V3 — MS proteomics — data imputation
- How does MS proteomics work?
- Whatis the role of bioinformatics in MS proteomics ?
- Peptide mass fingerprinting
- Significance analysis

- GO annotations

- Phosphoproteome

- Data imputation for MS data

Noble prize in chemistry 2002

- Identify TRAP clients John B. Fenn Koichi Tanaka
“for their development of soft
desorption ionisation methods for
mass spectrometric analyses of
biological macromolecules*”

www.nobelprize.org
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In lecture 3, we will deal with data on protein expression levels. Nowadays,
these data are typically determined by mass spectrometry.

First, we will review some basics about the mass spectrometry methods.
Then, we will turn at bioinformatics tasks in processing MS data.

Phosphorylation is a very important post-translational modification. MS is the
ideal method to dectect site-specific phosphorylation.

Finally, we will turn to a collaboration project between our group and that of
Prof. Richard Zimmermann from the medical department in Homburg.



Proteomics workflow: (1) protein isolation

(1) Sample SDS-
fractionation PAGE

" !

=

The typical proteomics experiment consists of 5 stages.

In stage 1, the proteins to be analyzed are isolated from

affinity selection.

% cell lysate or tissues by biochemical fractionation or

Rl

@ @ This often includes a final step of one-dimensional gel
— .
electrophoresis, and defines the 'sub-proteome’ to be
analysed.

MS of whole proteins is less sensitive than peptide MS.

The mass of the intact protein by itself is insufficient for
identification.

Aebersold, Mann
Nature 422, 198-207(2003)
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The application of mass spectrometry to study proteins became popular in the
1980s after the development of the MALDI and ESI techniques.

ESI stands for electrospray ionization, MALDI for matrix-assisted laser
desorption/ionization.

They are the two primary methods used for the ionization of protein in mass
spectrometry.

John B. Fenn and Koichi Tanaka made crucial contributions to the

development of ESI and MALDI, respectively, and received the Noble prize
for this.

The first stage of a proteomics experiment does not involve a mass
spectrometer yet. First one needs to isolate the proteins of interest from the
biological sample.



Proteomics workflow: (2) trypsin digestion

(1) Sample SDS- Excised (2)Trypsin Peptide
fractionation PAGE proteins digestion mixture

- A ® 7a~o

| I

Table 1. Distrubution of peptide fragment length from 20,639
Therefore, in stage 2, proteins are proteins
. - Residues Total Avg. fragment
degraded enzymatlca"y to peptldes, Enzyme/reagent cleaved fragments length
usually by trypsin. Trypsin KR 662,981 5
Lys-C K 359,140 16
This yields peptides with C-terminally ~ Asp-N D 321,655 18
CNBr M 150,605 38
protonated amino acids (K/R) which is  Hydroxylamine N-G 36,643 152
Dilute acid D-P 35,574 166
beneficial in subsequent peptide
sequencing.
Aebersold, Mann Henzel et al. JAm Soc Mass Spectrom
Nature 422, 198-207(2003) 14,931-942(2003)
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The second stage consists of digesting the purified proteins with a suitable
enzyme.

As listed in table 1, the enzyme trypsin cleaves peptide chains at the positively
charged amino acids lysine or arginine.

This typically generates short peptide fragments of around 8 amino acids in
length.



Proteomics workflow: (3) peptide chromatography

(3) Peptide
chromatography
and ES!

In stage 3, the peptides are separated by one or more steps of high-pressure
liquid chromatography in very fine capillaries.

Then, they are eluted e.g. into an electrospray ion source where they are
nebulized in small, highly charged droplets.

After evaporation, multiply protonated peptides enter the mass spectrometer.

Aebersold, Mann

Nature 422, 198-207(2003)
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The third stage typically consists of a chromatography step and the generation
of the ionized fragments.



Mass spectrometer
A mass spectrometer consists of an ion source, a mass analyser that measures
the mass-to-charge ratio (m/z) of the ionized analytes, and a detector that
registers the number of ions at each m/z value.

Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization
(MALDI) are the two techniques most commonly used to volatize and ionize the
proteins or peptides for mass MS analysis.

ESI ionizes the analytes out of a solution and is therefore readily coupled to liquid-
based (e.g. chromatographic and electrophoretic) separation tools.

MALDI sublimates and ionizes the samples out of a dry, crystalline matrix via
laser pulses.

MALDI-MS is normally used to analyse relatively simple peptide mixtures, whereas
integrated liquid-chromatography ESI-MS systems (LC-MS) are preferred for the

analysis of complex samples
Aebersold, Mann
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These are notes on the principles of ESI and MALDL.



In stage 4, a mass spectrum of
the peptides eluting at this time

Proteomics workflow: (4) MS

(4)Ms (5) MS/MS
s 4% 0
point is taken. 0 LLEAAAQSTK
g 400 516.27 (2+)
Mass peak = sequence z 7 lye
composition of a peptide. 3 100 EEIEROAVAL E |t 1
8 200] 516.27 (24) T v o R
The computer then generates a & X y5Y8
N . . c b2 y4
prioritized list of the peptides - | v3 | v
. = oldw L ol WLl
for a second fragmentation. 400 600 800 200 600 1000
m/z m/z

In stage 5, a series of tandem mass spectrometric or 'MS/MS' experiments is
performed o determine the sequence of a peptide (here, the peak m = 516.27 Da).
The MS and MS/MS spectra are matched against protein sequence databases
(“peptide mass fingerprinting”).

The outcome of the experiment is the identity of the peptides and therefore the
proteins making up the purified protein population.

Aebersold, Mann

Nature 422, 198-207(2003)
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The mass spectrometer detects mass over charge ratios (m/z).
Panel (4) shows 2 high peaks surrounded by many small peaks.

In this example, a smaller peak marked by an arrow and labeled 516.27 (2+) is
selected.

516.27 stands for its mass in Dalton units. (Remember, a Dalton is defined as
1/12 of the mass of an unbound neutral atom of carbon-12).

2+ is the charge of this peptide fragment in electron charges.

The molecules collected under this peak are sent into the mass spectrometer
again (,,tandem mass spectrometer®).

Panel (5) shows the fragments detected for the peptide LLEAAAQSTK.
One can detect many fragments at different m/z values.

Assuming that all carry the same net charge, one can associate the distances
between the peaks to the mass differences between peptide fragments of
different length.

As shown here, one can identify fragments matching the peptide sequence.



Peptide mass fingerprinting
S— — —
[' E&hc peplldgs Protein sequence database |
l MS ' digest
r B I T - T 1
| Peptide masses | Theoretical peptide masses ] N — .
’ N~ ‘ - Mpeptide = ) m;
\ / i Eamino acids 1..n
\, — kg Amino acid Mono- Average mass [Da]
| FRAGFIT Isotopic mass [Da]
, B E— Ala 71.037114 71.0779
—_— — X Arg 156.101111 156.1857
Protein match J Asn 114.042927 114.1026
S Asp 115.026943 115.0874
Cys 103.009185 103.1429
Glu 129.042593 129.114
The masses of peptides from a E1 ReRs e ooy
Gly 57.021464 57.0513
database are compared with His 137.058912 137.1393
i i lle 113.084064 113.1576
experimentally determined masses Leu 113.084064 1131576
. Lys 128.094963 1281723
using a software. Met 131.040485 131.1961
Phe 147.068414 147.1739
Pro 97.052764 97.1152
Ser 87.032028 87.0773
Henzel et al. JAm Soc Mass Spectrom Thr 101.047679 101.1039
14,931-942(2003); Trp 186.079313 186.2099
www.matrixscience.com Tyr 163.06332 163.1733
val 99.068414 99.1311
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The mass of a peptide fragment can simply be computed by summing up the
masses of its building blocks, the amino acids.

By matching the identified peptide fragments to protein sequences in a
database, one can identify the protein that was originally purified from the
sample.



How many peptides are detected?

There are several reasons why an analysis does not find all amino acids.
« protein does not digest well

* peptides too hydrophilic or small-they pass through the reverse phase column
with salt and are not analyzed

« peptides too large/hydrophobic-they stick in gel, adsorb to tubes, do not elute
from column, or are too large for the mass spectrometer to analyze because of
poor fragmentation

s mantiAdan frammaant i Anmmat lha Aanmalusad Mamu anmantra i;m A

= PUPLIUUQ ||a9|||c| i III Vdeb VVI Iibll caliive v ai IdlyLUU wiail Iy Q’JU\-I.I aill ai’i
analysis cannot be interpreted. Some spectra only give limited data; proline,
histidine, internal lysine and arginine are some reasons peptides do not give
complete fragmentation data.

Seeing enough peptides to show 70% of the sequence of a protein (70% coverage)
is a very successful protein analysis.

https://med.virginia.edu/biomolecular-analysis-
facility/services/mass-spectrometry/protein-
analysis-by-mass-spectrometry/
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These are notes from a mass spectrometry service facility at the University of
Virginia.



Peptide mass fingerprinting

\ 14408 (a) FAB (“fast atom bombardment”,
® [ an old technique) spectrum of a
§ i 250 pmol tryptic digest of Asp-N
5[y e digest of lysozyme.
< “'wa'.'!'\JM]M 21619 J
100 110 woo‘ 2'200 e 3 characteristic peaks are labeled.

® 800 2162.900 (to1: 1. (b) FRAGFIT output page showing

a match with chicken egg white

lvenzume nhtainad Licing tha
ysSozyme ediained using ine

masses from the MS spectrum.

Mass [Da]
Starting
position
Peptide
fragment

Henzel et al. JAm Soc Mass Spectrom

14, 931-942(2003)
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Identifying matching peptides derived from the protein lysozyme in the protein
sequence database.



Peptide mass fingerprinting

‘ (a) FAB spectrum of a 500 pmol
CNBr cleavage of horse heart
cytochrome c.

| 17635 2780.8
{, i M%———_—»LN_ (b) FRAGFIT output page

1000 1400 1800 2200 2600 3000 showing a match with cytochrome
¢ obtained using the masses from

the FAB spectrum.

{\p_ur:ndance
=

®) «

ceeccson - The outputincludes all proteins

that matech the maee liet
maimaitn the mass st

The 2 masses observed were sufficient to identify the protein as cytochrome ¢
and permitted the identification of the species.
At the time this search was performed, the database contained nearly 100
different species of cytochrome ¢

Henzel et al. JAm Soc Mass Spectrom

14, 931-942(2003)
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Identifying matching peptides in the protein sequence database.

In higher organisms, the sequence of cytochrome c is usually 104 amino acids
long.

Two peptides of 15 AA and 24 AA in length were sufficient to identify protein
and species.

Apparently, this technique did not use trypsin digestion but CNbr which
produces fragments of average length 38 AA.

Then, one needs of course fewer peptides.

10



Application of MS: Protein phosphorylation during cell cycle

Protein phosphorylation and dephosphorylation are highly controlled
biochemical processes that respond to various intracellularand extracellular
stimuli.

Phosphorylation status modulates protein activity by:

- influencing the tertiary and quaternary structure of a protein,
- controlling subcellular distribution, and

- regulating its interactions with other proteins.

Regulatory protein phosphorylationis a transient modification
that is often of low occupancy or “stoichiometry”

This means that only a fraction of a particular protein may be phosphorylated
on a given site at any particular time, and that occurs on regulatory proteins
of low abundance, such as protein kinases and transcription factors.
Olsen Science
Signaling 3 (2010)
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No comments.
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Cell Cycle and the Phosphoproteome

CELLCYCLE

Quantitative Phosphoproteomics Reveals Widespread
Full Phosphorylation Site Occupancy During Mitosis

Jesper V. Olsen,"?* Michiel Vermeulen,"** Anna Santamaria,** Chanchal Kumar,'5*
Martin L. Miller,?® Lars J. Jensen,? Florian Gnad,' Jiirgen Cox,' Thomas S. Jensen,”

Erich A. Niga.* Soren Brunak.>” Matthias Mann'?!
(Published 12 January 2010; Volume 3 Issus 104 rad)

www.SCIENCESIGNALING.org 12 January 2010 Vol 3 Issue 104 ra3

Aim: Analyze all proteins that are modified by phosphorylation during different
stages of the cell cycle of human HelLa cells.

lon-exchange chromatography + HPLC + MS + sequencing led to the
identification of 6695 proteins.
From this 6027 quantitative cell cycle profiles were obtained.

A total of 24,714 phosphorylation events were identified.
20,443 of them were assigned to a specific residue with high confidence.

Finding: about 70% of all human proteins get phosphorylated.
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This study has been cited more than 1200 times.

The authors monitored phosphorylation of proteins during the cell cylce of
HeLa cells.

They found that about 70% of all human proteins get phosphorylated, on
average in 3-4 different sites.

Note that phosphorylation often determines the activity of the protein.

The dynamics of protein levels and phosphorylation levels was determined
with the SILAC method.

12



Review: protein quantification by SILAC

ARTICLE
PR— o o
Global quantification of mammalian gene |
CXPrESSIOn oML -
v
SILAC: ,stable isotope labelling by :%g
amino acids in cell culture” means that
cells are cultivated in a medium i l Syminssized
containing heavy stable-isotope s = mw:’mms
versions of essential amino acids. § °

When non-labelled (i.e. light) cells are
transferred to heavy SILAC growth Quantification protein turnover and levels.
Mouse fibroblasts are transferred to medium with

medium, newly synthesized proteins . .
heavy amino acids (SILAC).

incorporate the heavy label while pre-

existing proteins remain in the light Protein turnover is quantified by mass spectrometry
form. and next-generation sequencing, respectively.

Schwanhéuser et al. Nature 473,337 (2011)
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In the SILAC method, cells are first grown in a normal medium, which is then
supplemented by heavy isotope-versions of essential amino acids.

Essential amino acids are those that the cells cannot make themselves and need
to uptake from the medium.

After exchanging the medium, the cells continue to synthesize proteins, now
using the heavier versions of the amino acid building blocks.

Thus, the sample will then contain ,,light* copies of each protein (labeled L)
that pre-existed when the medium was exchanged and new ,,heavy* copies
(labeled H).

13



Rates of protein translation

Mass spectra of peptides for

two proteins. . s t,(1.5h) 100 t,(4.5h) ° 100, (135h e
Rrm2 Rrm2 Rrm2
-g 80 (APTNPSVEDEPLLR) 80 L (APTNPSVEDEPLLR) 80 (APTNPSVEDEPLLR)
T i h' h . § o H/L ratio = 0.24 60 © H/AL ratio = 1.26 60 H/L ratio = 12.8
op: high-turnover protein H ‘ 8 ol |1 | “
Bottom: low-turnover protein. $ , \ I 20 ' 1 | ‘ 2|5 ] I
0 Lot l TR I A I ek " ioll PR | I
770 772 774 776 770 772 774 776 770 772 774 776
Over time, the heavy to light . e . e yoasn T
2 : 100, § t,(1.5h) 100, § ,(4.5h) 100 © Hstinic
(H/L) ratios increase. M (SEAAPAAPAAAPPAEK)
2 80 istthic 8 Histihic 8 HIL ratio = 0.63 H
2 (SEAAPAAPAAAPPAEK) (SEAAPAAPAAAPPAEK) L J
: 60 H/L ratio = 0.05 60 H/L ratio = 0.19 60
H-concentration of high-turnover £ « 40 H 40
B :E 20 H 20 ? 20
protein saturates. R | ° | [ |, | | ,
That of low-turnover protein still wo e ™ e e 0 TR T

increases.
This example was introduced to illustrate the
principles of SILAC and mass spectroscopy
signals (peaks).
In the Olson et al. study, the authors used H and

L forms to label different stages of the cell cycle.
Schwanhéuser et al. Nature 473,337 (2011)
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Shown is the time-evolution of the concentration of ,,light* and ,,heavy*
peptides.

The upper row shows a high-turnover peptide from the Rrm2 protein.
Between time points 1.5 hours (left) and 4.5 hours (middle), the number of L

copies has decreased from over 100 to about 70 and the number of H copies
from 40 to over 100.

The increase of H reflects the synthesis of new proteins. The decay in L

reflects the exponential decay of the pre-existing copies with a characteristic
(fast) half-time.

After 13.5 hours, the number of H copies has remained the same as after 4.5
hours, showing that synthesis and decay are now balanced.

The bottom row shows the same process for a low-turnover peptide that grows
slower (H form) and also decays much slower (L form).

14



Quantitative proteomic analysis
n - HelLa S3 cells were SILAC-labeled with
3 different isotopic forms (light— medium —heavy)
of arginine and lysine.

cells were synchronized with a thymidine block
(analog of thymine, blocks entry into S phase).
Cells were then collected at 6 different time points
across the cell cycle after release from the
thymidine arrest.

s release

2 samples were collected after a cell cycle arrest
with nocodazole and release. (Nocodazole
interferes with polymerization of microtubules.)

Cells were lysed and mixed in equal amounts using an asynchronously growing cell
population as the internal standard to allow normalization between experiments.
3 independent experiments were performed to cover six cell cycle stages.

V3 Processing of Biological Data SS 2020 Olsen Science
Signaling 3 (2010) 15

The authors applied 2 molecules that cause cell cycle arrest at different stages,
thymidine and nocodazole.

Thymidine blocks entry into S phase. Nocodazole arrests cell during mitosis.
In this way, all cells can by synchronized at one stage of the cell cycle.
By washing steps, one can wash out the molecules and restart cell cycle.

In the figure, this is marked as ,,release® = cells are released from arrest.

To save costs, the authors always mixed 3 cell populations that are marked
here by ellipsoids and that were grown with different SILAC-labels.

All experiments contain the ,,async* sample — this can then be used to
normalize the protein levels from different experiments.

15



Monitoring of protein abundance by MS

Representative MS data showing how the abundance of
the proteins was monitored in three experiments (Exp. 1,
Exp. 2, Exp. 3) to obtain information fromthe 6 stages of
the cell cycle.

The data show the MS analysis of a tryptic SILAC peptide
triplet derived fromthe cell cycle marker protein Geminin.

_— Relative peptide abundance changes were normalizedto
| the medium SILAC peptide derived from the asynchro-

] nously grown cellsin all three experiments.

N B

o .I.JIILJ,J‘ [lx : L
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Inset: combined six-time point profile of Geminin over the
cellcycle.

The 3 panels show 3 experiments for a short peptide ENELSAGLSK derived
from the cell cycle marker protein Geminin.

As explained before, each panel contains data from 2 opposite cell cycle stages
and from the ,,async* mixture.

,»Async* is always placed in the middle of the x-axis — meaning that it was
always labeled with the medium SILAC label.

Peaks on the right have heavier masses and were labeled by heavy SILAC
label.

Each spectrum contains a set of peaks (,,fingerprint®) that are characteristic for
this peptide.

By combining the data from different panels, and normalizing the data, one
obtains the expression profile of this peptide during the cell cycle shown in the
inset of the top left panel.

16



Example: Dynamic phosphorylation of CDK1
CDK1 phosphaorylation site kinetics Dynamic profile of two CDK1
phosphopeptides during the cell
100 o IGEGPTPYGWWYK pT14 & pY 15 (inhibitcry sites) cycle.
= VWpTHEWTLWYR pT161 (activation locp)
% 10 Z The activating site T161 (red)
E peaks in mitosis, whereas
2 phosphorylation of the inhibitory
5 \ sites T14 and Y15 (blue) is
decreased in mitosis
0.1
G G5 EarlyS lateS G, £
Cellcycle stage
Olsen Science
Signaling 3 (2010)
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The figure shows the levels of 2 phosphopeptides belong to the CDK1 kinase
during the cell cycle.

Phosphorylation of Thr161 increases during the cell cycle, that of Thr14 and
Tyr15 sharply decreases in mitosis.



Data imputation for MS

What is the role of data imputation in MS data?

It is not unusual for LC-MS proteomics datasets to have as much as 50% missing
peptide values (J Proteome Res. 14,1993 (2015)).

If no signal is detected, this can have various reasons:
- The peptide is not detected or falsely identified
- The peptide is really not at all present in the sample

- The peptide concentration is below the detection threshold ...
The reason for missing data is generally not known.

Simply setting all missing data to zero would generate false positive signals
= proteins appear to be significantly deregulated, but are in fact not

V3 Processing of Biological Data SS 2020 18

Dealing with missing values is a major task when processing data from mass
spectrometry.

On slide 8, we have listed possible reasons why certain peptides are not
detected at all.

But this does not explain why they can be detected in one sample, but not in
another one.

We will not go deeper into this here. It is sufficient for you to realize the
enormous importance of this point.



Imputation methods: KNNimpute

Lets assume that gene g4 lacks data point / (for condition j or for patient /) and the
total number of genes is m.

The KNNimpute method (Troyanskaya et al., 2001) finds k (k < m) other genes with
expressions most similar to that of g4 and that do have a measured value in
position i.

The missing value of g4 is estimated by the weighted average of the values in
position i of these k closest genes.

W) 8s, + W28, + -+ - + W8y,

*

W) + -+ Wy
Here, the contribution of each gene is weighted by the similarity of its expression to
that of g4.
Kim et al., Bioinformatics 21, 187 (2005)
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KNN stands for k nearest neighbors.
The idea follows the often used principle ,,guilt by association*.

If k other genes show a very similar expression profile to genel under all (or
many) other conditions, then it makes sense to impute the missing expression
level of genel based on the values of the other genes in condition i.

The formula shows that a weighted schema is used, where the weights
represent the similarity of expression to genel.

Obviously, we can apply this algorithm unchanged to protein levels instead of
mRNA levels.

19



Imputation methods: SVDimpute

SVDimpute method (Troyanskaya et al., 2001):

- Given: matrix G where some data is missing.

- Generate initial matrix G from G by substituting all missing values of G by row
averages.

- Compute SVD of G'.

- Determine the t most significant eigengenes of G’ (with largest eigenvalues).

- Regress every gene with missing values against the t most significant eigengenes
(by ignoring position /)

Using the coefficients of the regression, the missing value in G is estimated as a
linear combination of the values in the respective position 7 of the t eigengenes.

This procedure is repeated until the total change of the matrix G’ becomes
insignificant.

Kim et al., Bioinformatics 21, 187 (2005)
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SVD can only be performed on complete matrices.

Therefore, a second matrix G* is constructed where all missing values are
replaced by row averages.

SVD yields all eigenvectors. Those with largest eigenvalues are termed
eigengenes.

Then, we compute for each gene (here: protein) the coefficients of a linear
combination of the leading eigengenes.

For this, we can only use the known data points.

The missing data point is then computed with the same linear combination.

With these imputed data points, we can compute new row averages, and redo
the SVD of G*.

20



Imputation methods: Local Least squares

(1) select k genes that have similar properties (e.g. expression profiles) to the gene
where position i is missing.

Similarity can be based on the L2-norm (same as Euclidian norm)

a’(p,q):\ é(qi_pi)z

or Pearson correlation coefficients of the expression profiles.

(2) regression and estimation

Kim et al., Bioinformatics 21, 187 (2005)
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The local least squares method for data imputation combines elements from
the kNNimpute and SVDimpute methods.

Again, one uses information of genes with similar expression (identified
either by L2 norm or Pearson correlation).



Imputation methods: Local Least squares

Based on the k neighboring gene vectors, form the matrix A € R¥*("-1) and the two
vectors b € R¥*1 andw € R(1)x1,

The k rows of the matrix A consist of the k-nearest neighbor genes g'; € R'*”,
1 < i = k, with position i deleted.

The elements of the vector b consists of position i of the k vectors g7, .
The elements of the vector w are the n — 1 elements of the
gene vector g, whose missing position i is deleted.

After the matrix A, and the vectors b and w are formed, the least squares probiem
is formulated as . To )
m\_m [A*Xx — w]||»
Then, the missing value «a is estimated as a linear combination of the respective
values of the neighboring genes

a=bx=bT(AT)'w

Kim et al., Bioinformatics 21, 187 (2005)

[
%)
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Matrix A contains the expression profiles of the k nearest genes.
Vector b contains their expression values at the missing position i.

Vector w contains the expression values of genel except the missing position i.

One finds a vector x (stands for a linear combination of the other genes) so that
A™MT}x is as close as possible to w.

Explanation: x projects the expression values of the other genes onto the
expression of genel.

Then one can also use this vector x to project the data points for the other
genes in i onto genel. This is done in the last formula here.

22



Imputation methods: Local Least squares

P EL

Spellman data set: yeast cell cycle \
5% of data were missing ‘

-> LLSimpute outperforms KNNimpute

Lower Root Mean Square Error (RMSE)

Kim et al., Bioinformatics 21, 187 (2005)
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The experiment of Spellman et al. is described in a classic paper
(https://www.ncbi.nlm.nih.gov/pubmed/9843569). The authors used
microarrays to identify periodically cycling genes along the cell cycle of yeast.

Shown on the x-axis is the number of neighboring genes used.

For kNN, there is an optimal number of maybe 10 genes, then the deviation
from the correct data points increases again.

LLSimpute shows about twice as good results as KNN (RMSE is less than half)
and converges for arbitrarily many genes used.
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Case study: identify clients of TRAP complex

In mammalian cells, one-third of all polypeptides are transported into or across the
ER membrane via the Sec61 channel.
protein
The Sec61 complex facilitates
translocation of all polypeptides with
signal peptides (SP) or transmembrane
helices.

ribosome

The Sec61-auxiliary transiocon-associated protein (TRAP) compiex supports
translocation of only a subset of precursors.

To characterize determinants of TRAP substrate specificity, we here systematically
identify TRAP-dependent precursors by analyzing cellular protein abundance
changes upon siRNA-induced TRAP depletion by proteome MS.

Lang et al. Front Physiol. (2017)8: 887
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This is an example from our own work on proteomic data.

The group of Prof. Richard Zimmermann from Homburg has studied the Sec61
complex since more than 30 years.

The Sec61 has an important role for protein synthesis.

There exist two sorts of ribosomes, cytosolic ribosomes and ribosomes that
bind to the membrane of the endoplasmic reticulum.

Cytosolic ribosomes synthesize cytosolic proteins. We will not consider this
here.

ER bound ribosomes synthesize membrane proteins and proteins that will be
excreted by the cell via exocytosis.

Once the nascent peptide chain leaves the ribosome tunnel, it enters the pore of
the Sec61 complex and is either released into the membrane or translocated
inside the ER.

However, some proteins cannot translocate by themselves, they require the
activity of accessory membrane proteins.

24



Signal peptides

Examples of differently sized A signal sequences

signal sequences. SPase

Signal sequences can be as small RO o o s | Z
as 16 amino acid residues but MOWVITEISIESSAYS —{olbumin £
some are more then 50 amino WEREECWC{_ VSV:G £
acid (aa) residues in length. MGQIVTMFEALPH|IDEVINNIVLIII‘I’SIKAWNFATCGILALVSFLFLAGRSCGsaa—{a_LQMLQ—&Q_{
A characteristic feature of a signal | T e S\ T6 (T FarE
sequence is its hydrophobic (h) 90ea

region. Examples of minimal < T

(albumin and VSV-G protein) and
extended signal sequences
(LCMV GP-C, MMTV Rem and
prolactin (Prl) are shown.

Glnter Blobel,

Noble prize 1999

"for the discovery that
proteins have intrinsic
signals that govern
their transport and
localization in the cell.”
He donated his prize
money to support
rebuilding the Frauen-
kirche in Dresden. 25

Kapp, Katja; Schrempf, Sabrina; Lemberg, Marius K;
Dobberstein, Bernhard. Post-Targeting Functions of
Signal Peptides. Landes Bioscience.

V3 Processing of Biological Data SS 2020

Shown on the top right are several signal sequences.

They typically contain an N-terminal ,,n“ region with several positvely
charged amino acids, a hydrophobic ,,h* region, and a polar C-terminal ,,c*
region.

One of the discoverers of signal sequences, Giinter Blobel, received the Nobel
prize for this.

25



Signal peptides

After insertion into the Sec61 complex
in the ER membrane, signal
sequences are usually cleaved off by SP

signal peptidase (SPase) on the oyt - | " /

lumenal side of the ER membrane. — H —
lumen c \

The resulting signal peptides (SPs) ER SPase

initially accumulate in the ER A H7 He B
membrane. Subsequently they can % ER lumen
become degraded or can have ‘
functions as membrane-integrated Sec61a J g slo
peptides or as peptides released from — & Secély
the membrane either into the cytosol 2 %2 cytosol
or the ER lumen. ,at"e‘f:{;;te s

Voorhees, R. and Hegde, R. S. (2016)
Structure ofthe Sec61 channel openedby a
signal sequence. Science 351: 88-91.

Kapp, Katja; Schrempf, Sabrina; Lemberg, Marius K;
Dobberstein, Bernhard. Post-Targeting Functions of
Signal Peptides. Landes Bioscience.
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The signal peptide inserts into the Sec61 complex and then somehow turns
around.

The Sec61 complex opens a lateral gate (bottom figure, X-ray structure), the
SP

is cleaved by the ER-enzyme signal peptidase, and partitions into the
membrane.




Ribosome : Sec61 : TRAP : OST supracomplex

a ) Cartoon of clipped 80S ribosome together with
: Sec61-complex (blue), TRAP-complex (green),

40S
and Oligo Saccharyl Transferase.
60S
Structure determined by cryo-EM
"~ Helix 51
Sec61—L : efsl; AIM:
— We tried to determine which proteins can
< X translocate through Sec61 alone and which ones
OST—= | >TRAPS R
TRAP /B require the heip of Trap.

Duy et al., Nature Commun 9, 3765 (2018)
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Stefan Pfeffer and Friedrich Forster (MPI Martinsried) were able to detect the
structure of ribosomes bound to the Sec61complex by CryoEM.

They could also annotate electron density to the enzyme oligo saccharyl
transferase that adds sugar units to the translocated proteins

and to subunits of the TRAP complex.
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Target siRNA

V3

Target-UTR siRNA

Experimental strategy

MS analysis
& quantification

Duy et al., Nature Commun 9, 3765 (2018)

siRNA-mediated gene silencing

Validation of
TRAP clients using two different siRNAs for
each target and one non-targeting
Q.O (control) siRNA, respectively.
Genekn':ckdown
l 6/9 replicates for each siRNA in
2/3 independent experiments.
= Real time PCR
* Westem bl Label-free quantitative proteomic
analysis and differential protein
abundance analysis identify
negatively affected proteins (i.e.,
clients) and positively affected
proteins (i.e. compensatory
mechanisms).
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This is the experimental strategy to identify which proteins require Sec61 and

accessory proteins for translocation.

The main strategy is to knock-down synthesis of new Sec61 or new accessory
proteins by siRNA.

Then, MS is used to identify proteins in the cell lysate (middle lane).

Our task was to identify differentially abundant proteins between samples of

two types (i.e. with and without siRNA silencing).
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Validation of knock-down

Knock-down of SEC61-alpha TRAP-beta
c SEC61A- e TRAPB-
Control  SEC61A UTR siRNA Control UTR TRAPB siRNA
1 2 3 1 2 3 1 2 3 Sample 1 2 3 1 2 3 1 2 3 Sample
Secotc [CEEEEE T 13 TRAP} | |- 25 kDa
100 2 5 12 12 7 6 Protein (%) 100 4 7 7 18 18 12 Protein (%) |
B-actin I—-~A --I- 40 kDa li-aclinl e e e e }— 40 kDa

Knock-down efficiencies were evaluated by western blot.

Results are presented as % of residual protein levels (normalized to 3-actin)
relative to control, which was set to 100%.

Q: why do the levels of SEC61 and TRAP do not go to zero after siRNA
silencing (for 72 - 96 hours)?
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This slide shows that Sec61alpha levels (left) and TRAPbeta subunit levels
(right) were silenced to a few percent. This confirms that silencing worked
well.

Although silencing was carried out over 4 days, some residual Sec61alpha or
TRAPbeta protein was still left.

This is actually quite good and avoids that the cells may die.

The lower lines show the protein levels of beta-actin. This is a cytoskeletal
protein, which should always be there at similar levels.
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Experimental silencing strategy

Each MS experiment provided proteome-wide abundance data as LFQ intensities
(Cox et al. Mol Cell Proteomics. (2014)13: 2513-2526 — how to combine peptide
intensities into aggregated protein abundances?)

for 3 sample groups :
one control (non-targeting siRNA treated) and
two stimuli (down-regulation by two different targeting siRNAs directed
against the same gene)

each having 3 data points.
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For each sample, 3 replicate experiments were performed.

The control sample is a sample treated with an siRNA that does not target
Sec61 and presumably no other gene.

Then, there are 2 samples from silencing experiments where two different
siRNA molecules were used.
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Number of proteins in MS experiments

W analysed M invalid control M contaminant I missing from other exp.

Number of proteins detected in the 2 Sec61
depletion experiments (two left most
columns) and in the 3 TRAP depletion
experiments (three rightmost columns).

o == W
- Blue bars : proteins analyzed here.
Green : proteins that do not have sufficient
control data points, i.e. more than 2/3 of the
control samples have missing data points.
Yellow : “contaminants” from MaxQuant
= analysis.

.—._._._l Red : proteins that cannot be found (or
. contain “invalid control”) in other

15t Secht 2nd Sect1 15t TRAP 2nd TRAP 3rd TRAP - -
corresponding experiments.

9000

Number of proteins
a

The number of proteins detected in Sec61 and TRAP silencing experiments was 7212
=+ 356 and 7670 *+ 332, respectively (mean values with standard deviation, n=2 and
n=3, respectively). The observed difference of about 460 was just a bit outside of the

standard deviation and is, hence, not statistically significant.
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In the MS experiments, between 6800 — 8000 proteins were detected. These
are typical numbers for such experiments.

We omitted 3 classes of proteins from this dataset:
,red cases are proteins that are not found in the other experiments

,yellow* cases are proteins classified as contaminants by the MaxQuant
software

,»green” cases are proteins that were not detected in any of the 3 control
replicates.

This means we considered 5129 proteins for the Sec61 silencing experiment
and 5911 proteins for the Trap silencing experiment.
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Imputation strategy — no valid data points

Missing data points were generated by imputation. We distinguished 2 cases.

For completely missing proteins lacking any valid data points after siRNA
knock-down, imputed data points were randomly generated in the bottom tail of

the whole proteomics distribution. b '
- overall data
' distribution
o . - imputed
This is based on the assumption that ' B nising daa
they come from proteins which have — — 3t percentile
limited number of copies thatcannot |
be detected by the mass spectrometer. g 10-
- '
E : H
-'-"lll “ ||“"|”"|l|l|v.llu.,
' Protein mlc:‘\lllC\ (log2) N
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As explained on the previous slide, we omitted cases which did not have any
non-zero abundance measurement for the control samples.

However, we kept cases that have zero abundance in all silencing experiments.

In that case, we applied the standard strategy used by the Perseus software
(https://www.nature.com/articles/nmeth.3901) from the MPI in Martinsried.
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Imputation strategy — at least one valid data point

For proteins having at least one valid MS data point for knock-down samples,
missing data points were generated from the valid data point(s) based on the local
least squares (LLS) imputation method (see slide 23-25 of V3).

Subsequent to data imputation, we log2-transformed the ratio between siRNA
and control siRNA samples,

and applied protein-based quantile normalization to homogenize the
abundance distributions of each protein with respect to statistical properties.
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If one valid data point is available, we felt that the additional imputed data
points should be generated in the vicinity of this data point and not at the
bottom of the distribution.
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Protem based quantile normalization
ap exp Intensity profiles for TRAP beta subunitacross
: . the 3 experiments before (top) and after
(bottom) protein-based quantile normalisation.

Horizontai axis : sampie iDs.

1 to 3 - control,
N 4 to 6 — SSR2 silencing by 1st siRNA,
ror 7 to 9 — SSR2 silencing by 2nd siRNA.

Aim of protein-based quantile normalization:

ramnua tha auatamatin variatinn amnana 2
ITIHNIUVT UIc ayoLclllau\. vainiauuii ainviily v

iterations of TRAP silencing experiment.

and replaces the original values by the ranked
.« . . .+ . averages.

sample indices

control
V3

silencing 1 silencing 2
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QN ranks the raw data, computes the averages,

Shown are the log2-transformed data points for the beta-unit of TRAP.

The task was how to homogenize the data from 3 independent experiments.

Typically, one applies quantile normalization on the full data set of all genes

(proteins).

However, this did not work here. When clustering the data after normalization,

data that should belong to each other was not clustered together.

Therefore, we used quantile normalization for the data points of each single

protein.

As will be shown later, this worked quite well.
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Protein-based quantile normalization

intensity

control
V3

silencing 1

silencing 2

The variation left after normalisation reflects
the biological variation between samples.

In the top panel, SSR2 levels of the controls
(indices 1-3) are higher than both siRNAs in
experiment 2 (red) and higher than the first
SiRNA in experiment 1 (blue).

In the third experiment (green), the second
siRNA (indices 7-9) induces lower levels than
in the controls and the first siRNA.

The same conclusions can be drawn from the
bottom panel. The benefit of the normalized
values here is that the blue, red, and green
distributions contain identical values.

Thus, one can now apply standard statistical
tests to identify the significant differences.
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No comments.
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Detection of differential abundance

Abundance in each siRNA knock-down was individually compared against control.

Proteins with an FDR-adjusted p-value (i.e. g-value) of below 5% were considered
significantly affected by the siRNA knock-down.

Then, we intersected the results from the two unpaired t-tests for the 2 siRNAs.

This means that the abundance of all reported candidates had to be statistically
significantly affected in both siRNA silencing experiments.
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The available experimental data was quite difficult to handle.

We only had very few experimental data points. Also, a considerable portion
of the data points were imputed. Furthermore, the trends found in the two
silencing experiments were not always consistent.

Thus, we were quite strict in the statistical analysis.

We kept only those proteins that are significantly deregulated when comparing
the first silencing siRNA against control AND when comparing the second
silencing siRNA in the SAME DIRECTION.

In this way, we may have omitted some actual Sec61 or Trap clients, but we
wanted to be rather conservative.
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Comment by reviewer

6. Statistical analysis of the data:
On page 29 you describe imputation of data points.

Did you do a statistical analysis if the number of data points is sufficient that this
imputation will not change results?
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One reviewer of our manuscript challenged us to check how strongly data
imputation affected the obtained results.
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Validation of imputation method

Our reply: We assumed that ... missing values ... stem from “the bottom” of the
distribution and belong to low abundance proteins that were not detected by the
mass spectrometry instrument.

We tested to what extent the data imputation may affect the differential
abundance analysis. ... The first Sec61 silencing experiment was selected for the
validation... We selected only those proteins that have a “complete” dataset, i.e.
none of out of nine entries was missing... This was the case for 5715 out of 6960
proteins....

To generate a synthetic dataset for missing data, we randomly removed 10% of
the (known) data points from the lower tail of the distribution ...

For two different thresholds (5th and 10th percentile of the overall distribution), we

repeated the removal 100 times. Therefore, in total, we generated 200 new
datasets with artificially generated “missing” data.
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Therefore, we did a test on proteins having a full data set with nine out of nine
abundance values and randomly removed 10% of all their data points with low
values.
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Validation of imputation method

Subsequently, these “missing” data points were imputed.

Then, a differential protein abundance analysis was carried out on the imputed
and the original data.

Finally, we compared the results of the differential analysis of the imputed and
original data to validate the reliability of the imputation method.

For this, using the results of the previous steps, the significantly affected proteins
were either labelled as 1 (positively affected) or as -1 (negatively affected) while
the unaffected proteins were labelled 0.

Afterwards, we computed the Pearson correlation coefficient between the results
of the original data and of the imputed data.

The overall correlation coefficients for the 5th and 10th percentile thresholds are
0.975 = 0.018 and 0.927 =+ 0.020, respectively.
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The test showed that the results obtained for the imputed data were strongly
correlated with the results for the complete data.

Of course, imputing data still introduced some artefacts in the analysis.

But this check shows that the magnitude of those artefacts appears tolerable.



Volcano plot: differential protein abundance
Knock-down of SEC61-alpha ; TRAP-beta

10 RO . SRPRB

-log10 p-value
&
-log10 p-value

SRPRA

SEC61G

—4 -2 0 2 4 -4 -2 0 2 4
log2 fold change log2 fold change

Differentially affected proteins were characterized by the mean difference of their
intensities plotted against the respective permutation false discovery rate-adjusted
p-values in volcano plots.

The results for a single siRNA are shown in each case (SEC67A7-UTR siRNA,
TRAPB siRNA).
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The left panel shows which proteins are downregulated if the alpha-subunit of
Sec61 is silenced.

Of course, the subunits of Sec61 itself are downregulated as expected.

On the other hand, the cell upregulates the 2 subunits of the SRP receptor
(SRPRB and SRPRA) that usually guide nascent peptide chains from the
ribosome to the translocon because the cell senses that something is wrong
with protein translocation. So this is a rescue mechanism. In fact, the cell
actually upregulates a number of other proteins as well.

The right panel shows which proteins are downregulated if the beta-subunit of
Trap is silenced. Overall, these are fewer proteins than in the left panel. This
makes sense because about 1/3 of all cellular proteins need to pass Sec61, but
only a portion of them also need Trap.
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Up- / down-regulation
Heat maps visualize clusters of proteins that were
- significantly upregulated following treatment with both siRNAs directed against
either SEC61A1 (left) or TRAPB (right) mRNA or with non-targeting (control) siRNA,
or that were
- significantly downreguiated, or that
- represent variations between siRNAs.

Red : positively affected proteins
Green : negatively affected proteins.
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The heatmap shows 2 points, one is good, one is problematic.

The good point is that for Sec61alpha silencing (left panel), clustering by
control/siRNA1/siRNA2 worked perfectly. Also for Trap silencing (right
panel), clustering worked quite well. Only the bottom 3 data rows are clustered
away from the other experiments.

The problematic point is that the results for the two silencing siRNAs are
sometimes inconsistent. I have enclosed some of the problematic regions with
pink boxes.
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Annotation of differentially abundant proteins after

Sec61 silencing
Sec61a depletion

0O Nucleus
Total quantified proteome Negatively affected proteome O Mitochondrion

A

@ Cytosol

@ Ribosome
@ Cytoskeleton
@ Peroxisome
O Plasma membrane
OER

@ Golgi

@ Extracellular
@ Lysosome
@ Endosome
W Vacuole

@ Signal peptide
@ N-glycosylated protein

N2 A4

Validation of Sec61 clients based on Gene Ontology enrichment factors.

Protein annotations of signal peptides, membrane location, and N-glycosylation in
humans were extracted from UniProtKB, and used to determine the enrichment of
Gene Ontology annotations among the secondarily affected proteins.
Summary of two Sec61 depletion experiments performed in triplicate.
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Here, we annotate the identified downregulated proteins by their GO
localization.

Blue colored compartments in the ,,cake® belong to the secretory pathway and
to membrane compartments.

Compared to all proteins identified by MS (left), the downregulated proteins
are more than 2-fold enriched in these compartments as expected.

39% of the hits localize to other compartments. These proteins are not
expected to be Sec61 clients themselves. Their downregulation may either be a
compensatory biological effect or simply be due to experimental noise.

In the lower line, we analyzed how many of the proteins have signal peptides,
are glycosylated or are membrane proteins. All these properties are strongly
upregulated as expected.
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Annotation of differentially abundant proteins after
TRAP silencing
TRAP depletion

O Nucleus
O Mitochondrion

27.01 T O Cytosol
\ @ Ribosome

Total quantified proteome Negatively affected proteome

& Cytoskeleton
40.38% @ Peroxisome
0 Plasma membrane
OER
@ Golgi
@ Extracellular
@ Lysosome
@ Endosome
W Vacuole

59.62%

8.48° 12.65 21.67° 22.78% 26.11

/ 7\ (MDY (BB 2350
\_/

K / \ _/ \/ \ / \_/ i Miembrane protein

Validation of TRAP clients based on Gene Ontology enrichment factors.
Summary of three TRAP depletion experiments performed in triplicate.

— clear enrichment of green fraction (ER targeted organelles)
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This is the same analysis for the downregulated proteins after Trap silencing.

Now, the enrichment of relevant compartments is only about 1,5-fold.

Also, fewer relevant features are found in the lower row.
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Physicochemical properties of TRAP clients
b

Signal peptide Signal peptide The signal peptides
6 of TRAP clients are

—— Human —— Human

/) Secs1 5 Sec61 less hydrophobic
m e 4 /\ e and have a higher
Gly/Pro content than
Sec61 clients and the
full proteome.

0.8

06

04

Relative count
Relative count
5

0.2

0.0

-1 0 1 2 3 4 0.0 0.1 0.2 0.3 0.4
Hydrophobicity Fraction of GP content

Physicochemical properties of TRAP clients with signal peptide (SP).

Hydrophobicity score (a) and glycine/proline (GP) content (b) of SP sequences.
Hydrophobicity score was calculated as the averaged hydrophobicity of its amino
acids according to the Kyte-Doolittle propensity scale. GP content was calculated
as the total fraction of glycine and proline in the respective sequence.
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Here, we tried to identify whether the signal peptides of TRAP clients differ
from the background of cellular proteins.

Indeed, we found that their signal peptides are less hydrophobic (left panel)
and contain more Glycine and Proline residues — which can be expected to
weaken their helical propensity.

Therefore, one can speculate that these nascent peptide chains cannot push the
Sec61 pore open by themselves and need to be aided by the adjacent Trap
complexes to open the Sec61 pore.
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Summary

Mass spectrometry is the method of choice to characterize the cellular proteome.

The good point about MS is the high sensitivity and resolution: one can easily
detect posttranslational modifications.

However, MS instruments are very expensive to buy and to operate — usually we
have much fewer datasets available than from transcriptomics experiments.

In terms of impact, proteomics analysis is 5 - 20 years behind transcriptomics
analysis.

Dealing with missing data points is a big challengein proteomics.
Although mRNA copy numbers and protein copy numbers are generally correlated

somehow, there are often surprises when synthesis rates and/or half-lives are not
matching to each other.
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No comments.
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Extra slides (not used in SS 2020)

Processing of Biological Data SS 2020
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No comments.
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Application: Detect protein-protein interactions:
Tandem affinity purification (also ,,pull-down*)
In affinity purification, a protein of interest (bait) is tagged

with a molecular label (dark route in the middle of the figure) @ §
to allow easy purification. ( “v{ Bait e _2
The tagged protein is then co-purified together with its ~—{ X7 E
interacting partners (W-2). <

This strategy can be applied on a genome scale (as Y2H).

a
© Strategy Faled  Success

PCR product . <SpacerGD-TEV PCR ol the TAP caseetie ORFs
=/ |\ .
b b of ysast cells
(homologous recombination)

4 |
m"“zs""-ﬁ"“'. Selection of positive clones | Expressing

(membrane protein 263)

~
~
Identify proteins b gffj,figt} _w.{m i\

191 89%
381 5%

by mass spectro-

Tandem affinty purification | purifications: 25 2%
i
metry (MALDI- One smanacrs S05-PAGE
Bloinformatic data interpretation | Identified complexes: 232
Gavin et al. Nature 415,141 (2002)
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This is an example of MS in detecting which proteins belong to protein
complexes.

The paper by Anne Gavin et al. is a classic paper on the application of the
TAP-MS method (https://www.ncbi.nlm.nih.gov/pubmed/11805826) that has
been cited more than 5500 times.



TAP analysis of yeast PP complexes

Identify proteins by (d) lists the number of

scanning yeast protein , proteins per complex
Membrane  Mitochondria

database for protein g -> half of all PP complexes

- ER/Golgi/vesicles
14

composed of fragmentSnuceus- 45 ® have 1-5 members, the

of suitable mass. .% 2 other half is larger

Oytoptesm (e) Complexes are involved
(a) lists the identified S i protaine. in practically all cellular
proteins according to processes

- o . e
their localization Cell cycle
Cell polarity and structure

~40
31-40 0 ol aiid
. maintenance/
->no apparent bias for 210 448 chromatin structure _ Intermediate and
\ 19 © " energy metabolism
=%

one compartment, but 1120 15 2o Signaling 8 -
Membi bi is/
very few membrane ANA metaboism W 14 7 fumover

Transcriptior/DNA ,

6-10 . \Protein synthesis/
proteins (should be Protein/RNA transport ~tumover
0 Number of proteins Distribution of complexes
ca. 25 /° ) per complex according to function

Gavin et al. Nature 415,141 (2002)
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This is slide illustrates what proteins belong to the 232 identified complexes of
yeast.

Panel a shows that the proteins belong to different compartments.
Panel d shows the size of the complexes (# of proteins)

Panel e shows the biological processes carried out by the identified proteins.



Models for missing values

Missing Completely At Random (MCAR): in a proteomics data set, this
corresponds to the combination of a propagation of multiple minor errors or
stochastic fluctuations. e.g. by a misidentified peptide

Missing At Random (MAR): this is a more general class than MCAR, where
conditional dependencies are accounted for. In a proteomics data set, it is
classically assumed that all MAR values are also MCAR.

Missing Not At Random (MNAR) assumes a targeted effect. E.g. in MS-based
analysis, chemical species whose abundances are close enough to the limit of
detection of the instrumentrecord a higher rate of missing values.

Imputation methods for MCAR and MAR are general.
For MNAR, they are methods-specific.

Let a and B be the rate of missing values and the MNAR ratio, respectively.

Lazar etal., J Proteome Res 15,1116 (2016)

V3 Processing of Biological Data SS 2020 49

This study (https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00981)
investigated the effect of assuming 3 different models for missing values.

MCAR, MAR and MNAR are standard models in data science (see
https://en.wikipedia.org/wiki/Missing_data).
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Simulation benchmark
Use real data (Super-SILAC and label-free quantification) on human primary tumor-
derived xenograph proteomes for the two major histological subtypes of nonsmall
cell lung cancer : adenocarcinoma and squamous cell carcinoma.

MNAR vaiues: one randomiy generates a threshoid matrix T from a Gaussian
distribution with parameters (y; = q, o; = 0.01), where q is the a-th quantile of the
abundance distribution in the complete quantitative data set.

..... [T PR TR DIy IR -7 S T AP Py Sy oim

T IICII edclr cell \l,j) o1 uie LUIIIPICLC qudllllldllVC data setis co

If (i) = T,J, the abundance is not censored.

If (7.j) < T;;, a Bernoulli draw with probability of success Ba - 100 determines if the

ahiindansauvualiia ia nananrad /aiinnaca) ar nat (failiira)
AuUINuarnivt vaiut 15 LTIHISUITU (SULLTOS) Ul 11UL (1aliuiT).

a and B are the rate of missing values and the MNAR ratio, respectively.

- T
I

pared with T;;.

MCAR values are incorporated by replacing with a missing value the abundance
value of n m ((100 - B) a /100) randomly chosen cells in the table of the quantitative
data set.

Lazar etal., J Proteome Res 15,1116 (2016)
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This slide describes how random values were inserted into a real data set.

The procedure will be explained again on the next slide.



Simulation benchmark
Insert a% MVs P
® d as MNAR) Keep B% - a% MNARs and insert (1-B)% - a% MCARs
Complete data matrix 1 x(i,j) < tij) Data matrix with B% - a% MNARMVs | Data matrix with % - a% MNAR and
then x(ij) = NA - 3 (1-B)% - a% MCAR (in t[otlal a% :ﬁ]\ls)
i I
Data matrix with a% MVs Select at random B% - a% ; -B)% - L
A as MNAR) MV (they are MNAR) i 14 iHA.Hi
- PG p- BB " T
#—A*H: (010,20..100) _EHE:ﬂ:_ u H
f O HHH
Threshold matrix _ﬁm__‘
“” :ﬁ:” B =0->0% MNARSs
> Insert a % MCAR
A SEss MVs .
1 > wS > a”
" EEEEEEEE B =100 -> a % MNARSs Insert 0% MCAR
: iﬁﬁi i Mvs
100-(#MNAR + #MCAR) g = 100-#MNAR
nm #MNAR + #MCAR
Lazar etal., J Proteome Res 15,1116 (2016)
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Schematic view upon the strategy used for the missing data generation. This
strategy allows to control both for the total proportion of missing values
generated as well as for the proportion of missing values, which are MNAR
and MCAR.



Imputation methods: benchmark

MLE: maximum likelihood ¢ g
estimator gt § :
] 8 ]
. bl
N . g? !s
MinDet: simply replace & i
miccinA valiiae huv tha .
1inoon ls vaiucvo U] uie ° o ——_'.

R EEEEEE]
Parcortage of 1ot My

minimum value that is
observed in the data set. i
MinProb: stochastic version
of MinDet. Replace missing
values with random draws

from a Gaussian distribution - S
centered on the value used | e————

Percertage of wtal vy

with MinDet and with o o
sadance funed fo the RSR = RMSE /std.dev. = MV: missing value
median of the peptide-wise Sl low KGR

estimated variances Red: high RSR

Lazar etal., J Proteome Res 15, 1116 (2016)
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RSR for the real quantitative data set; imputation is performed by considering:
kNN (a), SVDimpute (b), MLE (c), MinDet (d), and MinProb (e).



Conclusion on data imputation
Algorithms SVDimpute, KNN, and MLE perform better under a small MNAR ratio.

Algorithms MinDet and MinProb better under a larger MNAR ratio.

Algorithms of the first group generally seem to give better predictions.

Lazar etal., J Proteome Res 15,1116 (2016)
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Different algorithms provide advantages for different frequencies of missing
values.
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