
A whole-cell model for the life cycle of the  
human pathogen Mycoplasma genitalium 
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Main aims 

(1) Describe the life cycle of a single cell from the level of individual molecules and 
their interactions 

(2) Account for the specific function of every annotated gene product 

(3)  accurately predict a wide range of observable cellular behaviors 

Problem: In a cell, everything seems connected to everything. 
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Divide and conquer approach (Caesar): 
split whole-cell model into 28 independent submodels 

28 submodels are built / parametrized / iterated independently 
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Cell variables 
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System state is described 
by 16 cell variables 

Colored lines: cell 
variables affected by 
individual submodels 

Mathematical tools: 
- Differential equations 
- Stochastic simulations 
- Flux balance analysis 



Whole-cell model architecture 
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Show movie. 

Q: Can treatment as 
independent processes 
lead to problems? 



Time step in molecular atomistic dynamics simulations 

SS 2013 - lecture 2 
6 

Modeling of Cell Fate 

Too long time step leads 
to numerical instabilities 

-> atoms move „too far“ 
along the direction of 
attraction 

Similar problems may 
arise in whole-cell 
simulation. 
- particles of one type 
accumulate 



Whole-cell dynamic simulation algorithm 
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Algo to identify initial conditions 
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Initialize cell state 
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Nucleotide states 
This state represents the polymerization, winding, modification, and protein 
occupancy of each nucleotide of each strand of each copy of the M. genitalium 
chromosome, and the (de)catenation status of the two sister chromosomes 
following replication.  
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Protein Monomers are the direct result of 
successful translation events. Upon 
Translation, a monomer undergoes various 
steps towards maturation including 
deformylation, translocation, folding, and 
phosphorylation.  

A monomer can exist in 
many forms (nascent, 
processed (I), 
translocated, processed 
(II), folded, and mature) 
as it moves through the 
maturation pipeline. 



Ribosome 
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Ribosomes are large ribonucleoproteins which synthesize polypeptides.  

The M. genitalium 70S ribosome is composed of two subunits – the 30S and 50S 
ribosomal subunits – which assemble on mRNA with assistance from initiation 
factors 1-3 (MG173, MG142, MG196).  

The 30S subunit is composed of 1 RNA and 20 protein monomer subunits.  

The 50S subunit is composed of 2 RNA and 32 protein monomer subunits.  

The 30S and 50S ribosomal subunits are believed to assemble in stereotyped 
patterns, and six GTPases – EngA, EngB, Era, Obg, RbfA, and RbgA  – have been 
associated with ribosomal subunit assembly.  

The exact functions of the six GTPases are unknown. 



Ribosome 
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15. Lecture WS 2008/09 Bioinformatics III 16 

Basic outline of the direct method of Gillespie 
(Step i) generate a list of the components/species and define the initial distribution 
at time t = 0. 

(Step ii) generate a list of possible events Ei (chemical reactions as well as 
physical processes). 

(Step iii) using the current component/species distribution, prepare a probability 
table P(Ei) of all the events that can take place. 
Compute the total probability  

P(Ei) : probability of event Ei .  

(Step iv) Pick two random numbers r1 and r2 ∈ [0...1] to decide  
which event Eµ will occur next and the amount of time τ  
by which Eµ occurs later since the most recent event. 

Resat et al., J.Phys.Chem. B 105, 11026 (2001) 
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Basic outline of the direct method of Gillespie 
Using the random number r1 and the probability table, 
the event Eµ is determined by finding the event that satisfies the relation 

Resat et al., J.Phys.Chem. B 105, 11026 (2001) 

The second random number r2 is used to obtain the amount of time τ between the 
reactions 

As the total probability of the events changes in time, the time step between 
occurring steps varies. 

Steps (iii) and (iv) are repeated at each step of the simulation. 

The necessary number of runs depends on the inherent noise  
of the system and on the desired statistical accuracy. 



Transcriptional regulation 
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o  microarray expression analysis 
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DNA repair simulation 
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Non-coding RNA cleavage 
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Model FtsZ polymerization 
Cell division in many bacterial species requires the assembly of an FtsZ ring at the 
cell membrane around the midplane of the cell. 

FtsZ is a homologue of eukaryotic tubulin that assembles into long polymers. 

These polymers are typically localized to the center of the cell, forming a 
membrane-bound ring. 

 FtsZ is a GTPase, and GTP hydrolysis to GDP causes the FtsZ filaments to bend.  

This bending serves as one of the forces enabling cell division.  
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Model FtsZ polymerization 
FtsZ can exist in one of multiple states: inactivated monomer, activated monomer 
(GTP bound), nucleated (dimer of two activated FtsZ molecules), elongated 
polymer of three or more GTP bound FtsZ molecules. 
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Formation of macromolecular complexes 
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The relative formation rate, ri of each complex, i, is described by  
mass-action kinetics, 

m j : copy number of gene product j,  
V is the cell volume,  
sij : stoichiometry of subunit j in complex i. 



Model small-molecule metabolism by FBA 
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V15 Flux Balance Analysis – Extreme Pathways 
Stoichiometric matrix S:  
m × n matrix with stochiometries of 
the n reactions as columns and 
participations of m metabolites as 
rows.  

The stochiometric matrix is an 
important part of the in silico model. 
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Papin et al. TIBS 28, 250 (2003)  

With the matrix, the methods of 
extreme pathway and elementary 
mode analyses can be used to 
generate a unique set of pathways 
P1, P2, and P3 that allow to 
express all steady-state fluxes as 
linear combinations of P1 – P3. 
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Flux balancing 
Any chemical reaction requires mass conservation. 
Therefore one may analyze metabolic systems by  
requiring mass conservation. Only required: knowledge  
about stoichiometry of metabolic pathways. 

For each metabolite Xi : 

dXi /dt =    Vsynthesized    – Vused  

 + Vtransported_in – Vtransported_out 

Under steady-state conditions, the mass balance constraints in a metabolic 
network can be represented mathematically by the matrix equation: 
 S · v = 0 
where the matrix S is the stoichiometric matrix and the vector v represents all 
fluxes in the metabolic network, including the internal fluxes, transport fluxes and 
the growth flux. 
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Flux balance analysis 
Since the number of metabolites is generally smaller than the number of reactions 
(m < n) the flux-balance equation is typically underdetermined.  

Therefore there are generally multiple feasible  
flux distributions that satisfy the mass balance constraints. 
The set of solutions are confined to the nullspace of matrix S. 

S          .    v   =   0 
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Feasible solution set for a metabolic reaction network 

The steady-state operation of the 
metabolic network is restricted to the 
region within a pointed cone, defined 
as the feasible set.  

The feasible set contains all flux vectors 
that satisfy the physicochemical 
constrains.  

Thus, the feasible set defines the 
capabilities of the metabolic network.  
All feasible metabolic flux distributions 
lie within the feasible set. 

Edwards & Palsson PNAS 97, 5528 (2000)  
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True biological flux 
To find the „true“ biological flux in cells (→ e.g. Heinzle, UdS) one needs additional 
(experimental) information, 
or one may impose constraints 

on the magnitude of each individual metabolic flux. 

The intersection of the nullspace and the region  
defined by those linear inequalities defines a  
region in flux space = the feasible set of fluxes. 

In the limiting case, where all constraints 
on the metabolic network are known, such 
as the enzyme kinetics and gene 
regulation, the feasible set may be reduced 
to a single point. This single point must lie 
within the feasible set.  
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Metabolism FBA simulation 
o  microarray expression analysis 
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DNA replication 
o  microarray expression analysis 
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DNA replication 
DNA naturally exists at a certain level of helicity, and this level of helical density is 
important for the DNA’s stability, its ability to fit in the cell, and its ability to bind 
proteins. 

M. genitalium has 3 topoisomerase proteins: DNA gyrase, topoisomerase I, and 
topoisomerase IV. 
These proteins transiently break a DNA strand to wind (topoisomerase I) or unwind 
(topoisomerase IV, gyrase) the DNA.  
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Which states are affected by replication? 
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Upon replication initiation (the binding of 29 DnaA-ATP molecules near the oriC 
by the Replication Initiation process class), the Replication process class tracks 
the progression of the replication proteins on the known chromosome 
sequences. 



Results from simulations 
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Growth of virtual cell culture 

SS 2013 - lecture 2 
36 

Modeling of Cell Fate 

The model calculations were consistent with the observed 
doubling time! 

Growth of three cultures 
(dilutions indicated by 
shade of blue) and a blank 
control measured by 
OD550 of the pH indicator 
phenol red. The doubling 
time, t, was calculated 
using the equation at the 
top left from the additional 
time required by more 
dilute cultures to reach the 
same OD550 (black lines). 



Individual simulations 
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Predicted growth dynamics of 
one life cycle of a population 
of 64 in silico cells 

Q: what is the source of the 
variability of the length of the 
cell cycle? (later) 



Chemical composition 
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Model calculations were consistent with the observed 
cellular chemical composition! 

Comparison of the 
predicted and 
experimentally observed 
cellular chemical 
compositions  



Increase of cell mass 
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Model calculations were consistent with the observed 
replication of major cell mass fractions. 

Temporal dynamics of the 
total cell mass and four cell 
mass fractions of a 
representative in silico cell. 



Metabolic flux rates 
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In agreement with exp data, the model predicts that the 
flux through glycolysis is >100-fold more than that 
through the pentose phosphate and lipid biosynthesis 
pathways. 

Average predicted 
metabolic fluxes (from FBA 
modeling).  

Arrow brightness indicates 
flux magnitude. 



Metabolite concentrations 
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Ratios of observed and 
average predicted 
concentrations of 39 
metabolites. 

The predicted metabolite concentrations 
are within an order of magnitude of 
concentrations measured in Escherichia 
coli for 100% of the metabolites in one 
compilation of data and for 70% in a more 
recent high-throughput study. 



mRNA and protein synthesis events 
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Due to (a) the local effect of intermittent messenger RNA (mRNA) 
expression and (b) the global effect of stochastic protein degradation on the 
availability of free amino acids for translation,  
model predicts ‘‘burst-like’’ protein synthesis.  

This is comparable to exp. observations! 

Temporal dynamics of cytadherence high-
molecular-weight protein 2 (HMW2, 
MG218) mRNA and protein expression of 
one in silico cell.  

Red dashed lines indicate the direct link 
between mRNA synthesis and subsequent 
bursts in protein synthesis. 



Density of DNA-bound proteins 
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Consistent with recent experimental data, the predicted high-occupancy RNA 
polymerase regions correspond to highly transcribed rRNAs and tRNAs. 

In contrast, the predicted DNA polymerase chromosomal occupancy is significantly 
lower and biased toward the terC. 

Average density of all DNA-bound proteins 
and of the replication initiation protein DnaA 
and DNA and RNA polymerase of a 
population of 128 in silico cells.  
Top magnification : average density of DnaA 
at several sites near the oriC;  
DnaA forms a large multimeric complex at 
the sites indicated with asterisks, recruiting 
DNA polymerase to the oriC to initiate 
replication.  
Bottom left : location of the highly expressed 
rRNA genes.. 



Exploration of genome 
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The model further predicts that the chromosome is explored very rapidly, 
with 50% of the chromosome having been bound by at least one protein 
within the first 6 min of the cell cycle and 90% within the first 20 min 

Percentage of the chromosome that is 
predicted to have been bound (B) as 
functions of time.  
SMC is an abbreviation for the name of the 
chromosome partition protein (MG298). 



Dynamics of genome expression 
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RNA polymerase contributes the most to chromosomal exploration,  

It binds 90% of the chromosome within the first 49 min of the cell cycle. 

On average, this results in expression of 90% of genes within the first 143 min. 

Percentage of the number of genes that 
are predicted to have been expressed (C) 
as functions of time.  



DNA-binding and dissociation dynamics 
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DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA 
(blue) and DNA (green) polymerases for one in silico cell. The oriC DnaA complex 
recruits DNA polymerase to the oriC to initiate replication, which in turn dissolves the 
oriC DnaA complex. RNA polymerase traces (blue line segments) indicate individual 
transcription events. The height, length, and slope of each trace represent the 
transcript length, transcription duration, and transcript elongation rate, respectively.  

Inset : several predicted collisions between DNA and RNA polymerases that lead to 
the displacement of RNA polymerases and incomplete transcripts. 



Predictions for cell-cycle regulation 
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Distributions of the 
duration of three cell-cycle 
phases, as well as that of 
the total cell-cycle 
length, across 128 
simulations. 

There was relatively more cell-to-cell variation in the durations of the replication 
initiation (64.3%) and replication (38.5%) stages than in cytokinesis (4.4%) or the 
overall cell cycle (9.4%). 

This data raised two questions:  
(1) what is the source of duration variability in the initiation and replication phases; 
and  
(2) why is the overall cell-cycle duration less varied than either of these phases? 



Replication initiation 
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Replication initiation occurs as DnaA protein monomers bind or unbind 
stochastically and cooperatively to form a multimeric complex at the replication 
origin.  

When the complex is complete, DNA polymerase gains access to the origin, and 
the complex is displaced. 



Dynamics of macromolecule abundance 
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Top : the size of the DnaA complex 
assembling at the oriC (in monomers 
of DnaA);  

middle, the copy number of the 
chromosome;  

Bottom : cytosolic dNTP concentration.  
The quantities of these macromolecules 
correlate strongly with the timing of key 
cell-cycle stages. 



What determines replication duration? 
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We found a correlation (R2 = 0.49) 
between the predicted duration of replication 
initiation and the initial number of free DnaA 
monomers. 

The duration of the replication phase in individual 
cells is more closely related to the free dNTP 
content at the start of replication than to the dNTP 
content at the start of the cell cycle 

The durations of the initiation and replication 
phases are inversely related to each other in single 
cells. 

Cells that require extra time to initiate replication 
also build up a large dNTP surplus, leading to 
faster replication. 



Cellular energy sources 
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ATP and GTP are synthesized more than 1000-fold faster than other  

High-energy intermediates. 

Increases over time look small due to logarithmic scale. 

Intracellular concentrations of 
the cellular energy carriers 
over time for one in silico cell. 



Usage of ATP and GTP 
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Overall of ATP and GTP did not vary considerably in all simulations. 

Exception: very slow cells consume about twiche as much energy. 



Usage of ATP and GTP 
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ATP (blue) and GTP (green) 
usage of 15 cellular processes 
throughout life cycle of one in 
silico cell. 

Pie charts: percent used as a 
fraction of the total usage. 

Usage is dominated by 
production of mRNA and protein. 



Single-gene knockouts : essential vs. non-essential genes 
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Each column depicts the temporal dynamics of one representative in silico cell of 
each essential disruption strain class. 

Dynamics significantly different from wild-type are highlighted in red.  

The identity of the representative cell and the number of disruption strains in 
each category are indicated in parenthesis. 

Single-gene disruption 
strains grouped into 
phenotypic classes 
(columns) according to 
their capacity to grow, 
synthesize protein, 
RNA, and DNA, and 
divide (indicated by 
septum length).  



Construct in-silico mutants to predict essentiality 
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Construct all possible 525 single-gene 
deletions.  

Comparison of predicted and observed 
gene essentiality. 

Then make predictions for new biological 
insights (important to be able to publish in 
Cell, not discussed here because too 
detailed. 



Summary 
Comprehensive whole-cell model accounts for all annotated gene functions 
identified in M. genitalium and explains a variety of emergent behaviors in 
terms of molecular interactions. 

This is still a first draft. 

Whole-cell models may accelerate biological discovery and bioengineering by 
facilitating experimental design and interpretation (?). 

Combined with recent de novo synthesis of the M. genitalium chromosome and 
successful genome transplantation of Mycoplasma genomes to produce a 
synthetic cell (Craig Venter), this raise the exciting possibility of using whole-cell 
models to enable computer-aided rational design of novel microorganisms.  

The construction of whole-cell models and the iterative testing of them against 
experimental information will enable the scientific community to assess how well 
we understand integrated cellular systems. 
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