V8: Modelling the switching of cell fate

Aim : develop models for the architecture of coupled epigenetic and genetic
networks which describe large changes in cellular identity (e.g., induction of
pluripotency by reprogramming factors).
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*1998 — embryonic stem cells

In 1998, James Thomson (US) isolated for the first time embryonic stem cells from surplus
embryos ,left over® in fertilization clinics.

Since then, the research has progressed at an incredible speed.

Ethics ,pro®:

ESC have the potential to grow replacement tissue for patients with diabetes, Parkinson or
other diseases.

Ethics ,contra®
The technique requires destroying embryos. This has big ethical consequences.

In Germany, experimentation with humans is considered problematic due to the medical
experiments pursued during the Nazi time.

Therefore, the above methods are forbidded by law in Germany!

Researchers are looking for new ways to generate stem cells without ethical problems.
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«2006 - Induced pluripotent stem cells (iPS)

The first solution was presented in August 2006 by the two Japanese Kazutoshi
Takahashi and Shinya Yamanaka.

Using 4 control genes, they reprogrammed cells from mouse tail into a sort of embryonic
state. The product was termed induced pluripotent stem cells (iPS cells).

Drawback: if used for medical treatment later, the inserted genes could enhance the risk
of cancer.

«2007 — human iPS cells
In 2007, similar success was managed with human skin cells.

Fewer and fewer control genes are necessary to generate iPS cells.

Spiegel Online
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How can one show that iPS cells have stem cell potential?

A — Neural rosette N Cuboudal eplthellum __ Muscle_

B Chimeric embryo Control

Need to show that iPS cells implanted into an early embryo give rise to all
3 different types of tissue (endoderm, ektoderm, mesoderm).

Kim et al. Cell 136, 411 (2009)
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* February 2009 — only one reprogramming gene required

In February 2009, Hans Scholer presented iPS cells of mice that were reprogrammed from
neural stem cells using only a single control gene.

* March 2009 — Reprogramming gene removed

Begin of March 2009: 2 teams of researchers present iPS cells that do not contain
additional control genes in the genome.

Control genes were first inserted into the genome of human skin cells, and later removed.
* March 2009 — Reprogramming gene not in genome
End of March 2009: James Thomsom showed that control genes do not need to be inserted

into the genome of the cells. He introduced an additional plasmid (ring genome) into the cell
that was later removed.

Spiegel Online
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 April 2009 — Reprogramming of mouse cells without genes

Ende of April 2009: Sheng Ding (US) and others succeed to reprogram skin cells of mice into
iIPS without gene manipulations using proteins only.

This eliminates the risk of cancer due to insertion of genes.

« May 2009 — Reprogramming of human cells without genes

US-korean team around Robert Lanza manages to reprogram human cells into iPS cells
using proteins (TFs) only.

ARTICLE

doi:10.1038/nature09591

Direct conversion of human fibroblasts to
multilineage blood progenitors

Eva Szabo', Shravanti Rampalli', Ruth M. Risuefio', Angelique Schnerch'?, Ryan Mitchell'?, Aline Fiebig-Comyn',
Marilyne Levadoux-Martin' & Mickie Bhatia®
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Generally: reprogramming efficiency is very low

(few percent success rate).

Successful reprogramming may take very different times

between days and weeks!

Cell reprogramming seems to be a stochastic process!
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A Model for Genetic and Epigenetic Regulatory Networks
Identifies Rare Pathways for Transcription Factor
Induced Pluripotency

Maxim N. Artyomov "%, Alexander Meissner®?, Arup K. Chakraborty'-*>5+

1 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, WMassachusetts, United States of America, 2Broad Institute of MIT and Harvard,
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Consider only developmentally important genes.

Each set of genes responsible for maintenance of a particular cellular identity

(e.g. Oct4, Sox2 for pluripotency) is described as a single module.
Arrange gene modules in a hierarchy.

For simplicity, from each cell state emanate two branches (Cayley tree).
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Specification of genetic and epigenetic states
that describe cellular states

Only the master-
regulatory genes that
govern cell state are
arranged in a hierarchy
(house keeping, stress-
response and many
other genes are not
considered).

Each node of the hierarchy represents an ensemble of master-regulatory genes that govern a
particular cellular state. E.g. genes in the top node are known master regulators of the
embryonic stem cell state (e.g. Oct4, Sox2, Nanog).

When a cell is in the ES state, only these 3 genes will be expressed while other genes will not.

Similarly, when a cell is fully differentiated, genes in one of the bottom modules will be
expressed but not any other gene in the network.
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Separate Genetic and Epigenetic Networks

Genetic Network (protein expression)
@ Protein expressed fully
O Protein not expressed at all

Epigenetic Network (genes availability)
@ Open chromatin

O Bivalent chromatin
@ Heterochromatin

ES cell state Pluripotent progenitor

Cellular identity is determined by both epigenetic (chromatin marks, DNA methylation) and
genetic (expression profile) states.

Shown are examples of two states (ES state and “left” pluripotent progenitor).

2 lattices are needed to describe the state of gene expression and the epigenome:

the top lattice reflects the expression levels of master-regulatory proteins in the ES/progenitor
state and the bottom lattice reflects the epigenetic state of master-regulatory genes in the
ES/progenitor state.

Artyomov et al., PLoS Comput
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The Ising model named after the physicist Ernst Ising, is a mathematical model of
ferromagnetism in statistical mechanics.

The model consists of discrete variables that represent magnetic dipole moments of
atomic spins that can be in one of two states (+1 or —-1).

The spins are arranged in a graph, usually, a lattice, allowing each spin to interact
with its neighbors.

The model allows the identification of phase transitions, as a simplified model of
reality.

The two-dimensional square-lattice Ising model is one of the simplest statistical
models to show a phase transition.!
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Consider a set of lattice sites /A, each with a set of adjacent sites forming a lattice.

For each lattice site j € A there is a discrete variable o; € {+1, -1}.
A spin configuration o = (0)),, is an assignment of spin valuse to each lattice site.

For any two adjacent sites /, j € A one has an interaction Jj;, and a site j € A has an
external magnetic field h..
The energy of a configuration o is given by the Hamiltonian Function

H(o) =— > Jyoio; —p ) hjo;
<1 j= N

where the first sum is over pairs of adjacent spins.

<ij>indicates that sites / and j are nearest neighbors.

M is the magnetic moment of a spin that interacts with the magnetic field.

The parallel arrangement of spins is energetically preferred. Rearrangements
arise from thermal fluctuations.
Solve analytically or by Monte-Carlo simulations.
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The most often used technique to select conformers by Monte-Carlo methods
(,importance sampling®) is the Metropolis Algorithm:

1) construct starting configuration of molecule

(
(2) perform random change of degree of freedom (e.g. torsion angle or spin flip)
(3) compute change in energy AE due to conformation change.
(4) if AE <0 accept new configuration
if AE >0 compute probability W= exp[— /f—i_]
generate random number r € [0,1] g

accept new configuration if w > r, otherwise reject.

Because Boltzmann-weighted energy difference is compared to a random
number, sometimes high-energy conformers get accepted.

This yields an ensemble of conformations with an energy distribution according
to a Boltzmann distribution.
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Define an epigenetic lattice where a discrete epigenetic state is associated with
each node (-1,0,+1).

Sepigen = _1 corresponds to closed chromatin,
Serigen = ( : bivalent chromatin and
Serigen = +1 : open chromatin.

The genetic lattice describes expression of proteins from master-regulatory
modules.

It has discrete gene expression states associated with each node (0, +1).

Seen = (0 : absence of any protein expression from the given gene,
S9en =+1 : maximum protein expression from the gene.

Artyomov et al., PLoS
Comput Biol 6,
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H[S:#}=— GZ < SET > §;% S;P : epigenetic spin state of i-th module,
] S9¢n : protein expression level of i-th module.

+G Z <S5 > §;F
tjesibling. progeny of 1 Angular brackets : average expression level
+G Z <SET > |82 of j-th module obtained during the preceding
ijeparent of i interphase, and could include protein products

+H Z (<SET > —a)S of ectopic genes or signaling events.

j,%vr_oggny of J
and i) |S;° | : absolute value of S¢P .

G > 0 : parameter that represents the strength with which the protein atmosphere
can modify the epigenetic state by altering histone marks.

H > 0 : parameter that represents the strength of the DNA methylation constraint.
a > 0 : constant that favors values of S¢#P < a if proteins expressed by gene j are
present.

Artyomov et al., PLoS
Comput Biol 6,
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H[{ngn?n}] _ _F Z ({Sfeﬂ ~ _b)nggn

+F Z ngen 3} gen

i+ jenearest neighbors

Angular brackets : average value of epigenetic state of the i-th module obtained
during the preceding telophase.

F > 0: constant that represents how strongly a protein is expressed or repressed if it
IS iIn open chromatin state or in heterochromatin, respectively.

b > 0 : constant; protein expression is favored if <SeP> > b.

The form of the first term implies that protein expression is more strongly repressed
if a gene is packaged in heterochromatin compared to if it is bivalently marked.

J represents the strength of mutual repression by other proteins.

Artyomov et al., PLoS Comput

SS 2013 — lecture 8 Modeling of Cell Fate .
Biol 6, 1000785 (2013) 16



As in the standard Monte-Carlo algorithm, the lattice spins (+1/0/-1 on the epigenetic lattice;
+1/0 on the genetic lattice) are initialized randomly.

The Monte-Carlo move consists of
1) randomly choosing a node on the lattice;

2) randomly deciding on the choice of a new value of S, for this node
(i.e. if S;epigen was 0 then it can become -1 or +1 with equal probability);

3) the energy for this configuration is computed according to the appropriate Hamiltonian
(energy function);

4) attempted changes in state are accepted with probability equal to
min [1, exp {-BAH(S))}.

The parameter f3 is analogous to the inverse temperature 1/kT used in simulation of thermal
systems, and sets the scale for the parameters, F, G, H and J.

Run enough MC steps in each phase until running averages of S9e" /Serigen converge.

Artyomov et al., PLoS Comput
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m\/m For simplicity, the cell cycle is

divided into two generalized
phases, interphase and telophase.

Epigenetic Code

Phase 1 Phase 2
(telophase) 11 CY (interphase) Gene expression occurs during
Epigenetic configuration is established Protein expression profiles are established A . e
by, comgined action .ofproFein environment in accord .wipt)h ch.rompatin accgssibility and mutual the Interphase, Wh I Ie Ce” d |V|S|On
and default setting - bivalent mark protein interactions (repressions etc)

and associated processes occur in
the telophase.

In the interphase gene expression profile is governed by the stable epigenetic marks on the
master-regulatory genes.

In the telophase, however, protein environment can change the epigenetic marks of the
master-regulatory genes.

Differentiation signals (newly expressed proteins) determine future epigenetic marks created
during telophase due to the action of the new protein environment.
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Epigenetic Code

Rule (1)

45 K2
4520

Rule (2))

Mutual repressivity of the nearest neighbores proteins:

M

Rules that govern inter-
actions within epigenetic
and genetic networks.

During interphase, gene
expression profiles of
master regulatory modules
are established.

Gene expression is influenced by epigenetic marking of the corresponding gene and
interactions between expressed proteins. 2 rules reflect this in our simulation:

1) When a master-regulatory gene is epigenetically marked positively, it favors expression of

the corresponding protein;

2) when 2 (or 3) neighboring genes are in epigenetically open states, they all favor expression
of corresponding proteins, but due to their mutually repressive action only one of 2 (or 3) genes
are expressed. Which gene is expressed is chosen stochastically.
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. During the telophase, the
rotein atmosphere
protein environment can alter

the epigenetic marks on the

& O/({@\O master-regulatory genes.

Epigenetic marks on both

\ Positive epigenetic marks (rule 1) neighboring and diStant genes in
ggx gi?& \Negatlveepngenetlc marks (rule 2) the hierarchy can be altered_

Bivalent marks (rule 3)
(ga ah \8 Methylation of genes (rule 4)
Long-range effect is typically mediated through DNA methylation which epigenetically

silences all of the master-regulatory genes of unrelated lineages and also ancestral
states.

Long-Range  Nearest-Neighbor

Interactions in the hierarchy

Short-range interactions affect nearest-neighbors differentially: progenies of master-
regulatory genes are preferentially put into bivalent states while progenitor and

competing lineage modules are epigenetically silenced.
Artyomov et al., PLoS Comput
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Changing cellular identity during self-initiated
differentiation of the ES cell-state

Phase 1: Process begins with cell
division where regulatory modules
of progenies are put into
epigenetically open states (green).

In phase 2 only one of the 3 neighboring proteins can be actually expressed.

Thus, one of 3 possibilities is realized: self-renewal, and differentiation to the “left” or
“right” lineages. In the absence of external stimuli, in our simulations, there is an
equal chance to observe each outcome.

Artyomov et al., PLoS Comput
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Reprogramming may result from random epigenetic changes

) fgi E?X m
(a) / Dead/arrested state
/ or O 000 O00O0 m
& De-differentiated state
o~
N
R ARy Ay
\ Transdifferentiated state
N m $ ;z ; ; iz b
—
:x K Q i‘z No harm done
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2 real simulations

Arrested state

) RV Y
ARN KRR A

Fully Reprogrammed iPS cell

SS 2013 — lecture 8 Modeling of Cell Fate  Artyomov et al., PLoS Comput
Biol 6, €1000785 (2013) 23
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Dynamics of cell differentiation upon
receiving cues (input signals) of
different strength.

The simulations show that the
progenitor cells differentiate in
accord with first order kinetics, with
the lifetime of progenitor cells
depending on the signal strength.

The blue curve describes the
behavior of a cell population which
received a signal that is twice as
weak as the population represented
by the black line.

Artyomov et al., PLoS
Comput Biol 6,
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PHYSIOLOGY cloi: 10,3382 phys 201 200215 -

A stochastic model of epigenetic dynamics in somatic cell
reprogramming

Max Fiottmann, Till Scharp and Edda Klipp*

Dapartmant of Siclogy Thaoratice! Blophysics, Humboit-Universitat zu Sarlin, Sarlin, Garmany

Aims also at building an abstract model of combined networks that govern
pluripotency and reprogramming.

Boolean model used where a cell state is defined as a simple binary vector of
the states of all variables.

Flottmann et al.,
Frontiers Physiol 3,
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Transcriptional regulators that account for the
activation of a certain cell state are combined
into a module.

Full model contains 4 modules:

- 2 different differentiation modules A and B,
- the pluripotency module P, and

- the exogenous reprogramming genes E.

Each module is governed by the activity of
the other modules as well as its epigenetic
states

Flottmann et al.,
Frontiers Physiol 3,

Modeling of Cell Fate
216 (2012) 26



Model describes connections between DNA

A

Pluripotency
Transcription factors

] | CifSEnEe methylation, histone modifications and the

Cell Division (DNMT3
Lower DNMT1 expression /%
Active demethylation \.

Proteins

pluripotency master regulators.

Proteins

Pluripotency TFs activate their own
expression and can be suppressed by
factors regulating differentiation.

The pluripotency factors themselves
increase the expression of DNMT3 which
enables de novo methylation of DNA

On the other hand activation of pluripo-  preferably in combination with repressive
tency genes also leads to a higher cell histone modifications such as methylation
division rate,a suppression of methylation or deacetylation (right nucleosome).
maintenance and probably active deme-

thylation, which also increases the

chances of euchromatin formation

Flottmann et al.,
Frontiers Physiol 3,
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Boolean networks limit the state of a gene to either ON or OFF and describe
connections between the genes by using logical operators,
e.g., AND, OR, NOT (generally written as A, v, and —).

E.g. if two transcription factors A and B are needed to activate gene C
this would translate to the logical function

C(t+ 1) = A(D) A B(D)

Flottmann et al.,
Frontiers Physiol 3,

SS 2013 — lecture 8 Modeling of Cell Fate
216 (2012)
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In formal terms, a Boolean network can be represented as a graph
G = (V, E) consisting of a set of nnodes V ={v,, ..., v} and a set of k edges
E={e,, ..., e,} between the nodes.

For every time point ¢, each node v, has a state v;(t) € {0, 1} denoting either no
expression or expression of a gene or absence or presence of activity of a
regulatory property, respectively.

In a non-probabilistic Boolean network, the state vector, or simply the state
S(t) of the network at time t corresponds to the vector of the node states at time t,

e, S(t) = (vy(t), ..., v, (1)).

Thus, since every v{(t) can take only 2 possible values 0 or 1, the number of all
possible states is 2" .

Flottmann et al.,
Frontiers Physiol 3,
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In probabilistic Boolean networks (PBNs), we are dealing with a probability
distribution over several states at each time point.

This is why, in order to extend the definition of states to probabilistic Boolean
Networks, we will refer to a specific state as S, from now on where i € {0, ..., 27},
independent of the time of its appearance.

Every node is updated at every time point by application of a set of update
functions F={F, , ..., F,} that integrate the input information of edges on one

node.

In other words, the function F; assigns a new state value to the node v; at time
t+1,i.e., v(t+1).

They depend on the state of k input nodes with k € {0, ..., n} attime .

Flottmann et al.,
Frontiers Physiol 3,
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Example: let us assume that there is experimental data showing that both
transcription factors A and B activate gene C, but it is unclear whether they can
act separately or only in combination

Then, there are several logical function that can describe the interaction of A,B, C.

In probabilistic Boolean networks this uncertainty is taken into account by
relaxing the constraint of fixed update rules F; and by permitting instead one or
more functions per node.

Thus, function F; is replaced by a set of functions F; = { f"j} with j e {1, ..., [())},
where f"j is a Boolean logic function and
I(/) the total number of functions for node v; .

In each update step the functions are chosen randomly according to their
probability (which we assign).

Flottmann et al.,
Frontiers Physiol 3,
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The PBN can be viewed as an ensemble of N standard Boolean networks, where
— ﬂ .
N = Hizl I(I)_

In each simulation step, we choose one of the networks to update the state.

The probability of each network being chosen is the product of the probabilities of
the chosen functions.

The vector Dt = (DY, ..., D! ) now comprises the probabilities of all r = 2" states
at time t, i.e.,the probability of the network to be in this state.

Flottmann et al.,
Frontiers Physiol 3,
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Simulations performed using R-package BoolNet (Mussel et al. 2010)
Model contains 14 variables

Thus, there are 2'4 = 16,384 possible states.

Table 1 | Variables and states of our model.

mt mE mE o ml ml ml mi mi mi mB mB mB  dnmt  demeth

Fluripotent state 84 0 1 1 1 Q 0 0 1 1 0 1 1 1 1
Differentiated state 8§, 0 1 1 0 1 1 1 0 0 0 1 1 0 0
Differentiated state 84 0 1 1 0 1 1 0 1 1 1 0 0 0 0
Weight vector W,y 0b 05 05 2.0 10.0 50 2.0 2.0 2.0 2.0 20 2.0 10 10
Weight vector W,y 0b 05 05 2.0 2.0 2.0 2.0 10.0 50 2.0 20 2.0 10 10
Weight vector W,y 0b 05 05 2.0 2.0 2.0 2.0 2.0 2.0 2.0 100 5.0 10 10

Flottmann et al.,

Frontiers Physiol 3,
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We can define a (2" x 2") matrix A, that contains the probability to transition from
state / to state j given all possible networks.

If there is no network allowing the transition / — j, A; = 0 otherwise A; is the sum
of the probabilities of all the networks allowing this transition.

Matrix A is a state transition matrix of a homogeneous Markov process.

Thus, given a (1 x 2") vector D? with a start probability for each state we can
recursively simulate the system from tto t+ 1 (eq. (1)) or as well directly deduce
the value at t + 1 of this geometric progression (eq. (2))

DTl Dt A (1)
Dt-l—l — Dﬂ . At-l_l (2)

Flottmann et al.,
Frontiers Physiol 3,
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A module consists of 3 nodes,
- an expression node
- a DNA methylation node

- and a chromatin structure node

SS 2013 — lecture 8 Modeling of Cell Fate
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gy (1) = i (6 ' e (6) A
10— 00 (et o)
m;,‘; (t+1) = m;j? (t) A demeth ()

i (£ + 1) = mi, (£)
m”_and m#, . : methylation and chromatin states of module A, respectively.
dnmt. presence of de novo DNA methyltransferase DNMT3A/B
demeth: combines all processes leading to demethylation of DNA
Similar rules hold for modules B and P.

Note that probabilities of the formulas sum up to 1.

Flottmann et al.,
Frontiers Physiol 3,
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Chromatin changes are dependent on the expression of the module‘s genes.

i (t 4 1) = ml (6) v mit (6 A —m ()
ml (t+1) = nie () Vv —wrl (£)

ml (t+ 1) = wik () A —m (£)

mi (t +1) = wit ()

m”, : expression of module A
mA, . : chromatin states of module A.

mA_ : DNA methylation of module A

Flottmann et al.,
Frontiers Physiol 3,
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The expression of a module is controlled by its epigenetic states.
A A B P A
ml (£ + 1) = my () A — (g v omy () A —mgy (8)

A A B p A
ml (£ +1) = ml (6) A — (my V omy (0) A —mi (8)
mA, : expression of module A
mA,. : chromatin states of module A.

m” . : DNA methylation of module A

If both epigenetic submodules are inactive (hc and meth), the expression of the
genes in the next time step depends only on the transcription factors.

Some further rules left out ...

Flottmann et al.,
Frontiers Physiol 3,
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Relation between 14 state variables and cell states

Table 1| Variables and states of our model.

mE mt, mfc m’ mh mﬁc ms mi mﬂc mE ms mﬁc dnmt damath
Fluripotent state 5, 0 1 1 1 0 0 0 1 1 0 1 1 1 1
Differentiated state S, 0 1 1 0 1 1 1 0 0 0 1 1 0 0
Differentiated state 52 0 1 1 0 1 1 0] 1 1 1 0 0] 0] 0
Wizight wvector Wh 05 05 0.5 20 10.0 5.0 2.0 2.0 20 2.0 20 20 1.0 1.0
Wiaight vector Wh 0G5 0. 0.5 20 20 20 2.0 10.0 5.0 2.0 20 20 1.0 1.0
Wizight vector Wh 0G5 0k 0.5& 20 20 20 2.0 2.0 20 2.0 100 B0 1.0 1.0
Flottmann et al.,
Frontiers Physiol 3,
SS 2013 — lecture 8 Modeling of Cell Fate
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Dynamics (A) and state space
(B) of the pluripotency module
during overexpression of
differentiation factors.

The network quickly leaves the
pluripotent state and passes
across a number of transient
states into two different attractors.
The node in blue (lower right) is a
point attractor in the completely
differentiated state and the nodes
in brown are part of a cyclic
attractor consisting of the
unmethylated state in either a
euchromatin or heterochromatin
structure.

Flottmann et al.,
Frontiers Physiol 3,
216 (2012) 40



Developmental Pathway in State Space

Cell Death Differentiation Module Downregulated

& Peak Probability reached
~104 in Simulation

1 45588 Time of Highest Probability

<0.0001..1  Transition Probability

| Shortest Path

Start States
| =
Class Il iPS
Flottmann et al.,
Frontiers Physiol 3,
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Model Variations

Main model Random DNA methylation

. Random heterochromatin
| <
Slower DNA methylation forriation
Faster DNA methylation Random DNA demethylation

Stronger link between DNA
methylation and heterochro-
matin

*— No DNA methylation

Slower chromatin changes —*

Faster chromatin changes

FIGURE & | Reprogramming efficiencies of the model variants.
Efficiency is plotted as the sum of probabilities of all states that are closely
connected to pluripotency.
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In order to analyze the stability of the model and
its behavior upon parameter variation, we varied
the strength of the epigenetic modifications, i.e. ,
DNA methylation and chromatin changes.

We defined a parameter range including the
parameters of our main model, a decreased and
an increased probability of changes in
methylation and heterochromatin formation and
analyzed the effect on the reprogramming
efficiency.

Interestingly, in the time range of 2000 time steps
our main model nearly seems to have a maximal
saturation for its reprogramming efficiency which
is only very slightly surpassed by increasing the
probability for euchromatin formation.

Flottmann et al.,
Frontiers Physiol 3,
216 (2012) 42

Modeling of Cell Fate



Abstract models can mimick experimentally observed behavior of cell switching
and of reprogramming to iPS cell state.

Sofar, no modelling presented at the level of individual genes.

Therefore, it is difficult to connect these early theoretical models with biological
data.

Flottmann et al.,
Frontiers Physiol 3,
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