
In lecture 7, we will discuss some aspects arising when processing of imaging
data with relation to bioinformatics.

Recently, during the past 5 years or so, more and more bioinformatics groups
have started to engage here.

This is particularly due to the enormous success of applying Deep Learning 
methods to image analysis.

Of course, we can only touch on certain aspects here.

Those of you who want to go deeper into the field of imaging data may want
to consider attending

e.g. the core lecture IPCV of Prof. Joachim Weickert,

https://www.mia.uni-saarland.de/Teaching/ipcv20.shtml
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Histology stands for studying the microanatomy of cells, tissues, and organs as 
seen through a microscope.

In traditional histology done by pathologists at hospitals or medical
laboratories, the biopsies taken from patients are „stained“ (colored) by
application of chemicals.
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The exact identification of tumor regions in biopsy images is a very difficult, 
tedious and important job for pathologists.

Can this also be done equally well by a computer algorithm?

The top row shows the regions identified by a layered neural network. The 
color intensities denote the level of confidence.

The bottom row shows the outcome when the same task is done by a 
pathologist. The tumor region detected by him/her is marked by a green line.

This is a link to the review paper cited: 
https://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-112415-
114722

This is a link to the original publication: 
https://engineering.case.edu/centers/ccipd/sites/ccipd.case.edu/files/Automatic
_detection_of_invasive_ductal_carcinoma_in_whole.pdf
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The online version of the dictionary by Merriam-Webster provides as a 
Medical Definition of histomorphometry: 

the quantitative study of the microscopic organization and structure of a tissue 
(as bone) especially by computer-assisted analysis of images formed by a 
microscope.

Listed here are 3 types of measurements used in quantitative 
histomorphometry.
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The strategy of architectural measurements has traditionally been used to
classify detectable objects (here called: primitives) in images of biological
cells.

For example, one measures distances between objects.

Delaunay triangulation is named after Boris Delaunay, a Russian
mathematician who published 1934 on „la sphere vide“ (the empty sphere), 
http://www.mathnet.ru/links/a5622f49bf1d96669a7aeacc0ab1d3f6/im4937.pdf

This concept is similar to the concept of molecular fingerprints that is used in 
chemoinformatics in order to characterize molecules.
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In German, a „gland“ means „Drüse“. „Gland networks“ would then be
compact clusters of glands.

In panel (d), the red and blue colors mark glands oriented toward opposite
directions.

Interestingly, patients with disease recurrence (most likely tumors …) were
observed to have different gland orientations than patients who were cured.

This suggests that characterizing the gland topology could allow making
predictions about the likelihood that the disease may come back (recur).
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On the previous slide, we heard that gland orientations may be related to
disease recurrence.

Also, certain shape features were reported to show characteristic differences
for differently severe grades of prostate and breast cancer.
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„Texture“ stands for the feel, appearance, or consistency of a surface or a 
substance, e.g. "skin texture and tone"

Here, one characterizes textural features of tissue.
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The figure shows the digital stain representation of a routine H&E image (left), 
with overlays of nuclear architecture networks (middle) and capture of stromal 
and epithelial textural variations (right).
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There are techniques that try to combine different sorts of data acquisition, 
e.g. imaging the sample by visible light AND by infrared (IR) spectroscopy.

The idea of this is to annotate the molecular composition of the objects
detected by light imaging.
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In (d), one records the IR spectra with spatial resolution.

Certain wavenumbers (e.g. 1080 cm-1 and 1245 cm-1) are characteristic for
certain molecules that can be assigned to cellular compartments.

E.g. nucleic acids are located in the nucleus. Collagen is the main structural 
protein in the extracellular matrix in the various connective tissues in the 
body. 

If the composition of various tissues is known (see panel (e)), one can assign
the tissue type to the detected continuous regions by a suitable software.
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(Left) Optical (light) microscopy image of lymph node tissue.

(Right) IR image of a related section of the same tissue.

The upper row are images at lower resolution.

The bottom row shows a blowup of the rectangular region marked in the upper
row.

Both types of spectroscopy/microscopy reveal different details of the same 
sample.
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You should read this slide in clockwise direction starting at the top left.

In biology, a lumen (plural lumina) is the inside space of a tubular structure, 
such as an artery or intestine.

In cell biology, a lumen is a membrane-defined space that is found inside 
several organelles, cellular components, or structures: thylakoid, endoplasmic 
reticulum, Golgi apparatus, lysosome, mitochondrion, or microtubule.

I believe we are dealing here with larger lumenal volumes outside of cells.

13



This example was taken from the following study: 
https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-11-62

There, the authors mention that the characteristics of nuclei and lumens change 
in cancerous tissues. In H&E stained images, lumens are recognized to be 
empty white spaces surrounded by epithelial cells. In normal tissues, lumens 
are larger in diameter and can have a variety of shapes. In cancerous tissues, 
lumens are progressively smaller with increasing grade and generally have less 
distorted elliptical or circular shapes.
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https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-11-62

Data set 1: 66 benign tissue samples and 115 cancer tissue samples.

Data set 2: 14 benign and 36 cancer tissue samples. 

The aim was to distinguish cancerous from non-cancerous tissue samples using 
a trained support vector machine.
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Link to paper: https://www.nature.com/articles/s41591-018-0177-5

Deep Learning methods are nowadays known to be highly successful in 
automated classification of biomedical images.

This is only one example from an amazing mass of similar publications.

Here, the authors tried to distinguish two types of non-small cell lung cancers, 
LUSC (top figure) and LUAD (bottom figure).

Since Sept. 2018, this paper has been cited 330 times.
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These are the treatment options at various stages of LUAC / LUSC, see table 7 
at the given website of the National Cancer Institute of the US.

Further down, the stages become more serious, and the treatment more
aggressive.

It is very important to identify in detail what type of tumor a patient has.

To select the best treatment in stage IV, it is also important to find out if the
patient (or even the tumor tissue) carries particularly genomic mutations.
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The authors used tissue images (bottom figure) provided on the TCGA
website.

As shown in the top figure, TCGA provides roughly equal portions of LUSC, 
LUAD, and normal (healthy).

But these numbers seem not enough for application of Deep Learning methods
which require massive amounts of training data (100000s) in order to train a 
successful classifier.
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Here, there only 400 – 600 images each. The solution found by the authors was 
very simple. 

They argued that the available images are „too large“ = have too high 
resolution to be used directly.

So one option would be to use only small parts of each image. But then, the
amount of data is too small. 

Also one would throw away a lot of potentially useful data.

Therefore, the idea was to split each slide into many small images and assume
that the contained information is not largely redundant.

This increased the amount of data to more than 1 million smaller images
(tiles).
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This is a brief introduction of the type of Deep Learning neural network
architecture used in this study.

„Convolution“ nodes integrate density information from a region into a central
pixel. See

https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-
classification-in-ilsvrc-2015-17915421f77c

for more information about this particular architecture (inception v3 
architecture36).
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It has been reported in recent years that deep learning methods can be
extremely successful in image recognition.

Many companies (also pharma companies) have now opened deep learning
groups who work on such tasks.
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Here, the authors demonstrate that the trained classifier does not only perform
well for the dataset on which it was trained, but also for 3 alternative cohorts.
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Before this study, it was unclear whether gene mutations would affect the 
pattern of tumor cells on a lung cancer whole-slide image.

Interestingly, training the network using the presence or absence of mutated 
genes as a label revealed that there are certain genes whose mutational status 
can be predicted from image data alone: EGFR, STK11, FAT1, SETBP1, KRAS, 
and TP53. The ability to quickly and inexpensively predict both the type of 
cancer and the gene mutations from histopathology images could be beneficial 
to the treatment of patients with cancer given the importance and impact of 
these mutations
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In the second half of this lecture, we discuss again the problem of detecting a 
tumor region.

This part is taken from the MSc thesis in computer science of Vera Bazhenova
(supervised by me).

The project was motivated by the work of Prof. Norbert Graf / UdS medical
school on a child tumor termed Wilms tumor.

Fortunately, this is a rather rare tumor.

MRI stands for magnetic resonance imaging. You can read more about the
MRI technique at 
https://casemed.case.edu/clerkships/neurology/Web%20Neurorad/MRI%20Ba
sics.htm

I cite from that site „Tissue can be characterized by two different relaxation 
times - T1 and T2. T1 (longitudinal relaxation time) is the time constant which 
determines the rate at which excited protons return to equilibrium. It is a 
measure of the time taken for spinning protons to realign with the external 
magnetic field. T2 (transverse relaxation time) is the time constant which 
determines the rate at which excited protons reach equilibrium or go out of 
phase with each other. It is a measure of the time taken for spinning protons to 
lose phase coherence among the nuclei spinning perpendicular to the main 
field.”

25



The available data provided by Prof. Graf consisted of vertical cross sections
from MRI scans that characterize the body signals at different body height.
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This is a vertical slice through a child‘s body. An arrow marks a very large 
region that takes up almost half of the slice area. This is – very sadly – a 
gigantic nephroblastoma tumor of the right kidney.
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In order to locate the tumor position, we found it helpful to use the spine as
reference point.

For this patient, the spine (marked by arrows and circled) appears shifted
toward the left side, simply because the tumor has grown so large.
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In this application scenario, pixels with zero-values occur only outside the
body.
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A circle with radius R and center (a,b) can be described with the parametric 
equations

x = a+ R*cos(θ) 

y = b + R*sin(θ)

In this case, the objective is to find the (a,b) coordinates of the spine center.

The Hough transform can be used to determine the parameters of a circle 
(coordinates of center and radius) when a number of points that fall on the 
perimeter are known. 
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The position of the spine center relative to the x-axis midpoint of the perimeter
is used to classify which kidney may be affected.
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Masking of the non-affected regions helps to simplify later tasks.
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In order to localize the tumor, the algorithm needs to know its brightness (gray
value).

This gray value level can be best characterized in the scan showing the largest
portion of the tumor.

The assymetric spine position may be helpful to identify this scan.

In the example shown here, scan #14 shows the largest deviation from the
center (in millimeters?)
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From experience, one knows that the largest blob (Merriam Webster: a spot of 
color) is typically the tumor.
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The diffusion equation describes how a region of larger density leaks out into
regions of lower density over time.

Here, the concentration is described by variable rho.

The diffusion equation describes how the concentration at location r and time t 
changes over time. Its first time derivative is equal to the second spatial
derivative times the diffusion coefficient.

This means that if there is higher density everywhere around a particular grid
point, its second spatial derivative of the density is positive (curved upwards).

Thus, the concentration at this grid point will increase over time as long as the
concentration at this point reaches that of neighboring points.

The diffusion equation is a very helpful tool to remove „noise“ (brightness
fluctuations) from an image.
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For a better understanding of the diffusion equation, we will quickly derive it by
combining the continuity equation and Fick‘s first law.

The continuity equation describes the transport of some quantity.

In the bottom example, three purple particles would enter into the circled area
during a given time interval from the left side.

In the same interval, five particles would leave the circle to the right. Thus, the
net number of particles in the circle reduces by 2.

This is an example how we can obtain the change of density by comparing the
magnitude of the particle current between left and right, which is described by
the continuity equation.

Latex code for the continuity equation:
\frac{\partial \rho(\vec{r}, t)}{\partial t} = - \nabla \vec{j}(\vec{r}, t) = - \mbox{div 
}\vec{j}(\vec{r}, t)



The second equation we need is Fick‘s law.

It describes in which direction a diffusion current will be directed. Matter always flows
from a high concentration region to lower concentration regions. The gradient gives
the direction in which the density increases most. Thus, the diffusion current will be
directed into the opposite direction.

Latex code of diffusion current:

\vec{j}(\vec{r}, t) = -D \;\;\nabla \rho(\vec{r}, t) = -D \;\;\mbox{grad } \rho(\vec{r}, t)



These 2 equations can now be simply combined to obtain the diffusion equation.

The diffusion constant can either be constant or variable. E.g. in a cell, the diffusion
constant of proteins would be highest in proteins, but low in or near membranes.

The diffusion equation has become an important technique for image denoising.

Latex code:

\frac{\partial \rho(\vec{r}, t)}{\partial t} \;= \;\; - \nabla (-D \;\nabla \rho(\vec{r}, t))\;\; =\; 
D\;\Delta \rho(\vec{r}, t)

D(\vec{r}, t) = \mbox{const}



Here, we introduce a simple algorithm termed „forward in time centered in space“ 
(FTCS).

For simplicity, we consider diffusion on a one dimensional lattice, where grid points
have spacing deltax and are labeled by j.

In the middle equation, the left side is the discrete first derivative of the density at grid
point j with respect to time.

The right side is the second spatial derivative of the density with respect to coordinate
vector at position j.

More precisely, we consider how the first spatial derivative changes between right
(rho(j+1) – rho(j)) and left (rho(j)-rho(j-1)) sides.

We then multiply the middle equation by delta_t and add rho_j(t) to both sides. This 
yields the integration algorithm for the propagation step.

This algorithm can easily be generalized to 3D.

The numerical algorithm is „stable“ (does not deviate from the analytical derivates too
much) for the condition given at the bottom.

\frac{\partial \rho(\vec{x}, t)}{\partial t} = D\;\;\frac{\partial^2 \rho(\vec{x}, t)}{\partial x^2}

\frac{\rho_j(t+\Delta t) - \rho_j(t)}{\Delta t} \;=\; D\;\;\frac{\rho_{j+1}(t) - 2\rho_{j}(t) + 
\rho_{j-1}(t)}{\Delta x^2}

\rho_j(t+\Delta t)  \;=\;  \rho_j(t)} +\Delta t\, D\;\;\frac{\rho_{j+1}(t) - 2\rho_{j}(t) + \rho_{j-
1}(t)}{\Delta x^2}

\Delta t \;\leq\; \frac{\Delta x^2}{2D}



With the median filter, the brightness of the central point is set to the median 
(38) of its direct neighbors.
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The gray level of the tumor is determined from the brightness histogram.

The first cluster at lowest intensity contains noisy signals and the image
background.

Experience suggests that the next peak belongs to the tumor tissue.
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Using the min and max thresholds for the tumor gray values, the
corresponding region in the image is cut out by applying a mask (middle
column).

This yields the presumable tumor region shown in the right column.

This is a link to the paper describing the GrowCut algorithm: 
https://www.graphicon.ru/oldgr/en/publications/text/gc2005vk.pdf
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Vera Bazhenova applied further filters that she picked up from Prof. 
Weickert‘s lecture. 

We will not go into the details of this here.
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To know how good the algorithm works, we need a gold-standard.

In this case, Vera Bazhenova tried her best and annotated the large region of
homogeneous gray level manually herself.
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Here, we compare the results of the automatic detection of tumor regions to a 
manual detection by eye.
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Image detection will likely become a more central part of bioinformatics in 
future years.
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