2 rules reflect this in our simulation: 
  
1) When a master-regulatory gene is epigenetically marked positively, it favors expression of 
the corresponding protein;  
 
2) when 2 (or 3) neighboring genes are in epigenetically open states, they all favor expression 
of corresponding proteins, but due to their mutually repressive action only one of 2 (or 3) genes 
are expressed. Which gene is expressed is chosen stochastically. 
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Rules that govern inter-
actions within epigenetic 
and genetic networks. 
 
During interphase, gene 
expression profiles of 
master regulatory modules 
are established. 



Epigenetic dynamics during telophase 

  

Long-range effect is typically mediated through DNA methylation which epigenetically 
silences all of the master-regulatory genes of unrelated lineages and also ancestral 
states.  
 
Short-range interactions affect nearest-neighbors differentially: progenies of master-
regulatory genes are preferentially put into bivalent states while progenitor and 
competing lineage modules are epigenetically silenced. 
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During the telophase, the 
protein environment can alter 
the epigenetic marks on the 
master-regulatory genes.  
 
Epigenetic marks on both 
neighboring and distant genes in 
the hierarchy can be altered.  



Changing cellular identity during self-initiated 
differentiation of the ES cell-state 
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In phase 2 only one of the 3 neighboring proteins can be actually expressed.  
Thus, one of 3 possibilities is realized: self-renewal, and differentiation to the ‘‘left’’ or 
‘‘right’’ lineages. In the absence of external stimuli, in our simulations, there is an 
equal chance to observe each outcome.  

Phase 1: Process begins with cell 
division where regulatory modules 
of progenies are put into 
epigenetically open states (green).  



Reprogramming may result from random epigenetic changes 
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2 real simulations 
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Dynamics of cell differentiation 

  
Dynamics of cell differentiation upon 
receiving cues (input signals) of 
different strength. 
 
The simulations show that the 
progenitor cells differentiate in 
accord with first order kinetics, with 
the lifetime of progenitor cells 
depending on the signal strength.  
 
The blue curve describes the 
behavior of a cell population which 
received a signal that is twice as 
weak as the population represented 
by the black line.  
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Alternative modeling approach – more gene details 

  

Aims also at building an abstract model of combined networks that govern 
pluripotency and reprogramming.  
 
Boolean model used where a cell state is defined as a simple binary vector of 
the states of all variables. 
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General model structure 

  
Transcriptional regulators that account for the 
activation of a certain cell state are combined 
into a module. 
 
Full model contains 4 modules:  
- 2 different differentiation modules A and B,  
- the pluripotency module P, and  
- the exogenous reprogramming genes E.  
 
Each module is governed by the activity of 
the other modules as well as its epigenetic 
states  
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Processes described by model 

  
Model describes connections between DNA 
methylation, histone modifications and the 
pluripotency master regulators.  
 
Pluripotency TFs activate their own 
expression and can be suppressed by 
factors regulating differentiation.  
 
The pluripotency factors themselves 
increase the expression of DNMT3 which 
enables de novo methylation of DNA 
preferably in combination with repressive 
histone modifications such as methylation 
or deacetylation (right nucleosome).  
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On the other hand activation of pluripo-
tency genes also leads to a higher cell 
division rate,a suppression of methylation 
maintenance and probably active deme-
thylation, which also increases the 
chances of euchromatin formation  



Boolean Networks 

  
Boolean networks limit the state of a gene to either ON or OFF and describe 
connections between the genes by using logical operators, 
e.g., AND, OR, NOT (generally written as , , and ). 
 
E.g. if two transcription factors A and B are needed to activate gene C  
this would translate to the logical function  
 
  C(t + 1) = A(t)  B(t) 
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Boolean Networks 

  
In formal terms, a Boolean network can be represented as a graph  
G = (V, E) consisting of a set of n nodes V = {v1, …, vn} and a set of k edges 
E = {e1, …, en} between the nodes. 
 
For every time point t, each node vi has a state vi (t )  {0, 1} denoting either no 
expression or expression of a gene or absence or presence of activity of a 
regulatory property, respectively. 
 
In a non-probabilistic Boolean network, the state vector, or simply the state  
S(t) of the network at time t corresponds to the vector of the node states at time t, 
i.e., S(t) = (v1(t ), …, vn(t )).  
 
Thus, since every vi(t ) can take only 2 possible values 0 or 1, the number of all 
possible states is 2n .  
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Probabilistic Boolean Networks 

  
In probabilistic Boolean networks (PBNs), we are dealing with a probability 
distribution over several states at each time point.  
 
This is why, in order to extend the definition of states to probabilistic Boolean 
Networks, we will refer to a specific state as Si from now on where i  {0, …, 2n}, 
independent of the time of its appearance. 
 
Every node is updated at every time point by application of a set of update 
functions F = {F1 , …, Fn } that integrate the input information of edges on one 
node.  
 
In other words, the function Fi  assigns a new state value to the node vi at time  
t + 1, i.e., vi (t + 1).  
 
They depend on the state of k input nodes with k  {0, …, n} at time t.  
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Probabilistic Boolean Networks 

  
Example: let us assume that there is experimental data showing that both 
transcription factors A and B activate gene C, but it is unclear whether they can 
act separately or only in combination 
 
Then, there are several logical function that can describe the interaction of A,B, C. 
 
In probabilistic Boolean networks this uncertainty is taken into account by 
relaxing the constraint of fixed update rules Fi and by permitting instead one or 
more functions per node. 
 
Thus, function Fi  is replaced by a set of functions Fi  = { f ij } with j  {1, …, l(i)}, 
where f ij  is a Boolean logic function and  
l(i) the total number of functions for node vi .  
 
In each update step the functions are chosen randomly according to their 
probability (which we assign).  
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Probabilistic Boolean Networks 

  
The PBN can be viewed as an ensemble of N standard Boolean networks, where   
 
 
In each simulation step, we choose one of the networks to update the state.  
 
The probability of each network being chosen is the product of the probabilities of 
the chosen functions. 
 
The vector D t  = (Dt

1, …,  Dt
n) now comprises the probabilities of all r = 2n states 

at time t, i.e.,the probability of the network to be in this state.  
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Probabilistic Boolean Networks 

  
Simulations performed using R-package BoolNet (Müssel et al. 2010) 
 
Model contains 14 variables 
 
Thus, there are 214 = 16,384 possible states. 
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Probabilistic Boolean Networks 

  
We can define a (2n  2n ) matrix A, that contains the probability to transition from 
state i to state j given all possible networks.  
 
If there is no network allowing the transition i → j, Aij = 0 otherwise Aij  is the sum 
of the probabilities of all the networks allowing this transition.  
 
Matrix A is a state transition matrix of a homogeneous Markov process. 
 
Thus, given a (1  2n ) vector D0 with a start probability for each state we can 
recursively simulate the system from t to t + 1 (eq. (1)) or as well directly deduce 
the value at t + 1 of this geometric progression (eq. (2)) 
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The epigenetic landscape 

  
A module consists of 3 nodes,  
 
  - an expression node 
 
  - a DNA methylation node 
 
  - and a chromatin structure node 
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4 update functions for methylation of pluripotency genes 

mA
m and mA

hc : methylation and chromatin states of module A, respectively. 
 
dnmt: presence of de novo DNA methyltransferase DNMT3A/B 
 
demeth: combines all processes leading to demethylation of DNA  
 
Similar rules hold for modules B and P.  
 
Note that probabilities of the formulas sum up to 1. 
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Update functions for chromatin changes 

mA
e : expression of module A 

 
mA

hc : chromatin states of module A. 
 
mA

m : DNA methylation of module A 
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Chromatin changes are dependent on the expression of the module‘s genes. 



Update functions for gene expression 

mA
e : expression of module A 

 
mA

hc : chromatin states of module A. 
 
mA

m : DNA methylation of module A 
 
If both epigenetic submodules are inactive (hc and meth), the expression of the 
genes in the next time step depends only on the transcription factors. 
 
Some further rules left out … 
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The expression of a module is controlled by its epigenetic states. 



Relation between 14 state variables and cell states 
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Dynamics of isolated pluripotency module 
Dynamics (A) and state space 
(B) of the pluripotency module 
during overexpression of 
differentiation factors.  
The network quickly leaves the 
pluripotent state and passes 
across a number of transient 
states into two different attractors. 
The node in blue (lower right) is a 
point attractor in the completely 
differentiated state and the nodes 
in brown are part of a cyclic 
attractor consisting of the 
unmethylated state in either a 
euchromatin or heterochromatin 
structure.  
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Developmental Pathway in State Space 

  
Dynamics of cell differentiation upon 
receiving cues of different strength. 
Our simulations show that the 
progenitor cells differentiate in accord 
with first order kinetics, with the 
lifetime of progenitor cells depending 
on the signal strength. The blue 
curve describes the behavior of a cell 
population which received a signal 
that is twice as weak as the 
population represents by the black 
line.  
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Reprogramming efficiency of the model variants 

  
In order to analyze the stability of the model and 
its behavior upon parameter variation, we varied 
the strength of the epigenetic modifications, i.e. , 
DNA methylation and chromatin changes.  
 
We defined a parameter range including the 
parameters of our main model, a decreased and 
an increased probability of changes in 
methylation and heterochromatin formation and 
analyzed the effect on the reprogramming 
efficiency.  
 
Interestingly, in the time range of 2000 time steps 
our main model nearly seems to have a maximal 
saturation for its reprogramming efficiency which 
is only very slightly surpassed by increasing the 
probability for euchromatin formation.  
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Summary 

  
Abstract models can mimick experimentally observed behavior of cell switching 
and of reprogramming to iPS cell state. 
 
Sofar, no modelling presented at the level of individual genes. 
 
Therefore, it is difficult to connect these early theoretical models with biological 
data. 
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