
Today, we will consider the issue of analyzing multiple types of omics-data
and correlating this with e.g. clinical data.

We will first classify the existing approaches on how the analysis is done, step-
wise or simultaneously.

Then we will discuss 2 methods in more detail, SNF and MOFA.

You will implement and apply the SNF method in assignment #5.
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Link to this review paper: https://www.nature.com/articles/nrg3868

Regulation and deregulation take place on different layers.

By including multiple data types, we hope to capture more aspects e.g. why
and how deregulation may lead to disease processes.

The first point – circumvent missing data in one data dimension – may sound a 
bit childish. Like the available methods work so poorly that we need „tricks“ 
to overcome this.

This may be partly true. But there are many reasons why data points are
missing, not only imperfect omics methods. Some points simply cannot be
measured.

The second point is always true. If one has independent evidence from
multiple directions, the confidence about a finding increases.

The third point is also true. Eventually we like to understand basically every
aspect about cell biology. However, we are still far away from this stage.
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Shown here are different levels of molecular omics data: genome, epigenome, 
transcriptome, proteome and metabolome

Within each level and also between different levels, there exist heterogeneous 
data.

Arrows indicate the flow of genetic information from the genome level to the 
metabolome level and, ultimately, to the phenome level. The red crosses 
indicate inactivation of transcription or translation. 

Abbreviations: 

LOH stands for „loss of heterozygosity“ = one parental copy of a gene is lost 
due to a chromosomal (mutational) event.

CNV stands for „copy number variation“ = a type of duplication or deletion 
event that affects a considerable number of base pairs (kb up to Mb).

CSF, cerebrospinal fluid; 

Me, methylation; 

TFBS, transcription factor-binding site.
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In this purely hypothetical example taken from Ritchie et al., we illustrate 
that an analysis that assesses variation of only a single omic data type can 
miss complex models that require variation across multiple levels of 
biological regulation. 

It is now established that oestrogen can cause DNA damage if it is not properly 
metabolized. Two genes, cytochrome P450 1A1 (CYP1A1) and CYP1B1, 
participate in the first step of oestrogen breakdown. The metabolite created by 
CYP1B1 (4-OHE2 catechol oestrogen) creates a more carcinogenic form of 
oestrogen by-product than that metabolized by CYP1A1. 

In our model, copy number variation (CNV) in CYP1A1 (label 1 in the left 
figure) reduces activity, and single-nucleotide polymorphisms (SNPs) in 
CYP1B1 (label 2) increase activity, resulting in higher levels of carcinogenic 
by-products. Additionally, multiple rare variants in the gene coding for the 
enzymes caffeic acid 3-O-methyltransferase (COMT; label 3), glutathione S-
transferase μ1 (GSTM1) and glutathione S-transferase θ1 (GSTT1; label 4) 
reduce the metabolism (i.e. degradation) of carcinogenic by-products, resulting 
in a higher level of DNA damage. Even so, these variations may not increase 
the risk of cancer if the DNA damage repair pathway can offset the increase in 
carcinogenic metabolites. However, hypermethylation of X-ray repair cross-
complementing 1 (XRCC1; label 5) and variation in the gene expression of 
XRCC3 (label 6) result in reduced transcription levels, and this repair pathway 
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may no longer be able to adequately keep DNA repair at necessary levels (see right
figure). Finally, dysregulated protein expression of genes in the cell cycle pathway —
for example, in cyclin-dependent kinase 1 (CDK1; label 7) — may result in a rate of 
cell replication that is higher than average and therefore DNA damage (right figure). 
The end result can lead to an abundance of damaged cells (that is, breast cancer cells). 
In this hypothetical model, all of the variation mentioned above is required to pass the 
threshold into cancer development. Therefore, only an analytical approach that 
integrates data from the genome, transcriptome and proteome would identify the full 
model.
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Multi-staged analysis is conceptually much simpler than meta-dimensional 
analysis.
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The idea of this stepwise approach is to not only identify a biomarker-SNP, but 
also understand how the SNP leads to the phenotypic change.

For example, dxpression quantitative trait loci (eQTLs) analysis tries to
identify elements of genetic variation associated with measures of quantitative 
gene expression.
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This is another example of a multi-staged analysis.

In the top figure, the black and orange lines symbolize the two copies of the
chromosome inherited from father and mother.

In the example, the RNA polymerase would preferentially bind to the promoter
of the paternal copy of a gene (yellow) and hence produce more mRNA
transcripts from it (short black lines, middle) than from the orange genome.

In the first step of this multi-stage analysis, one checks for allele specific
expression.

In the second step, one tries to link the obtained results (which genes show
allele specific expression?) to variations in promoter/enhancer elements or to
epigenetic variations.
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Now, we turn to the case when multiple data types are analyzed at once. This 
is called meta-dimensional analysis.

In this area, we can distinguish 3 types of approaches: concatenation-based
integration, transformation-based integration, and model-based integration.

We will start with data concatenation where multiple data types are available
in individual data matrices.

This is illustrated in the top line. The blue square contains SNP data – what
nucleotide does each patient have at each SNP position?

The red square contains transcriptomics data – what are the expression levels
of all genes for each patient?

The purple square contains miRNA data – e.g. what is the expression level of
all miRNAs for each patient?

If one concatentates all this data into one matrix, this matrix may become
pretty large. Also, the solution space may become severly underdetermined
because there are typically many more variables than samples (patients).
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The second type of approaches involves independent mapping or data
transformation of the separate data types prior to integrating them.
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Link to the Chaudhary paper: https://pubmed.ncbi.nlm.nih.gov/28982688/

From the TCGA HCC project, the authors obtained 360 tumor samples with 
coupled RNA-seq (15,629 genes after preprocessing), miRNA-seq (365 
miRNAs ) and DNA methylation data (19,883 genes ). 

From the DNA methylation data, they considered CpG islands within 1500 bp
ahead of transcription start sites (TSS) of genes and averaged their methylation 
values. 

Missing values were processed in the following way: First, the biological 
features (e.g. genes/miRNAs) were removed if having zero value in more than 
20% of patients. The samples were removed if missing across more than 20% 
features. The other missing values were imputed with the impute function from 
R impute package. Lastly, input features with zero values across all samples 
were removed. (Comment: such features contain no information -> are not 
useful for the deep learning approach.)

The three types of omics features (contained in 3 matrices that are unit-norm 
scaled by sample) were then stacked into a unique matrix 

Then, an autoencoder, a deep learning framework, was trained. Its topology is 
shown in the top figure. We used the activity of the 100 nodes from the 
bottleneck hidden layer as new features. We then conducted univariate Cox-
PH regression on each of the 100 features, and identified 37 features 
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significantly (log-rank p-value <0.05) associated with survival. These 37 features 
were subjected to K-means clustering, with cluster number K ranging from 2 to 6. 
Using silhouette index and the Calinski-Harabasz criterion, we found that K=2 was 
the optimum with the best scores for both metrics.

Survival analysis on the full TCGA HCC data showed that the survivals in the two 
sub-clusters are drastically different (log-rank p-value =7.13e-6, right figure). 

In association with clinical characteristics, the more aggressive subtype (S1) has 
consistent trends of association with higher TP53 inactivation mutation frequencies. 
Association of stemness markers (KRT19, EPCAM) with S1 subtype is also in 
congruence with the literature. Moreover, S1 subtype is enriched with activated Wnt
signaling pathway. 
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This is the third type of meta-dimensional analysis.
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The icluster method is presented in this paper: 
https://academic.oup.com/bioinformatics/article/25/22/2906/180866
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Actually, the matrix Z (cluster indicator e.g. for the latent tumor subtypes) is
not known. This is what we want to derive.

Here, we set up separate latent models for each data type. Each of them
contains the same Z matrix.

W and Z are then obtained by an expectation maximization (EM) approach.
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This application is presented in: 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035236

This example shows that iCluster could yield better separated clusters than
standard PCA (termed „naive integration“ here).
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There exist different tools to identify latent factor models.

They use different methods to identify the factors.

The authors of the lastest MOFA had to compare their tool to the earlier tools
GFA and iCluster using simulated data. 

Presumably, the simulation of data is done in the reverse way from how these
methods work.

In the left plot, the authors showed that MOFA identified the correct number of
factors.

In the middle plot, MOFA gave the smallest correlation between the factors
(which were constructed to be uncorrelated).

In the right plot, both iCluster and MOFA factors were well correlated to the
correct factors.
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Link to this paper: https://www.embopress.org/doi/10.15252/msb.20178124
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We applied MOFA to a study of chronic lymphocytic leukaemia (CLL), which 
combined ex vivo drug response measurements with somatic mutation status, 
transcriptome profiling and DNA methylation assays.

Nearly 40% of the 200 samples were profiled with some but not all omics 
types; such a missing value scenario is not uncommon in large cohort studies, 
and MOFA is designed to cope with it 

Among the 10 identified factors, factors 1 and 2 were active in most assays, 
indicating broad roles in multiple molecular layers (B). In contrast, other 
factors such as Factor 3 or Factor 5 were specific to two data modalities, and 
Factor 4 was active in a single data modality only. Cumulatively, the 10 factors 
explained 41% of variation in the drug response data, 38% in the mRNA data, 
24% in the DNA methylation data and 24% in the mutation data
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The loadings describe the contributions of the features to each factor. For 
example, based on the top weights in the mutation data, Factor 1 was aligned 
with the somatic mutation status of the immunoglobulin heavy‐chain variable 
region gene (IGHV), while Factor 2 aligned with trisomy of chromosome 12. 
Thus, MOFA correctly identified two major axes of molecular disease 
heterogeneity and aligned them with two of the most important clinical 
markers in CLL. 
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UMAP and t-SNE are modern tools to visualize e.g. the results of single cell
transcriptomics. Here, the authors argue that the identified latent factors
contain additional information over the transcriptomics alone.

If one is able to parametrize perfect latent factors, these factors contain
basically „every information“ that can be of interest.
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Application of MOFA: 
https://www.sciencedirect.com/science/article/pii/S2405471220301885

Cellular differentiation requires dramatic changes in chromatin organization, 
transcriptional regulation, and protein production. To understand the regulatory 
connections between these processes, Bunina et al. generated proteomic, 
transcriptomic, and chromatin accessibility data during differentiation of 
mouse embryonic stem cells (ESCs) into postmitotic neurons
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ATAC-seq measures chromatin accessibility.
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(Left) The differentiation protocol transforms mouse ESCs into glutamatergic 
neurons. 

Briefly, ESCs were cultured on feeder-free gelatin-coated plates for 2 passages 
in ESC medium containing 20 ng/ml LIF protein (leukemia inhibitory factor). 

Differentiation starts upon transfer of the cells and removal of LIF from the 
medium, leading to the formation of embryoid bodies. 

On days 4 and 6, retinoic acid (RA) at a final concentration of 5 μM was added 
to the medium. 
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MOFA identified three latent factors (LFs) that explained a major part of the 
variance in at least one dataset (Top figure).

(Bottom) The common factor (LF1) separated early (days 0 and 4) from late 
(days 8 and 10/12) differentiation, suggesting that drastic changes in cellular 
processes after neural induction strongly involve all three regulatory layers.
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The method „similarity network fusion“ was developed by the group of Anna 
Goldenberg at Toronto. 

This is the paper that presented SNF: 
https://www.nature.com/articles/nmeth.2810

SNF follows a very intuitive principle. Shown here are only the first steps of
the algorithm.

(a) Illustrates the raw data.

(b) Based on the data of (a) one computes the similarity between all pairs of
samples (here: patients), e.g. by the measure of cosine similarity or any
other suitable definition.

(c) The pairwise similarities are converted into edge weigts of a patient-vertex 
graph. In the upper row, the strongest similarities are found for the 3 
bottom right node pairs. In the right figure, this is represented by „thick“ 
edges. In the lower row, the highest similarities are observed in the top left
corder of the similarity matrix (middle figure).  This then leads to thicker
lines between the top nodes

You will implement SNF in assignment #5.
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In step (d), an iterative exchange takes place between the networks
representing different data types.

In (e), only one converged network remains that represents the consensus or
average of the different networks. 
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This example was presented by the Goldenberg group in their SNF paper. In 
the literature, there are differing opinions whether there exist 2, 3, or 4 
subgroups of GBM patients.

The figures on the left represent 3 different data types for a group of 215 
glioblastoma patients: DNA methylation (1,491 genes), mRNA expression 
(12,042 genes) and miRNA expression (534 miRNAs)

As expected, networks built using a single data type yielded very different 
patterns supports of patient similarity. For example, DNA methylation strongly 
supports connectivity in the smallest patient cluster (a), whereas mRNA 
expression supports similarity in the medium-sized cluster (b). It is difficult to 
discern patterns in the patient-similarity network based on miRNA data alone 
(c). The fused network gives a much clearer picture of clustering in our set 
of patients with GBM, illustrated by the tightness of connectivity within 
clusters and relatively few edges between clusters (d).

The smallest cluster (subtype 3) corresponds to the previously identified IDH 
subtype consisting of younger patients with a substantially more favorable 
prognosis. All patients with an IDH1 mutation for whom the information was 
available (n = 14 patients) belong to this cluster. Subtype 1 patients had a 
favorable response to temozolomide (TMZ), a drug commonly used to treat 
GBM. 
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The network analysis goes beyond subtyping. Each edge in the fused network is 
colored by the data type(s) that contributed to the given similarity. A multicolor cluster 
means that no single data type or combination support patient similarity across GBM.
Most edges were supported by at least two data types: 49.5% of all patient similarities 
(edges) were due to two data types, 17.2% were supported by all three data types and 
the remaining 33.3% of the edges were supported by only one data type, with strong 
enough similarity that those edges remained prominent in the fused network. 

The GBM analysis highlights three important features of the network-based 
integrative approach: 

(i) the ability to detect common as well as complementary signals; 

(ii) the ability to reduce noise by aggregating across multiple types of data; and 

(iii) insight into the relative importance of each data source for determining patient 
similarity, thus refining our understanding of the heterogeneity within each subtype.
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Link to this paper: 
https://www.sciencedirect.com/science/article/pii/S1535610817302994

This is an example where a different group (here, the TCGA consortium) 
applied the SNF tool.
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Whole-exome sequencing identified somatic DNA alterations, including single 
nucleotide variants (SNVs), small insertions and deletions (indels), and 
SCNAs. 

Significant recurrent mutations were identified in the genes KRAS, TP53, 
CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and 
PBRM1. 

We also observed recurrent mutations in several genes at false discovery rates 
(FDRs) above our threshold of q = 0.1, including mutations in other known 
oncogenes, DNA damage repair genes, and chromatin modification genes. 

About definition of „margin“:

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/margin

The edge or border of the tissue removed in cancer surgery. The margin is 
described as negative or clean when the pathologist finds no cancer cells at the 
edge of the tissue, suggesting that all of the cancer has been removed. The 
margin is described as positive or involved when the pathologist finds cancer 
cells at the edge of the tissue, suggesting that all of the cancer has not been 
removed.
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Unsupervised consensus clustering of protein expression measured on a 192-
antibody array for 45 of the 76 high-purity samples identified four clusters 
(panel A) that exhibited significant differences in survival (panel B). 

„RPPA“ stands for „reverse phase protein array“ and measures protein
concentrations.

KRAS is a member of the RAS-signaling cascade that transmits external
growth signals to the cell. 93% of the samples carry KRAS mutations.
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Analysis of pathway activity between clusters identified significantly different 
scores for epithelial-to-mesenchymal transition (EMT), apoptosis, 
TSC/mTOR, cell_cycle, and receptor tyrosine kinase (RTK) pathways. 

Tumors from cluster 3 (light blue), which had better survival (see panel B), 
were characterized by low EMT and apoptosis pathway activity, but high 
TSC/mTOR and RTK activity.
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Link to this paper: 
https://www.sciencedirect.com/science/article/pii/S1535610817302994

To integrate information from multiple platforms, we performed Similarity 
Network Fusion (SNF), which has been shown to produce homogeneous, 
clinically relevant subtypes in multiple TCGA studies. 

We applied SNF to the high-purity cohort using sample-to-sample similarities 
derived from mRNA, miRNA, and DNA methylation. We found a two-cluster 
solution that was independent (p = 0.79) of tumor purity and a three-cluster 
(plus one outlier) solution that was associated (p = 0.025) with tumor purity. 

The clusters defined by SNF were highly concordant with results obtained 
from miRNA, lncRNA, or mRNA alone.
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This is a short reflection on the whole course „processing of biological data“.

In principle, this review should come at the end of the last lecture next week, 
but that lecture will probably end with some recommendations how to prepare
for the final oral exam. Therefore I have moved these slides to the end of this
lecture.

In the course, we have covered a number of techniques for preprocessing of
data. Often, we need to decide before the analysis which samples to include
and which samples to eliminate because e.g. too many data points are lacking.

The criteria for our decisions will – on the one hand – depend on how much
data is available. We will address this on the next slide.

Also, the criteria will depend on the research question we ask. 

Do we want to analyze a general phenomenon? Or do we want to help an 
individual patient?
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The recommendation formulated here only apply in the case when we have
„enough“ data. 

E.g. in machine learning, a role of thumb is that we should have at least 5 data
points for every feature that we use in a regression model/ML model. If we use
n features, we should have > 5^n data points.
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For a single patient, we will typically only get 1-3 technical replicates. This is
it. We have to live with this data and do „the best we can“.
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After completing the analysis of a data set, we will (hopefully) arrive at some
statistically significant conclusions. Does this mean that these conclusions are
„true“?

Yes, they are true given the data we analyzed. But this may not necessarily
mean that they are true in a biological / medical sense.

The reason is that – sometimes – the derived conclusions are affected by
additional confounding factors. A well-known example is the question
whether drinking coffee increases your risk of cancer. See

https://cebp.aacrjournals.org/content/25/6/951.long

for the latest update on this issue. 

Previous epidemiologic studies had evaluated the potential association 
between coffee consumption and risk of lung cancer, but the results were not 
consistent. An important aspect to consider is the potential confounding effect 
from tobacco smoking, a known cause of lung cancer, which in many 
populations is associated with coffee drinking. An positive association between 
coffee drinking and lung cancer risk is justified by the fact that coffee contains 
agents which may cause cancer under experimental conditions, such as 
acrylamide, which is formed at very low levels during the roasting of coffee 
beans. In contrast, other agents present in coffee have been reported to exert an 
anticarcinogenic effect, including the diterpenes cafestol and kahweol.
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Anyhow, this study concluded with good news: „when the potential confounding 
effect from smoking is controlled for, coffee drinking does not appear to be a lung 
cancer risk factor. “

We will turn to this issue – the analysis of confounding factors – in our last lecture
next week.
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