
Processing Biological Data

Prof. Dr. Volkhard Helms Chair for Computational Biology Saarland University

Dr. Pratiti Bhadra Tutor

Summer Semester 2020

Assignment Sheet 4
Deep Learning

Due: June XX, 2020 10:15 am

1. Exercise 4.1: Basics of Deep learning methods [50 points]

(a) Briefly explain what is meant by overfitting. How to avoid overfitting in deep neural net-

works? (5 point) Answer: Overfitting is a modelling error that occurs when a function is

too closely fit to a limited set of data points. A model that learns the training dataset too

well, performing well on the training dataset but does not perform well on a hold out sample.

There are two ways to approach an overfit model: (1) Reduce overfitting by training the

network on more examples. (2) Reduce overfitting by changing the complexity of the net-

work (controlling hyper-parameter,weight regularization,dropout,early stopping, ensemble

model, noise etc.).

(b) What is dropout in neural network? Can it be applied at visible layer (or input layer) of

neural network? Which of the following statement is true for dropout? (5 points)

i. Dropout gives a way to approximate by combining many different architectures

ii. Dropout can help preventing overfitting

iii. Dropout prevent hidden unit from coadapting

Answer: Dropout refer to dropping out units (neuron) randomly. It prevent network from

over-fitting.Yes, it can apply in both visible and hidden layers. All statements are true.

(c) What is activation function of neural network? What is the purpose of the activation

function in neural network? What are advantages of ReLu function over Sigmoid function?

(5 points) Answer: An activation function determines the output behavior of each node, or

neuron in an artificial neural network. The purpose of the activation function is to introduce

non-linearity into the output of a neuron. ReLu solve the vanishing gradient problem, more

computationally efficient (faster) than sigmoid.

(d) Cross validation: Carry out leave-one-out cross-validation (LOOCV) in a simple classifica-

tion problem. Consider the following dataset with one real-valued input x (numbers on the

line in the figure) and one binary output y (negative and positive sign). We are going to

use k-NN with Euclidean distance to predict ŷ for x.

What is the LOOCV error of 1-NN on this dataset? Give your answer as the total number

of misclassifications. (5 points) Answer: 6 (0.7, 1.0, 2.5, 3.2, 3.5, 4.1)

(e) Determine thevalues at hidden and output layers if x1 = 0.05, x2 = 0.10, w1 = 0.15, w2

= 0.20, w3 = 0.25, w4 =0.30, w5 = 0.40, w6 = 0.45, w7 = 0.50, w8 = 0.55, b1= 0.35 and

1

b2=0.60. Activation function is sigmoid (logistic function f(x) = L
1+e−x). Determine the

total error (the mean squared error) if the target (or actual) outputs are y1T = 0.01 and

y2T = 0.99. What is the updated weight of w5 after first back-propagation on this example?

learning rate is 0.5. (10+5+10 = 25 points)

Answer: see next page

2

3

4

5

(f) The following neural networks which take two binary valued inputs x1 , x2 ∈ {0, 1} and the

activation function is the threshold function (h(x) = 1 if x > 0; 0 otherwise). Which logical

functions does the network compute? (5 points)

Answer: AND logic gate (x1 = 0, x2=0 → h(x) = 0; x1 = 1, x2=0 → h(x) = 0; x1 = 1,

x2=1 → h(x) = 0; x1 = 1, x2=1 → h(x) = 1)

2. Exercise 4.2: Programming: Multilayer perception classification [50 points]

Download data files (red-wine.csv and white-wine.csv) from supplementary. Pleases look at

different python packages (keras, scikit-learn, seaborn, matplotlib.pyplot, pandas and tensorflow

etc.)

(a) The sulfates is one component of wine. The sulfate can cause people to have headaches.

I’m wondering if this influences the quality of the wine. Please illustrate the relation or

dependency between ’sulphates’ and ’quality’ using figure or plot. Is there any differ-

ence in ”red” and ”white” wine? The figure should have axis-level and legend. (7 points)

Answer: 1. High quality less sulphate. 2. white wine with a relatively low amount of sul-

fates that gets a score of 9. 3. the red wine seems to contain more sulfates than the white

wine, which has fewer sulfates above 1 unit.

(b) Describe the correlation matrix and its important? Plot correlation matrix of variables (or

features) of wine dataset. Correlation coefficient should be reflect on plot. Do you get any

important information from this plot which may help you to build efficient classifier. (8

points)

6

Answer: 1. free sulfur dioxide and total sulfur dioxide were going to correlate, no point to

use both variable in classification 2. volatile acidity and type are more closely connected,

therefore ”volatile acidity” is an important feature fro classification

(c) Build a neural network architecture as shown in figure below to predict the class of wine

(red = ’1’ and white = ’0’). Use 5-fold cross validation. Present accuracy from each fold

and evaluate the performance of your final model with accuracy, F1-score, recall, precision.

Standardized the wine data (zero mean and unit variable) before classification. Set batch

size and epoches to 10 and 150, receptively. Use binary cross entropy loss as loss function

and ADAM optimizer. (25 points)

7

Answer:

(d) What is your opinion on the wine dataset? Is there any way to improve the performance

of your model using some data processing methods? If yes, then please provide the per-

formance (accuracy,f1-score,recall,precision) of the improved model and explain the reason

behind the improvement. (10 points)

Answer:

8

9

4−2.py Page 1

import
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import KFold
from scipy.stats import zscore
from sklearn import metrics
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_scor
e, cohen_kappa_score
import imblearn
from imblearn.over_sampling import SMOTE

Read in white wine data
white=pd.read_csv("white.csv",sep = ";")

Read in red wine data
red=pd.read_csv("red.csv",sep = ";")

******* 4.2 (a)

The sulfates is one component of wine. The sulfate can cause people to have headac
hes. I'm wondering if this influences the quality of the wine. Please illustrate the
 relation or dependency between 'sulphates' and 'quality' using figure or plot. Is t
here any difference in "red" and "white" wine?

fig, ax = plt.subplots(1, 2, figsize=(8, 4))

ax[0].scatter(red['quality'], red["sulphates"], color="red")
ax[1].scatter(white['quality'], white['sulphates'], color="white", edgecolors="black
", lw=0.5)

ax[0].set_title("Red Wine")
ax[1].set_title("White Wine")
ax[0].set_xlabel("Quality")
ax[1].set_xlabel("Quality")
ax[0].set_ylabel("Sulphates")
ax[1].set_ylabel("Sulphates")
ax[0].set_xlim([0,10])
ax[1].set_xlim([0,10])
ax[0].set_ylim([0,2.5])
ax[1].set_ylim([0,2.5])
fig.subplots_adjust(wspace=0.5)
fig.suptitle("Wine Quality by Amount of Sulphates")

plt.show()
plt.close()

****** 4.2 (b)

Describe the correlation matrix and its important? Plot correlation matrix of fea
tures (or variable) of all wine
A correlation matrix is a table showing correlation coefficients between variables
. It¿s a good idea to also do a quick data exploration, easy to interpret the realt
ion between different data.

add class in red and white wine DataFrame
red['type'] = 1
white['type']=0
Append 'white' to 'red'. ignore_index set to "True" because we don't want to keep
the index labels of white wine when we are appending then the data to red. We want a
 continuous indexing
wines = red.append(white, ignore_index=True)

find correlation
corr=wines.corr()

Generate a mask for the upper triangle of the corr matrix to represent symmetric m

4−2.py Page 2

atrix
mask = np.triu(np.ones_like(corr, dtype=np.bool))

sns.heatmap(corr, xticklabels=corr.columns.values,yticklabels=corr.columns.values,vm
in=−1, vmax=1,center=0, annot=True,square=True,cmap="YlGnBu",mask=mask)

#plt.ioff()
plt.show()
plt.close()

******* 4.2 (c)
Specify the data
X = wines.values[:,0:11]
Specify the target labels and flatten the array
y = np.ravel(wines.type)

4.2 (d)
Oversampling transform the dataset
#oversample = SMOTE()
#X, y = oversample.fit_resample(X, y)

Cross validation
Use for KFold classification
kf = KFold(5, shuffle=True, random_state=42)

all_y = []
all_y_pred = []

print("\n>>>> Folds evaluation >>>>\n")

fold = 0
for train, test in kf.split(X):
 fold+=1
 print(f"Fold #{fold}")

 x_train = X[train]
 y_train = y[train]
 x_test = X[test]
 y_test = y[test]

 #Intialize the constructor
 model = Sequential()
 # Add an input layer
 model.add(Dense(12, activation='relu', input_shape=(11,)))
 # Add one hidden layer
 model.add(Dense(8, activation='relu'))
 # Add an output layer
 model.add(Dense(1, activation='sigmoid'))

 # compile the keras model
 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']
)
 # fit the keras model on the dataset
 model.fit(x_train, y_train, validation_data=(x_test,y_test),epochs=150, batch_si
ze=10,verbose=0)

 #prediction probability model
 #y_pred = model.predict_proba(x_test)

 #prediction class
 y_pred = model.predict_classes(x_test)

 all_y.append(y_test)
 all_y_pred.append(y_pred)

 # measure this fold's RMSE, accuracy
 score_rmse = np.sqrt(metrics.mean_squared_error(y_pred,y_test))
 print(f"Fold score (RMSE): {score_rmse}")
 score = model.evaluate(x_test, y_test,verbose=1)
 print(f"Fold score (accuracy): {score[1]}")

4−2.py Page 3

5−CV result
all_y = np.concatenate(all_y)
all_y_pred = np.concatenate(all_y_pred)
CV_score_rmse = np.sqrt(metrics.mean_squared_error(all_y_pred,all_y))
print("\n##### Evaluation of Final Model #####\n")
print(f"Final score (RMSE): {CV_score_rmse}")
CV_score = model.evaluate(x_test, y_test,verbose=1)
print(f"Final score (accuracy): {CV_score[1]}")

Precision
Pre_score = precision_score(all_y, all_y_pred)
print(f"Final score (Precision): {Pre_score}")
Recall
recall = recall_score(all_y, all_y_pred)
print(f"Final score (Recall): {recall}")
#F1−score
F1 = f1_score(all_y,all_y_pred)
print(f"Final score (F1_score): {F1}")

without CV
##Split the data up in train and test sets
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_st
ate=55)

Standarization, or mean removal and variance scaling Gaussian with zero mean and
 unit variance. The preprocessing module further provides a utility class StandardSc
aler that implements the Transformer API to compute the mean and standard deviation
on a training set so as to be able to later reapply the same transformation on the t
esting set.
Define the scaler
#scaler = StandardScaler().fit(X_train)
Scale the train set
#X_train = scaler.transform(X_train)
Scale the test set
#X_test = scaler.transform(X_test)

##Intialize the constructor
#model = Sequential()
Add an input layer
#model.add(Dense(12, activation='relu', input_shape=(11,)))
Add one hidden layer
#model.add(Dense(8, activation='relu'))
Add an output layer
#model.add(Dense(1, activation='sigmoid'))

compile the keras model
#model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
fit the keras model on the dataset
#model.fit(X_train, y_train, epochs=150, batch_size=10)

Assignment Sheet 4
Deep Learning

Discussion

July 8th 2020

Pratiti Bhadra

X

X

X
X

X

0 0

0
0

0

f
1

[f
1 ,

f
2
] → class (X or 0)

f
2

X

X

X
X

X

0 0

0
0

0

f
1

[f
1 ,

f
2
] → class (X or 0)

f
2

Decision boundary → from given data (training set)

X

X

X
X

X

0 0

0
0

0

f
1

[f
1 ,

f
2
] → class (X or 0)

f
2

Decision boundary → from given data (training set)

U

U

U

X

X

X
X

X

0 0

0
0

0

f
1

[f
1 ,

f
2
] → class (X or 0)

f
2

Decision boundary → from given data (training set)

0

X 0

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

U

X

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

U

X

Overfitting

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

U

X

Overfitting

 Occurs when a model fits data too closely and therefore fails to reliably predict
future observations. Error increase on test/validation data compare to training
data

 In other words, overfitting occurs when a model 'mistakes' random noise for a
predictable signal.

 More complex models are more prone to overfitting.

X

X

X

X
X

0 0

0

0

0

f
1

f
2

0
X

0

0

X

X 0

X

Neuron

Input
Output

Deep neural network

Node

Input
Output

Deep neural network

Perceptron The perceptron consist of 4 parts
● The input value / one input layer
● Weight and Bias
● Net sub
● Activation function

= X

Perceptron The perceptron consist of 4 parts
● The input value / one input layer
● Weight and Bias
● Net sub
● Activation function

= X

An activation function determines the output behavior of each node, or neuron in an
artificial neural network.

An activation function determines the output behavior of each node, or neuron in an
artificial neural network.

The purpose of the activation function is to introduce non-linearity into the output of a
neuron

An activation function determines the output behavior of each node, or neuron in an
artificial neural network.

The purpose of the activation function is to introduce non-linearity into the output of a
neuron

An activation function determines the output behavior of each node, or neuron in an
artificial neural network.

The purpose of the activation function is to introduce non-linearity into the output of a
neuron

Ax + b
Function of a line
 Y = mx + b

An activation function determines the output behavior of each node, or neuron in an
artificial neural network.

The purpose of the activation function is to introduce non-linearity into the output of a
neuron

Ax + b
Function of a line
 Y = mx + b

XOR

An activation function determines the output behavior of each node, or neuron in an
artificial neural network.

The purpose of the activation function is to introduce non-linearity into the output of a
neuron

Ax + b
Function of a line
 Y = mx + b

XOR

Real world data

ReLU
● Computationally efficient
● Reduced likelihood of the gradient to vanish. Backpropagation technique use gradient decent to

improve the performance of the neural network by updating weight.

Derivative of the function

Derivative of the function

Weight update:Weight update:

If value of derivative is low then there will
be minor change in Weight value.

It take much more time to converge in
gradient desent

Forward Propagation:

Forward Propagation:

 Input in the output node → X1* 8 + X2 * 8 – 12 [Sum(w.x) + b]
 Output of output node→ if input > 0 then 1 or 0

X1 = 0 and X2 =0
X1 = 0 and X2 =1
X1 = 1 and X2 =0
X1 = 1 and X2 =1

 Input in the output node → X1* 8 + X2 * 8 – 12 [Sum(w.x) + b]
 Output → if input > 0 then 1 or 0

 Input

0*8 + 0*8 -12 = -12
0*8 + 1*8 -12 = -4
1*8 + 0*8 -12 = -4
1*8 + 1*8 -12 = +4

X1* 8 + X2 * 8 – 12 Output

 0
 0
 0
 1

AND
logic

Dropout refer to dropping out units (neuron / perceptron) randomly

Combination of different architechture

Dropout refer to dropping out units (neuron / perceptron) randomly

Combination of different architechture

TRUETRUE
TRUE

TRUE

-

-

-
+

Miss classification

- + - + + + - + - +

6 miss classification

Imbalanced dataset

Oversampling
SMOTE (Synthetic Minority Oversampling TEchnique)

Imbalanced dataset can be handled by
● Oversampling
● Bagging
● ….

