
In this lecture, we deal with the issue of reconstructing missing values in our
data set and with the problem of batch effects in the data set.

We will discuss the principles of two tools, ComBat and FunNorm that are
widely used for removing batch effects.

Then we will also look at the tool BEclear from our group.

At the end I have summarized some basics from probability theory that are
worth browsing over.
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First, we will look again at the microarray data set that we discussed in the
first lecture.
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The imagereader device generates 3 sorts of output „positive“ (dark circle), 
„negative“ (white field), and „ambiguous“ for fields that cannot be precisely
determined.

There are various possible reasons why certain fields yield ambiguous
densities.
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In the large scale project discussed in the first lecture, ambiguous values are
disturbing the process of data analysis.

They need to be cleaned up and replaced by either „positive“ or „negative“ 
values.

A simple approach would be to replace them either by the average signal of the
data points for this particular gene probe

(„gene average“), or by the average of the data points in this particular sample 
(„sample average“) or by the average value

of the full data matrix. 

One could even compute the average of these 3 averages –> b_prediction.

Because we can only deal with 0 or 1 entries, the computed averages need to
be thresholded by a suitable value, e.g. 0.5.

Averages below 0.5 would be set to 0, those above 0.5 to 1.

We tested how well this works for some randomly selected data points.

If we regenerate their entries and compare them to the correct values, this
gives an agreement of 85% which is much

better than random (50%).

We will now introduce a method that uses latent factor models that even
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generates predictions that are about 95% correct.
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Latent Factor Models are very successful in image reconstruction.

If we delete 90% of the data points, the upper row shows that SVD is not 
useful for reconstructing the missing values.

However, LFM can recover enough contrast so that we can recognize the face
in the picture.
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This slide illustrates the principles of LFM. 

The idea is to represent the data matrix Dij as the product of two matrices L 
and R.

Once L and R are found, they can be used to compute all missing data points.

The algorithm iteratively refines guesses for L and R so that the squared
difference of their product from the known data points is minimal.

Since this problem is usually underdetermined, there would be many different 
equally good solutions.

Therefore, one also applies the principle of regularization meaning that the
algorithm constructs L and R in a way so that their norm is minimal.

A parameter lambda controls the balance between the two terms. 
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BEclear implements a stochastic gradient descent algorithm following a 
classic paper by Koren et al. This paper has been cited close to 7000 times.

It mentions that there are two popular approaches to solve the minimization
task, stochastic gradient descent and alternating least squares (ALS). 

Gradient descent is a well-known algorithm for optimization.

An initial guess is iteratively refined by taking small steps along the direction
of steepest descent which is the direction where the negative of the first
derivative of the objective function is largest.

In stochastic gradient descent, the actual gradient that is calculated from the 
entire data set is replaced by an estimate of the gradient that is calculated from 
a randomly selected subset of the data.
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In this comparison that was already shown in the first lecture, we were using
data for 334 probe IDs from 154 isolates.

Out of this data, n = 2,788 or 5.4% of the hybridization signals were assigned 
as ambiguous value.

As just described, ambiguous were replaced by 1 or 0 values according to an 
LFM prediction based on the entries in neighboring fields of the involved 
columns and rows. 

First, the accuracy of this approach was tested by a bootstrap approach as 
follows: 5% of randomly selected entries that were known to be positive or 
negative were removed from the dataset. This fraction corresponds to the 
typical number of targets typed as ambiguous in the microarray experiments. 
Then, these missing entries were predicted using LFM and were compared to 
the original values. As a result, LFM yielded an accuracy of 97% against the 
original values. Thus, the error rate of predicted values can be estimated as 
about 3%. 

By comparison to the WGS data, LFM predictions were actually only wrong in 
33 or about 0.1 % of the cases.
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Now we come to the detection of batch effects.

A batch effect describes a case when a subgroup of measurements in the data
set shows a qualitatively different behavior from the rest of the data.

Listed here are possible reasons why batch effects may occur.
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In these examples taken from the literature, significant batch effects can be 
seen by the perfect separation of different batches on the PCA score plots. 

For the Hamner data set (B), batch effects exist with overlaps between several 
batches. 
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These two plots show batch effects due to using different fluorescent dyes and
due to using different microarray platforms.
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The left plot shows a box plot of microarray data. Each line represents the
expression of all genes in one sample.

Obviously, the medians are very different. The left sample is highest.

The right plot shows the same data after RMA normalization. This algorithm
uses quantile normalization.

Now, the distributions are very similar to each other.
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This slide reviews the quantile normalization method.

All data points are replaced by row averages so that the distributions become
identical (except of duplicates).
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This is an overview over existing methods for removing batch effects.
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Listed here are three global methods that correct all data entries.
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This is again the microarray data set that was normalized by RMA.

Although the overall distributions of the samples have been homogenized, 
there are hundreds of genes left that show clear batch effects.

Note that this plot shows the expression of individual genes.

If one clusters this normalized data (see right plot), the samples cluster
according to processing date (green and orange represent two different dates).

This indicates that RMA did not manage to remove the batch effect for these
genes.
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This is another example for a large-scale batch effect in a famous genomic
project.

For some reason, sequencing in the 1000 genome project generated higher
read coverage during days 243 and 251.
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A widely used tool for removing batch effects is ComBat.

It is a location-scale method.

The slide explains the basic principles of ComBat.

However, experience has shown that ComBat also has caveats. The listed
Zhang paper discusses some of them.

For example, ComBat removes batch effects impacting both the means and 
variances of each gene across the batches. However, in some cases, the data 
might require a less (or more) extreme batch adjustment.

Also, ComBat suffers from sample ’set bias’, meaning that if samples or 
batches are added to or removed from the set of samples on hand, the batch 
adjustment must be reapplied, and the adjusted values will be different–even 
for the samples that remained in the dataset in all scenarios.
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After a high-throughput study has been performed, the statistical approach for 
dealing with batch effects consists of two key steps. 

Exploratory analyses must be carried out to identify the existence of batch 
effects and quantify their effect, as well as the effect of other technical 
artefacts in the data. 

Downstream statistical analyses must then be adjusted to account for these 
unwanted effects.
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In late 2011, we started working with DNA methylation data from the TCGA 
breast cancer study.

Soon we detected a severe batch effect that only affected segments on the
Illumina chips.

In our 2013 publication, we omitted all affected genes (ca. 25% of the data).

Later, we developed a method termed BEclear (stands for clearing of batch
effects) and published that tool in 2016.
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This is an example of exploratory analysis.

The top left panel shows a boxplot of the DNA methylation data in different 
batches of the TCGA data set.

The top right panel shows hierarchical clustering of the same data.

The middle right panel shows a PCA of the same data.

The bottom right panel shows a density distribution plot.

All plots illustrate clearly that, in batch 136, the distribution of β-values of 
genes is shifted to larger values than in the other batches. 

The per sample plot (top left) shows that the difference in batch 136 is not due 
to only one sample but exists in all but two samples from this batch. 
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We suspected that the batch effect of the analyzed data affected various genes 
on the chip in different ways.

Therefore, we first had to identify which genes contain data points that differ
largely from the remaining data points.
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Each batch is assigned a BEscore value that considers the number of BE genes 
in that batch and the magnitude of their batch effects.

The question was now which values should be replaced, only the individual 
data points of BE genes in this batch or all of them.

We reasoned that if a sample (or batch) has a BEscore that is significantly
larger than the other BEscore values, all values of that sample (or batch) 
should be replaced by LFM predictions.

Comparison of BEscores is done using the tabulated Dixon test. 

This test considers the absolute difference (gap) between the outlier in 
question and the closest value to it relative to the range of values (max – min).
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This figure shows the outcome of BEclear for the tumor data.
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This figure shows the normalization result by the tool FunNorm, another tool.
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FunNorm builds on the idea of quantile normalization.

It is particularly tailored to the Illumina 450k chip. This chip detects
methylation levels for 450.000 CpG sites in the human genome.

It also contains close to 1000 control probes that do not measure CpG
methylation of the sample, but are used to test the correctness of the
biochemical processing steps carried out.
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The data sets Y to be analyzed are transformed into their quantile functions.

Here, we review what quantiles of a data set are.
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Let us look at the quantile function of the standard normal distribution (blue
curve in the upper plot).

Its quantile function is shown below.

For p=0.5, the variable has a 50% chance to be smaller than 0 in the normal 
distribution. Thus 0 is plotted on the y-axis for p = 0.5.

For p=0.1, the variable has a 10% chance to be smaller than (about) -1.3 in the
normal distribution. Thus -1.3 is plotted on the y-axis for p = 0.1

For p=0.05 (the normal significance threshold), the value is -1.7. It is not -2 as
we are used to (two standard deviations) because we are only looking at one
tail of the distribution.
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FunNorm considers the quantile functions of the methylation value in all 
samples and takes its mean. This is termed alpha.

Then FunNorm assumes that the quantile function of a particlular sample i 
shows variation due to the covariates and some error term.
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The aim is to subtract the variation due to the covariates Z.

The coefficients are estimated based on the values observed for the control
probes.

The control probes are explained in the supplementary material of the
FunNorm paper:

“For “Bisulfite Conversion I” probes, 3 probes (C1,C2,C3) are expected to 
have high signal in the green channel in case the bisulfite conversion reaction 
was successful, 

and similarly 3 additional probes (C4,C5,C6) are expected to have high signal 
in the red channel. We therefore consider these 6 intensities and take the mean 
as a single summary value. “

So these probes do not detect methylation levels of CpG sites in the sample, 
but rather are a quality measure for the performed experiments.
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Here, we generated synthetic data sets with “known” batch effects. 

First, we determined the standard deviation of the methylation value of each 
promoter probe in level 1 adjacent normal samples (samples belonging to 
batch 136 were excluded due to the existing batch effect).

Then we randomly selected 8000 promoter probes (approximately 10% of all 
promoter probes present on the chip) and increased the methylation values of 
4000 of these promoter probes by a specified multiple of their specific 
standard deviation plus a noise term. The original probe values before 
introducing the synthetic batch effect were considered as our gold standard. 

Because the methods Funnorm, ComBat and SVA adjust all values, the
summed deviation of the corrected values from the original values (y-axis) is
quite large.

In contrast, BEclear modifies only the values that are affected by batch effects. 
Therefore, the summed deviations are much smaller.
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Maybe the previous analysis was a bit unfair to the other methods.

Therefore, we now only inspect the deviation of the batch effected data points.

For small batch effects of 2 standard deviations or less (which is a typical
magnitude), BEclear still produces the smallest deviations.

Only for larger deviations, BEclear-adjusted values differ more strongly from
the original data that with the other methods.
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Then, we considered the identities of differentially methylated genes in breast 
tumor samples vs. normal samples.

As gold standard reference, we used the list of differentially methylated 
probes identified in the unaffected data using the limma package. 

Then, we designed a synthetic batch effect in a similar fashion as before and 
applied BEclear, RUVm, FunNorm, ComBat, and SVA to this data. 

Then, again we identified differentially methylated genes in this BE-adjusted 
data with limma and compared the results to the original data. 

Shown here is the accuracy defined as (TP + TN) / (TP + TN + FP + FN) for 
the different BE-adjustment methods. 

BEclear yielded a similar accuracy as the RUVm method that is not explained.

Both methods were more accurate compared to all other methods. 
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Today, we started by discussing various approaches to reconstruct missing data
points.

Then, we met the important problem of batch effects in the raw data.

If one does not care about batch effects, the downstream analysis may be
heavily corrupted.

Therefore, as a bioinformatician, it is your job to check for possible batch
effects.

We discussed different approaches that are implemented in software tools for
removing unwanted batch effects.

In our view, there is no „best“ tool. 

Certain approaches will offer advantages in certain situations and will give
mediocre results in other cases.

Identifying the best suited tool depends on the data to be analyzed.
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Here, I have compiled some basics from probability theory. Some of this will 
be considered as known to you in the following lectures.

Probably you know most of this already.

Quickly browsing over these slides will fresh up these things. 
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These are the 3 basic properties that every event space needs to fulfill.
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These are the 3 basic conditions that any probability distribution must obey.
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