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(1) Describe the life cycle of a single cell from the level of individual molecules and
their interactions

(2) Account for the specific function of every annotated gene product

(3) accurately predict a wide range of observable cellular behaviors

Problem: In a cell, everything seems connected to everything.
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Divide and conquer approach (Caesar):
split whole-cell model into 28 independent submodels
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28 submodels are built / parametrized / iterated independently
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Modeling of Cell Fate

System state is described
by 16 cell variables

Colored lines: cell
variables affected by
individual submodels

Mathematical tools:
-Differential equations
-Stochastic simulations
-Flux balance analysis



Whole-cell model architecture
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Schematic S17. Whole-cell model architecture.
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Time step in molecular atomistic dynamics simulations

Too long time step leads
to numerical instabilities

-> atoms move ,too far®
along the direction of
attraction

Similar problems may
arise in whole-cell
simulation.

-particles of one type

X, =X,+V,At
2 L L accumulate

V,=V, +a,At=v, +m'F(x,)At=v, -m’ 50
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Whole-cell dynamic simulation algorithm

Algorithm 51 | Whole-cell dynamic simulation algorithm.

Construct whole-cell simulation objects using the KnowledgeBase classes

Computationally align processes and fit parameters

Identify initial conditions variance control parameters using Algorithm $2

Initialize cell state using Algorithm 53 and the fit values of the cell state variance control parameters

repeat

Increment the time by 15

Set the external conditions based on Table S3F and Tabkle S3H

Allocate shared resources:

foreach metabolite 7 in compartment 7 do
foreach process k do Calculate the demand, s, of process k for metabolite 4 in compartment §
Divide the total count, my;, of metabolite 4 in compartment j into temporary dedicated pools, s, for each

process proportional to demand, wug +— mj—d"f’“—
Ek diige

Compute temporal evolution:

foreach process < do
Retrieve the current values of cell state variables and the counts of metabolites allocated to process 2
Compute the contribution of process 2 to the temporal evolution of the cell state
Update the values of the cell state variables

until celf divided or time > 1.5x average mass doubling time

SS 2013 - lecture 2 Modeling of Cell Fate



Algo to identify initial conditions

Algorithm $2 | Initial conditions identification algorithm.

Initialize the initial cell state variance control parameters: g, + 0, 7. <0, 1, < 0

repeat
Simulate the life cycle of a population of wild type cells using Algorithm S3 to initialize the value of each cell state

variable

Randomly segregate the cellular content into two daughter cells

Calculate the variances of the total cell mass, RNA copy number, and protein copy number states

Set the values of the initial distribution control parameters of each state equal to that of the final distribution
om <+ standard deviation of the final cell mass distribution

Ty JE/N,, where I, and o2 are the mean and variance of the final RNA copy number distribution

fp + 02 [N, where N, and ¢ are the mean and variance of the final RMA copy number distribution

until the initial variance controf parameters (o, n,, and n, ) converge
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Initialize cell state

Algorithm $3 | Cell state initialization procedure.

Input:
Input:
Input:
Input:
Input:
Input:

O+ Standard deviation of the initial total cell mass distribution

e, 7% +— RNA and protein copy number distribution initial variance control parameters

fr, fo + reconstructed fractional cell RNA and protein composition

ey, 8p +— expected relative expression of each RNA and protein species

w,., ut, <— molecular weight of each RNA and protein species

Ni(fs,ea,ws) + farmnf (el #ux) total initial RNA (2 =r) and protein (¢ =p) copy number functions

Set time «+— 0s

Set values of external stimuli and metabolites according to Table S3F and S3H

Set total cell mass, w2 ¢—~ N (i, 0 ), and calculate cell volume and shape

Set the metabolite counts accarding to the total cell mass and reconstructed cell composition {see Table S31)
Initialize the Chromosome state with one methylated chromosome; decrement dNMP counts to maintain cell mass
Set mature RNA copy numbers according to multinomialRand(5,.2Y,, e,) /n,; decrement NMP counts

Set mature protein monomer copy numbers according to multinomialRand (s, 1Y, e,) /n,; decrement amino acids
Form macromolecules by calculating the steady-state of the Macromolecular Complexation process

Set the RNA Polymerase and Transcript states to a steady-state of the Transcription sub-model

Set the Ribosome and Polypeptide states to a steady-state of the Translation sub-model

Set the FtsZ state to a steady-state of the FtsZ Polymerization sub-model with no septal rings

Set the growth rate and metabolic reaction fluxes to a steady-state of the Metabolism sub-model

Set the Host state to a steady-state of the Host Interaction sub-model

Set the chromosome protein occupancy to a steady-state the chromosome-interacting sub-models
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List S1. Primary sources of the M. genitalium reconstruction.

Data source

Content

Rernstein et af., 2002
BioCyc®

BRENDA®™

CMR!®®

Deuerling et af, 2003%%
DrugBank®’

Eisen et af., 1000*!
Endo et af., 2007%!
Feist et af, 2007%*
Glass et al., 2006'%
Giiell et af., 2000%°
Gupta et af., 20074%
KEGG!?

Kerner et af., 2006°%®
Krause et af., 2004
Lindahl et af, 2000%?
Morowitz et af., 1062°™
NCBI Gene®'77
Neidhardt et af, 1000%2
Peil, 2000'%*
PubChem®®
SABIO-RK!™
Solabia™*-"°

Suthers et af., 200097
UniProt™

Weiner et af., 2000%!
Weiner et af., 2003°%

mRMNA half-lives

Genome annotation, metabolic reactions
Reaction kinetics

Genome annotation

Chaperone substrates
Antibiotics

DMNA repair

Chaperone substrates
Metabolic reactions

Gene essentiality

Transcription unit structure
M-terminal methionine cleavage
Genome annotation, orthology
Chaperone substrates

Terminal organelle assembly
DMNA damage

Cell chernical composition
Genome annotation

Cell chemical composition
RMNA modification

Metabolite structures

Reaction kinetics

Media chemical composition
Metabolic reactions

Genome annotation

Promoters

mRMNA expression 10




Nucleotide states

This state represents the polymerization, winding, modification, and protein
occupancy of each nucleotide of each strand of each copy of the M. genitalium
chromosome, and the (de)catenation status of the two sister chromosomes
following replication.

List 2. Mathematical representation of nucleotide s = {1..L;} of strand 5 = {1..2} of chromosome copy & = {1..2}.

Physical Property Symbol Size Type
Polyrmerization Dsgi Lx2x?2 Roolean
Winding Wil Lx2x2 Real
Modification
Gap site ", Lx2x2 Boolean
Abasic site L) Lx2x2 Boolean
Sugar-phosphate mfjm Lx2x2xM Boolean
Base m%-m Lx2x2xM Boolean
Intrastrand cross link w2, Lx2x2 Boolean
Strand break 0 Lx2x2 Boolean
Holliday junction m,':.,k Lx2x2 Boolean
Protein occupancy
Monomer A Lx2x2xB8™ Boolean
Complex Sl Lx2x2x 8% Boolean
Catenation s 1x1 Boolean
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Protein Monomers are the direct result of
successful translation events. Upon
Translation, a monomer undergoes various

Translation (100%) ) . i
v steps towards maturation including

Nascent
Manomers deformylation, translocation, folding, and
N-terminal peptide Jeformylation (100%) phosphorylation.

N-terminal methionine cleavage {7 %)

Processed (I)
Monomers

A monomer can exist in

Translocation into/through cell membrane

and toterminalfrganelle (25%) many forms (nascent,
Translocated pI’OCGSSGd (l),
Monomers
Diacylglyceryltransfnlerand signal peptide Signal translocated, processed
cleavage (all meTbrane peptides) Sequences (||), fo|ded, and mature)
Proten oding (100%) «— Processed (1) as it moves through the
Folded maturation pipeline.

Monomers
Phosphorylationﬁ) Mature Protein
Lipoate ligation (0.2%) ——>» e Macromolecular complexation—>
Glutamate ligation (0.2%) -,___,/ 51%) g

—
Misfolded P Inactivated Damaged Bound
Monomers Monomers Monomers Monomers

-.\-’

Schematic $3. Protein monomer forms diagrammed in the context of the maturity pipeline.
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Ribosomes are large ribonucleoproteins which synthesize polypeptides.

The M. genitalium 70S ribosome is composed of two subunits — the 30S and 50S
ribosomal subunits — which assemble on mMRNA with assistance from initiation
factors 1-3 (MG173, MG142, MG196).

The 30S subunit is composed of 1 RNA and 20 protein monomer subunits.

The 50S subunit is composed of 2 RNA and 32 protein monomer subunits.

The 30S and 50S ribosomal subunits are believed to assemble in stereotyped
patterns, and six GTPases — EngA, EngB, Era, Obg, RbfA, and RbgA — have been

associated with ribosomal subunit assembly.

The exact functions of the six GTPases are unknown.

SS 2013 - lecture 2 Modeling of Cell Fate
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Ribosome

Algorithm $4 | Ribosome and Polypeptide state initialization.

Free 705 ribosomes +— min (free 305, 505 ribosomal partides)

Decrement the copy numbers of free 305 and b0S ribosomal particles

foreach 705 ribosome < do

Select the mRNA of 705 ribosome ¢ weighted by the product of mRNA copy number and length
Set the bound mRMNA species of 705 ribosome ¢

Select the position of 705 ribosome 2 along the bound mMRMNA with uniform probakility

Set the status of 705 ribosome % to actively translating

Decrement the copy number of free 70S ribosomes

Increment the copy number of bound 70S ribosomes

Set the sequence of the nascent polypeptide corresponding to 705 ribosome 4

SS 2013 - lecture 2 Modeling of Cell Fate
14



Transcription

Lysidine synthesis Mucleotide methylation
GMP methylation FPseudouridine synthesis
UMP thiolation

UMP carboxymethndaminomethyation
Pseudouridine synthesis

Schematic 4. RNA forms diagrammed in the context of RNA maturation.
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(Step i) generate a list of the components/species and define the initial distribution
at time t=0.

(Step ii) generate a list of possible events E; (chemical reactions as well as
physical processes).

(Step iii) using the current component/species distribution, prepare a probability
table P(E)) of all the events that can take place.

Compute the total probability
P =S PE)

tot

P(E;) : probability of event E; .

(Step iv) Pick two random numbers r, and r, € [0...1] to decide
which event E will occur next and the amount of time <
by which E, occurs later since the most recent event.

Resat et al., J.Phys.Chem. B 105, 11026 (2001)
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Using the random number r, and the probability table,
the event E  is determined by finding the event that satisfies the relation

S P(E)<rP, <3 P(E)

The second random number r, is used to obtain the amount of time t between the
reactions

T=—éln(rz)

As the total probability of the events changes in time, the time step between
occurring steps varies.

Steps (iii) and (iv) are repeated at each step of the simulation.

The necessary number of runs depends on the inherent noise
of the system and on the desired statistical accuracy.
Resat et al., J.Phys.Chem. B 105, 11026 (2001)
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Transcriptional regulation

Algorithm $26 | Transcriptional regulation simulation.

Input: s is true if promoter ¢ is expressed in chromosome k

Input: p.: free cytosolic copy number of transcriptional regulator 4

Input: 2, DNA-bound copy number of transcriptional regulator %

Input: w;; Binding site of transcriptional regulator 4 at promoter j

Input: E;; fold-change effect of transcriptional regulator 4 on promoter j§

Input: &5, b5 chromosomal protein occupancy as defined in List 52

Qutput: f; fold-change effect of transcriptional regulation on RMA polymerase affinity for promoter 3

Calculate the relative rate, #55, transcriptional regulator 4 binds promoter § of chromosome k:
foreach DNA-binding transcriptional regulator i in promoter 5 of chromosome k= {1..2} do

l_ Pigle S njkpc,z'Féj

Bind transcriptional regulators to the chromosome:
repeat
Select regulator 4, promoter 4, and chromosome % ~ multinemialRand(Z, »4 f Ez.jk
if regulator i expressed (p.: > 0) and isRegionfccessible (promoter j of chromosome L to regulator ) then
L Bind protein to chromosome: &g, = 1V 3 € {@:..2s + 1 — 1}, where 2 = m for monomers and ¢ for complexes
Update free and bound copy numbers: p.s ¢ pas— 1, oo +— prs + 1

9"2',3'?4 )

Update binding rate: #35 + 0
until no additional transcriptional regufator can bind DNA (ry; = 0% 4, j)

Calculate the fold-change effect of transcriptional regulators on the affinity of RNA polymerase for each promoter

Initialize fold-change effects: f; «— 1% 3
foreach promoter § of chromosome k = {1..2} bound by DNA-binding transcriptional regulator i do
[_ Add fold-change effects multiplicatively: f; « f3 F;

foreach promoter 5 regulated by an expressed non-DMA-binding transcriptional regufator i (p,: > 0) do

|_ fi = i By

SS 2013 - lecture 2 Modeling of Cell Fate
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Algorithm 55 | DNA damage simulation. See the Mathematical Model section above and List S2 for definition of the
mathematical notation.

Input: = copy number of metabolite 2

Input: M;; stoichiometry of metabolite 4 in reaction j

Input: 22, 27, Z%. Zfz-, z, and zi: final base configuration resulting from reaction 2

foreach DNMA modification reaction < do
Calculate base modification rate
switch trigger of reaction < do
Case spoNtaneols
I_ Ty .IQ
case radiation

4 +— index of radiation trigger
L v < Koy

foreach base j in strand k of chromosome | suisceptible to reaction i in a random order do

if insufficient metabolic resources to support reaction i (3 j s.t. wy < —M;;) then
| break

if poissonRand(#;) > 1 then

Update the configuration of base 5 of strand % of chromosome %
Wy 2

m?m — 2

e © Lo

mé?m. A ZE?L

mge'kz — z

mém — 7z

Update metabolite copy numbers: me+— m+ M,




DNA repair simulation

Algorithm $6 | DNA repair simulation.

Repair, methylate, and restrict DNA

foreach reaction i in a random order do

foreach base 5 of strand k of chromosome | suisceptible to reaction < in a random order do
if sufficient enzymatic and metabolic resources to support reaction < then

Execute reaction %

Update DNA configuration

Update metabolite copy numbers

Decrement enzymatic capacity

Bind DisA to damaged DNA
while there is free DisA and at least 1 DisA-accessible DNA fesion do

Let 4, 4, k + represent the base, strand, and chromosome of a DisA-accessible DMNA lesion
L Bind DisA to base ¢ of strand 5 of chromosome %

SS 2013 - lecture 2 Modeling of Cell Fate
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Non-coding RNA cleavage

Unprocessed RNA Processed RNA
95 RNA 55 RNA
RNAse I / 3 RsgA
30S RNA pre 16M7S RMNA T Ree ] 165 RNA
3': Deab
pre-23S5 RN A T Ree 235 RNA
pre-ffs .5 RNAse Il s
pre+pnB it rpnB
pre-ssra, §': RNAse P Ssra,
pre4RNA EALivac AL pre-tRNA

Schematic $14. Non-coding RNA cleavage.

Algorithm 524 | RNA processing simulation. See Mathematical Model section above for definition of the mathematical
notation.

Input: #¥ copy number of processed RNA species 4
Input: « copy number of intercistronic fragment 2
Input: Rfé is one if operonic RNA ¢ contains gene 4, and zero otherwise

Input: Rjz is one if operonic RNA 4 contains intercistronic fragment 3, and zero otherwise

Let k; <« e;A% be the capacity of enzyme ¢ for RNA processing
repeat
Calculate cleavage rates
foreach operonic non-coding RMA spedies 7 do
|_ Calculate v; according to Eqg. 529

Select operonic non-coding RNA species 5 ~ multinomialRand (1, v/ ZJ. vy )

Update RNA copy numbers: #¥ + ¥ — 1, #¥ ++¥ + RS +* « »* + RZ,
Update metabolites: w «— m — M,;

Update enzyme catalytic capacity: b+ k— Ko

until no further cleavage possible (v; = 0% 3)

21



Cell division in many bacterial species requires the assembly of an FtsZ ring at the
cell membrane around the midplane of the cell.

FtsZ is a homologue of eukaryotic tubulin that assembles into long polymers.

These polymers are typically localized to the center of the cell, forming a
membrane-bound ring.

FtsZ is a GTPase, and GTP hydrolysis to GDP causes the FtsZ filaments to bend.

This bending serves as one of the forces enabling cell division.

SS 2013 - lecture 2 Modeling of Cell Fate
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Model FtsZ polymerization

FtsZ can exist in one of multiple states: inactivated monomer, activated monomer
(GTP bound), nucleated (dimer of two activated FtsZ molecules), elongated
polymer of three or more GTP bound FtsZ molecules.

The following differential equation model iz evaluated at each timestep:

dF
— = KaetoFr — ka1 F
It t25 T ctl
iFp,
at = kex2 FT [GDP] — kex1Fp [GTP]
% — neri F — kacs2Fr + kext Fio [GTP] — ke Fr [GDP] — Zauct F2 4 - -

2 9
... gknu02FT2 — keIIFT (Z FT@) + kel? (Z FT%)

=2 =23

a k-

djg = ket Fo — knuea Fro — ket Fr Fro + koo Frrs
dFm,

03? = ken Frfri—1 — ke Fry — ken FrFpy + Kep Fri, fors € 3.8
difg = keit Frlre — kel2 g

SS 2013 - lecture 2 Modeling of Cell Fate
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Formation of macromolecular complexes

The relative formation rate, r; of each complex, i/, is described by

mass-action kinetics, 5.
m3 =3
re=]1 ( v )
N

m ;.copy number of gene product j,
V'is the cell volume,
s;: stoichiometry of subunit j in complex /.

Algorithm S& | Macromolecular complexation simulation. See Mathematical Model above for mathematical notation.

repeat
foreach protein complex i do

L5
i i . LTI R
L Calculate relative formation rate, ¢, +— HJ. ( 7 )

Select a complex  to form according to multinomialRand (1, vsf >, #4)
Increment copy number of complex k, e +— e + 1
Decrement copy numbers of complex % subunits, wy + my — S,

until /nsufficient subunits to form additional complexes

SS 2013 - lecture 2 Modeling of Cell Fate
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Model small-molecule metabolism by FBA

Externa
lexchan3 :
(. &

Extracellular space Extracellular space

Schematic $10. Metabolite perspective of the flux-balance analysis (FBA) metabolic model. a, Conventional FBA
metabolic model. b, Integrated FBA metabolic model.

SS 2013 - lecture 2 Modeling of Cell Fate
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V15 Flux Balance Analysis — Extreme Pathways

Stoichiometric matrix S: ?V?'PTPQ‘T“—&[‘@ ---------- . |
. . . . : ' , , : Vi Vo Vg Vg Vg Ygib, b, b,
m x n matrix with stochiometries of i, g @A @ s @ 48000 0wl ¢ 04
. 1 ! O 1 0 0 -1 -1'0 0 0 C
the n reactions as columns and @ k}y —-s= 0005 T0 0 o (o
participations of m metabolites as © ®:DJ o0 h a0l 0 0 o
rows. P
& :
o . +0-04~0_—~0r
The stochiometric matrix is an A - BN -
' N\ $ \
important part of the in silico model. | WL |
P P | : @O -
(P, 5 P.g\ Iffz -----------------
. . 2 2 2 vy !
With the matrix, the methods of to 1l | o @l@ © ©:
¥y — — e ———— —
extreme pathway and elementary P=<0 é 130 e | @ r)@/’
mode analyses can be used to B f : |
. 11 1/ b, | @ @’,"
generate a unique set of pathways pa T
P1, P2, and P3 that allow to : o i
-840 -0
express all steady-state fluxes as I = N l/@ .
linear combinations of P1 — P3. | N\ |
Papin et al. TIBS 28, 250 (2003) . @O @
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Any chemical reaction requires mass conservation. LEF’A pBM
Therefore one may analyze metabolic systems by A

requiring mass conservation. Only required: knowledge Pr2—> 5 L
about stoichiometry of metabolic pathways.

: . Steady state: concentrations are constant
For each metabolite X; : > fluxin = flux out
- dA;B(t
dXi /dt = Vsynthesized _ Vused —th () = Ga,p—La,p = 0
+V

transported_in ~ Vtransported_out

Under steady-state conditions, the mass balance constraints in a metabolic
network can be represented mathematically by the matrix equation:

S-v=0
where the matrix S is the stoichiometric matrix and the vector v represents all

fluxes in the metabolic network, including the internal fluxes, transport fluxes and
the growth flux.

15. Lecture WS 2012/13 Bioinformatics Ill 27



Since the number of metabolites is generally smaller than the number of reactions

(m < n) the flux-balance equation is typically underdetermined.

Therefore there are generally multiple feasible

flux distributions that satisfy the mass balance constraints.
The set of solutions are confined to the nullspace of matrix S.

Consider

Corresponds to 2oy g = 0 ___ 21y = —ag
0

3r1 — 1o +x3 = 2r1 = —x3

=> one free parameter: x3 null space: 7 =

Add inequalities for external fluxes
(here,e.g.:x3 = 0)
=> feasible solutions fora > 0

Generally: null space is a cone,

constraints select part of it
15. Lecture WS 2012/13 Bioinformatics Il

flux 1
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Edwards & Palsson PNAS 97, 5528 (2000)

15. Lecture WS 2012/13

The steady-state operation of the
metabolic network is restricted to the
region within a pointed cone, defined
as the feasible set.

The feasible set contains all flux vectors
that satisfy the physicochemical
constrains.

Thus, the feasible set defines the
capabilities of the metabolic network.
All feasible metabolic flux distributions
lie within the feasible set.

Bioinformatics Ill
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To find the ,true” biological flux in cells (— e.g. Heinzle, UdS) one needs additional
(experimental) information,
or one may impose constraints

a <v, <p,
on the magnitude of each individual metabolic flux.
The intersection of the nullspace and the region

defined by those linear inequalities defines a
region in flux space = the feasible set of fluxes.

Flux C

Flux A

In the limiting case, where all constraints
on the metabolic network are known, such
as the enzyme kinetics and gene
regulation, the feasible set may be reduced
to a single point. This single point must lie
within the feasible set.

15. Lecture WS 2012/13 Bioinformatics Ill 30



Metabolism FBA simulation

Algorithm S9 | Metabolism FBA simulation. See Mathematical Model section above for definition of the mathematical
notation.
Calculate flux bounds
begin
Initialize bounds: 5 ¢ —inf, v, 5 + +inf
foreach thermodynamically irreversible reaction i do
I_ Constrain reverse flux to zero: w5 <+ 0

foreach chemically catalyzed reaction i do
4 + index of enzyme which catalyzes reaction 2
if k_: is known then
|_ bound flux by enzyme kinetics and expression: w; < max (v, ko oot 57%,5)

else bound flux by enzyme expression: w5 < w3 (12,5 > 0)
if ky: ic known then
I_ bound flux by enzyme kinetics and expression: vz < min (vug, by sat :7%, 1)

else bound flux by enzyme expression: wy, s <= vy s (12,5 > 0)

foreach chemical reaction i do
foreach protein substrate j of reaction ¢ do
|_ if protein substrate j is not expressed then constrain flux to zero: v ; +— 0, v,5 < 0

foreach internal exchange reaction < do
7 + index of metabolite exchanged by reaction 3
Bound internal metabolite exchange by copy number: vz < max (v, —72m 5 )

foreach external exchange reaction i do
4 +— index of metabolite exchanged by reaction ¢
Bound external metabolite exchange by copy number and maximum exchange rate: vy ; < max (v, , mk_ee 5),

| 'vu>z <_ min (/vuz, ?’?’3;04.&:3’2‘,,%’3')

SS 2013 - lecture 2 Modeling of Cell Fate
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DNA replication

Polymerase
e e |.,_ ore
Gamma % 'Beta-clamp

Complex

¥  Helicase

Primase ‘Backup’

Beta-clamp

Schematic $11. Schematic of DNA replication.

List S15. Enzymes and complexes used in the Replication process class.

Enzymes/Complexes Composition Gene Name(s) DMNA Footprints {nt)
DMNA helicase (6) MG094 dnaB 20
DMNA primase (1) MG250 dnaG 14
B-clamp (2) MGO001 dnal 25
DMNA polymerase core (1) MG031, (1) MG261 polC, polC-2 24
~-complex (1) MG007, (1) MG351, holB, holA, dnaX 26
(4) MG419

DNA ligase (1) MG254 lighA 19
Single stranded binding protein (SSB)  (8) MG091 ssb 145
8mer

SS 2013 - lecture 2 Modeling of Cell Fate
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DNA naturally exists at a certain level of helicity, and this level of helical density is
important for the DNA's stability, its ability to fit in the cell, and its ability to bind

proteins.

M. genitalium has 3 topoisomerase proteins: DNA gyrase, topoisomerase |, and
topoisomerase V.

These proteins transiently break a DNA strand to wind (topoisomerase |) or unwind
(topoisomerase |V, gyrase) the DNA

oriC
oriC

Replicated
Replicated Region 2
Region |
Unreplicated
Region

terC

Schematic S7. Regions of varying superhelical density on the replicating chromosome.
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Which states are affected by replication?

Upon replication initiation (the binding of 29 DnaA-ATP molecules near the oriC
by the Replication Initiation process class), the Replication process class tracks
the progression of the replication proteins on the known chromosome
sequences.

List S17. State classes connected to the Replication process class.

Connected States Read from state Written to state

Chromosome » Whether 3 DnaA complex has formed at oriC = Polymerized regions of DNA
= DNA-bound protein locations = DMNA-bound protein locations
= Superhelicity » Unwound bases (Effect on superhelicity)
» DMNA strand breaks to be ligated = DNA strand breaks to be ligated

= DNA sequence

= DNA footprints of proteins

s Chromosome regions accessible for protein
binding

= Damaged DNA bases

= OriC position

» TerC position

= Sequence Length

SS 2013 - lecture 2 Modeling of Cell Fate
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Growth of virtual cell culture

In{2) At
In{dilution factor)
At=214h
| 1=82h
1X dilution
5X dilution
o Mean
gr "
:,J}\ zill ution 1=90h
15

Growth of three cultures
(dilutions indicated by
shade of blue) and a blank
control measured by
OD550 of the pH indicator
phenol red. The doubling
time, t, was calculated
using the equation at the
top left from the additional
time required by more
dilute cultures to reach the
same OD550 (black lines).

The model calculations were consistent with the observed
doubling time!
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Individual simulations

) 20 Predicted growth dynamics of
one life cycle of a population

2 of 64 in silico cells

[¢s} P

@ 20- = .

= g Q: what is the source of the
leeglgngchell variability of the length of the

Z A i cell cycle? (later)

© g 5 10

3~ Time (h}
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O

76- Comparison of the

? predicted and

g experimentally observed
50- )

o cellular chemical

; compositions

B 25-

S—

O

o

Lipid

Model calculations were consistent with the observed
cellular chemical composition!
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Increase of cell mass

D
2 == Total _

- DNA Temporal dynamics of the
| =™RNA total cell mass and four cell
c | — Protein fract ¢
: — Membrane mass fractions of a
= representative in silico cell.
%

4
=

Model calculations were consistent with the observed
replication of major cell mass fractions.
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Metabolic flux rates

E
10“_r_I
s 9 & @ - i
. I‘ 8B g Average predicted
£ ® TalA 25 :
£2, o 017 e o 1072 metabolic fluxes (from FBA
; - .
GpsA' o . _u modeling).
(0.05%)g oo e 8 B e Ly

Nuclkeotide metabolism

Glycolysis o—e synthess, — s Arrow brightness indicates
¥ _—% 3 » flux magnitude.
Pyruvate
metabalism ’ = :

In agreement with exp data, the model predicts that the
flux through glycolysis is >100-fold more than that
through the pentose phosphate and lipid biosynthesis
pathways.
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Metabolite concentrations

F
;:102? ¢ I
'-g ] o ¢
= 10"
& 5. & ¢ o ¢ o ¢ .
Q ] ¢
: "
ST TLIH T o] o |
— ] ol O o
o ] .
3, 4] R
10"
:% i ¢ Bennettet al., 2009 ¢ 0
S ] = Literature (CCDB) ¢
W24 — Model s.d. .
ﬁﬁ%%’i—’%%@%%%?%’?ﬁé%%%%%g%@%%%g%%é%%ﬁ
o
Amino acid NTP NDP NMP dNTP lon

The predicted metabolite concentrations
are within an order of magnitude of
concentrations measured in Escherichia
coli for 100% of the metabolites in one
compilation of data and for 70% in a more
recent high-throughput study.
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Ratios of observed and
average predicted
concentrations of 39
metabolites.
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Temporal dynamics of cytadherence high-
molecular-weight protein 2 (HMW2,
MG218) mRNA and protein expression of
one in silico cell.

Red dashed lines indicate the direct link
between mMRNA synthesis and subsequent
bursts in protein synthesis.

Due to (a) the local effect of intermittent messenger RNA (mRNA)
expression and (b) the global effect of stochastic protein degradation on the
availability of free amino acids for translation,

model predicts “burst-like” protein synthesis.

This is comparable to exp. observations!
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All proteins
prob. bound

RNA pal
prob. bound

DnaA
prob. bound

Average density of all DNA-bound proteins
and of the replication initiation protein DnaA
and DNA and RNA polymerase of a
population of 128 in silico cells.

Top magnification : average density of DnaA
at several sites near the oriC;

DnaA forms a large multimeric complex at
the sites indicated with asterisks, recruiting
DNA polymerase to the oriC to initiate
replication.

Bottom left : location of the highly expressed
rRNA genes..

Consistent with recent experimental data, the predicted high-occupancy RNA
polymerase regions correspond to highly transcribed rRNAs and tRNAs.

In contrast, the predicted DNA polymerase chromosomal occupancy is significantly
lower and biased toward the terC.
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m
-t
=
S

B stein Percentage of the chromosome that is

= Al predicted to have been bound (B) as
= RNA pol

= SMC functions of time.
= DNA pol

= Gyrase SMC is an abbreviation for the name of the
chromosome partition protein (MG298).

% Chromosome
explored

6 T T T é
Time (h}

The model further predicts that the chromosome is explored very rapidly,
with 50% of the chromosome having been bound by at least one protein
within the first 6 min of the cell cycle and 90% within the first 20 min
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O

100

t_-1emn Percentage of the number of genes that
are predicted to have been expressed (C)
as functions of time.

% RNA
expressed

L]

o
(v}

Time (h)
RNA polymerase contributes the most to chromosomal exploration,
It binds 90% of the chromosome within the first 49 min of the cell cycle.

On average, this results in expression of 90% of genes within the first 143 min.
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DNA blndmg and d|$$0C|at|on dynamlcs

D terC .
== _ H' Lagging
= DNA pol
56200 [
|
|
lll
c | ]
5 DNApo-RNA | |
= oriC pol collision | |
o) | (
o \ |
l‘_1 I"
\ |
| ll
Il 'i
| |
Leading)
DN/—\ pol l
1.35 Time (h) 14

terCH——
0

DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA
(blue) and DNA (green) polymerases for one in silico cell. The oriC DnaA complex
recruits DNA polymerase to the oriC to initiate replication, which in turn dissolves the
oriC DnaA complex. RNA polymerase traces (blue line segments) indicate individual
transcription events. The height, length, and slope of each trace represent the
transcript length, transcription duration, and transcript elongation rate, respectively.

Inset : several predicted collisions between DNA and RNA polymerases that lead to

the displacement of RNA polymerases and incomplete transcripts.
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A T Distributions of the

41H -
h Replication initiation duration of three cell-cycle
T 'é;pc!ﬁﬁggg phases, as well as that of
B L the total cell-cycle
&2 length, across 128
simulations.

Duration {h})

There was relatively more cell-to-cell variation in the durations of the replication
initiation (64.3%) and replication (38.5%) stages than in cytokinesis (4.4%) or the
overall cell cycle (9.4%).

This data raised two questions:
(1)what is the source of duration variability in the initiation and replication phases;
and

(2) why is the overall cell-cycle duration less varied than either of these phases?
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Replication initiation occurs as DnaA protein monomers bind or unbind
stochastically and cooperatively to form a multimeric complex at the replication

origin.

When the complex is complete, DNA polymerase gains access to the origin, and
the complex is displaced.
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Dynamics of macromolecule abundance

Replication initiation Replication C

8 8

oriC complex
>

Chromosome DnaA molecules in @
N [

copy number
¥y 8 .

(M)

dNTP cone.
=

0

4
Time (h)
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okinesis

Top : the size of the DnaA complex
assembling at the oriC (in monomers
of DnaA);

middle, the copy number of the
chromosome;

Bottom : cytosolic dNTP concentration.
The quantities of these macromolecules
correlate strongly with the timing of key
cell-cycle stages.
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We found a correlation (R? = 0.49)

between the predicted duration of replication
initiation and the initial number of free DnaA
monomers.

The duration of the replication phase in individual
cells is more closely related to the free dNTP
content at the start of replication than to the dNTP
content at the start of the cell cycle

The durations of the initiation and replication
phases are inversely related to each other in single
cells.

Cells that require extra time to initiate replication
also build up a large dNTP surplus, leading to
faster replication.
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A
= 107 Intracellular concentrations of
@ ATP .
g T the cellular energy carriers
1079 . . -
. GTP over time for one in silico cell.
-
— a2
= 10 NAD(H) -
2
O 10 e
< FAD(H,)
> 10°® ; ;
N 0 4 8
Time (h)

™

ATP and GTP are synthesized more than 1000-fold faster than other
High-energy intermediates.

Increases over time look small due to logarithmic scale.
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Usage of ATP and GTP

S 125 @ ATP i
E ®GTP . °
= .
2 100 3

p— ° o .
D = o °
g * ’ o o [
O Clmtpatiopte S

— o ¢
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S poloel b, -

— 8 10 12 14

Cell Cycle Length (h)

Overall of ATP and GTP did not vary considerably in all simulations.

Exception: very slow cells consume about twiche as much energy.
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tRNA aminocacylation
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o] .~ @) Usage of ATP and GTP

ATP (blue) and GTP (green)
usage of 15 cellular processes
throughout life cycle of one in
silico cell.

Pie charts: percent used as a
fraction of the total usage.

Usage is dominated by

production of mMRNA and protein.
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B Essential

Macromolecule synthesis Cell cycle ‘
[ |
WT Metabolic RNA Protein Other DNA c oklnesns Quasi-Ess
{79, tmk) {12, rpoE) {125, asn3) {32, ffh) (8, cinal) {17, tiS)
25+
Growth (fg h™") / — /-/ ~
o -
74
Protein {fg) / / / /
5] — — /x
0.4
AL / o / / / / /-f
o -
122
DNA {fg) /

064
2504

Septum {hm)

e

0d

® Time (h)

Single-gene disruption
strains grouped into
phenotypic classes
(columns) according to
their capacity to grow,
synthesize protein,
RNA, and DNA, and
divide (indicated by
septum length).

Each column depicts the temporal dynamics of one representative in silico cell of

each essential disruption strain class.

Dynamics significantly different from wild-type are highlighted in red.

The identity of the representative cell and the number of disruption strains in

each category are indicated in parenthesis.
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Construct in-silico mutants to predict essentiality

Nodel
Essaniml Mon-sss
r

sat 270 | 71

Ed

%‘g 14 46
=

Correct: 316 (73%)
Incorrect: 85 (21%)

SS 2013 - lecture 2

Construct all possible 525 single-gene
deletions.

Comparison of predicted and observed
gene essentiality.

Then make predictions for new biological
insights (important to be able to publish in
Cell, not discussed here because too
detailed.
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Comprehensive whole-cell model accounts for all annotated gene functions
identified in M. genitalium and explains a variety of emergent behaviors in
terms of molecular interactions.

This is still a first draft.

Whole-cell models may accelerate biological discovery and bioengineering by
facilitating experimental design and interpretation (?).

Combined with recent de novo synthesis of the M. genitalium chromosome and
successful genome transplantation of Mycoplasma genomes to produce a
synthetic cell (Craig Venter), this raise the exciting possibility of using whole-cell
models to enable computer-aided rational design of novel microorganisms.

The construction of whole-cell models and the iterative testing of them against
experimental information will enable the scientific community to assess how well
we understand integrated cellular systems.
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