V8 — Genomics data
Program for today:
(1) Read mapping
(2) SNP calling
3) SNP frequencies in 1000 Genomes data -> consider overlapping genes
(4) Isoforms of genes (alternative splicing)
%) Nori-canonicai transiation -> not aii transiated sequences stait with AUG
(6) Removing sequence redundancy
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Today, in lecture #8, we will deal with several topics around genomic
sequences.

Points (1) and (2) deal with the two most common tasks in sequence analysis:
mapping of reads and identification of single nucleotide polymorphisms
(SNPs).

Sometimes, we need to take special care when preparing a dataset for a
statistical analysis.

E.g. we will mention the issue of overlapping genes in point (3) and the issue
of removing sequence redundancy in point (6).

In point (5), we will touch on a point that you may consider for granted:
translation starts ,,always* with a AUG codon that is translated into a
methionin amino acid. This is what you read in molecular biology textbooks. It
turns out that this is not always the case.

In point (4), we briefly comment on the importance of mRNA and protein
isoforms that result from alternative splicing.



(1) Read mapping: range of usage

The accurate alignment of reads generated by NGS machines to a reference
genome is a crucial partin many application workflows, such as

- genome reseqguencing (in contrast to de novo assembly),
- DNA methylation,

- RNA-Seq (transcriptomics),

- ChiP sequencing (e.g. histone marks, T
- SNP detection,

- detection of genomic structural variants, and

FBS occupancies),

- metagenomics (sequencing mixtures of organisms).

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Unless we talk about de novo assembly of a genomic sequence, the first task in
an NGS project is usually the alignment of sequencing reads to an existing
reference genome.

Listed here are some workflows where read mapping is a crucial part.



Read mapping tools

Numerous tools have been developed for this challenging task:

MAQ, RMAP, GSNAP,

Bowtie Bowtie2

BWA, SOAP2, Mosaik, FANGS, SHRIMP, BFAST,
MapReads, SOCS, PASS, mrFAST, mrsFAST, ZOOM,
Slider, Sliderll, RazerS, RazerS3, Novoalign and

GPU-based tools such as SARUMAN and SOAP3.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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These are some of the well-known software tools used for mapping of NGS
reads.



Read mapping techniques: (1) Hash tables
For most of the existing tools, the mapping process starts by buildingan index
either for the reference genome or for the reads.
Then, the index is used to find the corresponding genomic positions for each read.

There are two main types of techniques for this: Hash tables + BWT

(1) The hash based methods either hash the reads or the genome.

The main idea for both types is to build a hash table for subsequences of the
reads/genome.

The key of each entry is a subsequence
while the value is a list of positions
where the subsequence can be found.

m Hashed index | Genomic location

Hatem et al. “‘GCTAGC” Key1 Chr1 123412 ... ...
BMC Bioinformatics (2013)14:184  «TTTAGC” KeyN Chré 988472
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In principle, one could simply scan the genomic sequence for each read
sequence. However, this would be quite inefficient.

Therefore, the existing tools typically construct an index either for the
reference genome or for the reads. This index is then used during the string
search.

The first type of indexing techniques use a hash table, see the table shown on
the bottom right.

In this example, the genomic sequence is indexed. Different 6-letter words are
each given a hash index and where they are located in the genome.



Read mapping techniques: (2) Burrows Wheeler transform

The BWT of the string T = "abracadabra$" is "ard$rcaaaabb.

It is represented by the matrix M where each row is a rotation of the text, and the
rows have been sorted lexicographically.

The transform corresponds to the last column labeled L.

| F L
1 $ abracadabr a
2 a $abracadab i
3 a bra$abraca d
4 a bracadabra $
Modern alignments 5 a cadabra$ab r
use an extension of BWT 6 a dabra$abra c
named FM index 7 b ra$abracad a
after Ferragina & Manzina 8 b racadabra$ a
9 ¢ adabra$abr a
10 d abra$abrac a
11 r a$abracada b
12 r acadabra$a b
www.wikipedia.org
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The second technique does not index the string itself, but uses its so-called
Burrows Wheeler transform.

According to Wikipedia, the Burrows—Wheeler transform is an algorithm to
prepare data for use with data compression techniques such as bzip2. It was
invented by Michael Burrows and David Wheeler in 1994.

The algorithm can be implemented efficiently using a suffix array thus
reaching linear time complexity.



Read mapping techniques: (2) Burrows Wheeler transform

C[c] is a table that, for each character c in the alphabet, contains the number of
occurrences of lexically smaller characters in the text.

Clc] of "ard$rcaaaabb"

C $ a b c d r

O(nocharacteris ' 4 4 o) 6 (5timesaplus 1tme$) = 8 9 10

Clel smaller than $)

The function Occ(c, K) is the number of occurrences of character c in the prefix
L[1..K].

Occ(c, k) of "ard$rcaaaabb"

a r d $ r c a a a a b b

1 2 3 4 5 6 7 8 9 10 11 12
$ 0 0 0 1 1 1 1 1 1 1 1 1
a 1 1 1 1 1 1 2 3 4 5 5 5
b 0 0 0 0 0 0 0 0 0 0 1 2
c 0 0 0 0 0 1 1 1 1 1 1 1
d 0 0 1 1 1 1 1 1 1 1 1 1
r 0 1 1 1 2 2 2 2 2 2 2 2

V8 www.wikipedia.org Processing of Biological Data SS 2020

These are two auxiliary tables used to construct the FM index.



Read mapping techniques: (2) Burrows Wheeler transform
The FM-index itself is a compression of the string L together with C and Occ in some
form, as well as information that maps a selection of indices in L to positions in the
original string T.

FM index is used e.g. by the tools Bowtie and BWA

Soap uses a different variant of BWT.

www.wikipedia.org
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According to
http://pages.di.unipi.it/ferragina/Libraries/fmindex V2/index.html

The FM-index was proposed by Paolo Ferragina and Giovanni Manzini in
2000. This data structure combines compression and indexing by
encapsulating in a single compressed file both the original file plus some
indexing information. The space occupancy of the FM-index is close to the one
required by the best known compressors, like bzip2. But additionally to a
compressor, the FM-index is able to efficiently support substring search
operations, and the decompression of portions of the original file. Every such
operation is executed on the FM-index by looking only at a small portion of
the compressed file, thus requiring few milliseconds on a commodity PC over
files of several megabytes.



Read alignment: features
Crucial default options:

- Maximum number of mismatches in the seed (default2). The seed is “the first
few tens of base pairs of a read.” The seed part of a read is expected to
contain less erroneous characters.

- Maximum number of mismatches in the read (2 to 10)

- Seed length (28 - 32).
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the read length and the genome size for Novoalign.
- Splicing: This option is enabled for GSNAP.

- Gapped alignment: It is enabled for Bowtie2, GSNAP, BWA, Novoalign and
MAQ while it is disabled for SOAP2.

- Minimum and maximum insert sizes for paired-end mapping: The insert size
represents the distance between the two ends (0 to 500).
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Hatem et al.
BMC Bioinformatics (2013) 14:184
V8 Processing of Biological Data SS 2020 8

One complication in read alignment is that we are not only looking at positions
that align perfectly or exactly. Often, the two sequence may differ ,,a little bit*
due to either the normal biological variation between an individual and the
reference genome or due to technical sequencing errors.

The genetic difference between individual humans today is minuscule — on
average about 0.1% of all positions
(https://humanorigins.si.edu/evidence/genetics).

Based on this, we instruct the alignment algorithm to search for almost
perfectly matching positions of read and reference genome and allow for a
small given number of mismatches.

From Hatem et al paper: ,,Seeding represents the first few tens of base pairs of
a read. The seed part of a read is expected to contain less erroneous characters
due to the specifics of the NGS technologies. Therefore, the seeding property
is mostly used to maximize performance and accuracy.”



Read alignment: evaluation criteria
The sequence in blue is the original genomic position where the simulated read was
extracted from. After applying sequencing errors, the read does not exactly match
to the original location (3 mismatches marked in red).
Reference ...l CCCGCCGGAAATT..........

Read CCGCCGGGAA

3 possible alignmentlocations for the read with their mapping quality score (MQ).

Alignments (1) CCGCCGGGAA MQ=40 B) CCGCCGGGAA MQ=50
(2 CCGCCGGGAA MQ=45

Reference CCCGCCGGAAATT.......... CCGCCGGGAA
LI I | LN A O O B B A |
[ | | U A O A A A |
Naive criterion: only consider the alignment (1) as the correct alignment.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Link to Hatem et al paper:
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-
184

Alignment (3) is a perfect match of the altered string to an alternative position
in the genome. In this position, the match achieves the highest mapping score
MQ = 50. MQ stands for ,,mapping quality*.

Alignment (2) is a position shifted by one base pair where it has only 1
mismatch G-A and a slightly better score (MQ = 45) than in the original
position (MQ = 40).

The naive criteria would judge the tool as incorrectly mapping the read if the
tool returned either alignment (2) or (3) while in fact it picked a more accurate
matching.



Reference

Alignments

V8 Hatemetal.

Ruffalo et al. criterion: consider also the mapping quality.

If the used thresholdis 30, then (1) is correctly mapped while (2) and (3) are
incorrectly mapped-strict.

If the threshold is 40, then (3) is considered as incorrectly mapped relaxed (no
correct mapping available higher than the threshold).

Holtgrewe et al. criterion: considers all matches with distance k.

Here, it would detect (1) and (2) and consider them correctly mapped while (3)
would be considered as incorrectly mapped.

Hatem et al: “We define a read to be correctly mapped if it is mapped while not
violating the mapping criteria.”

BMC Bioinformatics (2013) 14:184

Read alignment: evaluation criteria

CCCGCCGGAAATT.......... CCGCCGGGAA
1 o [ T I I I I B B
1 [ R [ O O O B R |

(1) CCGCCGGGAA M@=40 @ CCGCCGGGAA MQ=50
@ CCGCCGGGAA MQ=45
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Ruffalo et al.

(https://academic.oup.com/bioinformatics/article/27/20/2790/201940) classify
the accuracy of the mapping(s) of a read as follows.

Correctly mapped read (CM): the read is mapped to the correct location in the
genome and its quality score is greater than or equal to the threshold.

Incorrectly mapped read—strict (IM-S): the read is mapped to an incorrect
location in the genome and its quality score is greater than or equal to the

threshold.

Incorrectly mapped read—relaxed (IM-R): the read is mapped to an incorrect
location in the genome, its quality score is greater than or equal to the
threshold and there is no correct alignment for that read with quality score
higher than the threshold.

10



Read alignment: throughpgt for simulated data

10

Task: map 1 million reads of length 125 Bowte. BWA-ND

extracted from the Human genome of| 3 Bwa-no

using wgsim with 0.09% SNP mutation fg“ @ a2
rate, 0.01% indel mutation rate, and “ L4 g‘;;ﬁpg

2% uniform sequencing error rate. o|| 7 st

Each tool was used with its own default
options.

>

Throughput bps/s
L ]

Bowtie only maps 68% of the reads,
but achieves high throughput. R R BWA(%
BWA maps 91% of the reads, but 15 x % — . T
lower throughput.

o
o

0 60 70 00

Mapped Percentage

BWA-ND refers to BWA's results while
. using Bowtie’s default options which are 2
However, when used with the same mismatches in the seed, 3 mismatches in

options as Bowtie, BWA achieves even the whole read, and no gapped alignment.
a higher performance.
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Shown are the mapping results using the default options of each tool. The tools
try to use the options that yield a good performance while maintaining a good
output quality.

For instance, Bowtie achieves a throughput of around 1.6-10°bps/s at the
expense of mapping only 67.58% of the reads. On the other hand, BWA maps
91% of the reads at the expense of having only a throughput of 0.1-10° bps/s.
Additionally, SOAP and mrsFAST look like they provide the smallest
mapping. However, they are only allowing 2 mismatches while other tools
such as mrFAST and GSNAP are allowing more than 5 mismatches. Therefore,
using only the default options to build our conclusions would be misleading.
Indeed, further experiments show that BWA obtains a high throughput when
allowed to use the same options as Bowtie. Moreover, BWA achieves a higher
throughput than Bowtie in other experiments. Therefore, it is important to use
the same options to truly understand how the tools behave.

11



Read alignment: number of allowed mismatches

100 T

T

90

@
S

~
S

3

Percentage mapped
8 8

@
S

n
S

o o

Bowtie Bowtie2 BWA SOAP GSNAP Novoalign MAQ RMAP mrsFAST
Tools

Mapping 1 million reads of length 125 extracted using wgsim from the Human
genome while allowing up to 7 mismatches and a quality threshold of 140.

-> most tools (except RMAP) achieve similar mapping rates.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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For synthetic data generated with the software wgsim, quality thresholds of 60,
80, 100, 120, and 140 should correspond to 3, 4, 5, 6, and 7 mismatches. Here,
all tools were allowed a maximum of 7 mismatches while using a quality
threshold of 140. The figure shows that the tools map the reads with the same
maximum number of mismatches while having similar mapping rates.

The differences in the mapping rates shown in the previous slide are due to the
pruning of the search space done by the default options for some of the tools.
In addition, other tools incorrectly mapped some of the reads causing an
increase in the mapping percentage.

From the throughput point of view, the tools behave differently. For instance,
Bowtie, MAQ, RMAP, and mrsFAST are able to maintain almost the same
throughput while the throughput increases for SOAP2 and GSNAP and
decreases for BWA. The degradation in BWA’s performance is due to
exceeding the default number of mismatches leading to excessive backtracking
to find mismatch locations.

12



Read alignment: effect of read length
100 T T T T T v— T T T B amb
[—Jerror
B eof - 36
a - 70
g =125
o . 300
€ o 4 [ — 00
g
& 20t
9 Bowtie Bowtie2 BWA SOAP MAQ— RMAP GSN-/F FANGS Novoalign mrsFAST
Read length

The effect of changing the read length from 36 to 500. The reads were
extracted from the Human genome.
Longer reads tend to have more mismatches. For a fixed number of
mismatches, the read length decreases the percentage of mapped reads.

Hatem et al.

BMC Bioinformatics (2013) 14:184
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Longer reads tend to have more mismatches beside requiring more time to be
fully mapped. In general, for a fixed number of mismatches, increasing the
read length decreases the percentage of mapped reads. Therefore, the aim of
this experiment is to understand the read length effect.

The figure shows that the mapping percentage decreases with the increase in
the read length while the error percentage increases.

Bowtie, Bowtie2, and BWA were the only short sequence mapping tools that
managed to map long reads. In particular, the max read length was 128 for
MAQ, 300 for RMAP, and 200 for GSNAP, 199 for mrsFAST, while SOAP2
took more than 24 hours to map the reads with length 300 and hence not
reported.

From the throughput point of view, tools do not maintain the same behavior.
For instance, the throughput of Bowtie and SOAP2 decreases for long read

lengths. This is due to the backtracking property and the split strategy used by

Bowtie and SOAP2, respectively, to find inexact matches.

13



Read alignment: SNP calling with different mappers

Tools accurately detected SNPs
Bowtie 1171
Bowtie2 2035
BWA 2067
SOAP2 1941
Novoalign 941
GSNAP 2602

Here, the tools were used to map an mRNA dataset of 23 million reads extracted
from the Spretus mouse strain.

Then Partek was used to detect SNPs against mouse genome version mm9.

A quality threshold of 70 was used for Bowtie and Novoalign while the remaining
tools were allowed 5 mismatches.

GSNAP detected the largest number of accurate SNPs while Novoalign detected
the smallest.

V8 Hatemetal. Processing of Biological Data SS 2020 14

BMC Bioinformatics (2013) 14:184

This example illustrates that using a different mapping tool can greatly affect
the number of obtained results.

14



Read alignment: conclusion

Mapping of short sequences is still subject of active development.
Genome indexing tools performed better than read indexing tools.

In general, there is no best tool among all of the tools; each tool was the-best in
certain conditions.

Hatem et al.
BMC Bioinformatics (2013) 14:184
V8 Processing of Biological Data SS 2020 15
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(2) Variant calling benchmark

-> Accurately detecting SNPs is critical e.g. for medical diagnostics.

Genome in a Bottle (GIAB) consortium:

nrivata_acadamic coneortiiim to davelon the technical infra
privaie-academic conseruum ¢ Geveiep tne iecnnicai inira

=~
(reference standards, reference methods, and reference data) to enable
translation of whole human genome sequencing to clinical practice.

GIAB generated a set of highly confident variant calls for one individual in the
1000 Genome project:

they integrated 14 variant data sets from 5 NGS technologies, 7 read mappers
and 3 variant calling methods, and manually cleaned up discordant data sets.

This highly accurate set of SNP and indel genotype calls can be used as gold
standard variant genotype data set for systematic comparisons of variant callers.

Hwang et al., Scientific Reports
5,17875(2015)
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Website of the GIAB consortium: https://www.nist.gov/programs-
projects/genome-bottle

GIAB publication: https://www.nature.com/articles/sdata201625



Variant calling: performance
Performance Of va riant A lllumina Platform (HiSeq 2000/2500) lonProton Platform
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Hwang et al., Scientific Reports Coverage 47 - 299 x <10x
5,17875(2015)
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Hwang et al paper: https://www.nature.com/articles/srep17875

To compare the overall performance among thirteen pipelines, the authors
compared the distributions of APR scores of multiple data sets for each
pipeline on SNPs and indels.

The Ion Proton data set has much lower exome coverage (<10 X ) than those of
[llumina data sets (43.6 X —298.5 X).

For SNP variant calls, BWA-MEM-Samtools pipeline showed the best
performance and Freebayes showed good performance across all aligners for
both Illumina platforms.

For Ion Proton data, Samtools outperformed all other callers, including TVC,
which is the Ton Proton’s own variant calling method. Interestingly, the best
variant caller of each data set varies. This observation of variation in best
performed pipelines across data sets clearly demonstrates a data-specific effect
of benchmarking results. Therefore, benchmarking performance of each
variant calling pipeline needs to be based on multiple data sets to avoid
misleading conclusions. The tested variant pipelines showed larger
performance difference in calling indels. For indel calls, GATK-HC with any
aligner outperformed Freebayes and Samtools on both Illumina platforms,
while Samtools performed best on Ion Proton data. Although TVC is the
official variant caller for Ion Proton data, it performed no better than other

17



callers on both SNPs and indels.

17



Variant calling: consistency
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Hwang et al., Scientific Reports
5,17875(2015)
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The authors then assessed the concordance (overlap) among the four variant
callers for each NGS platform.

For Illumina data sets, they observed ~92% of concordance among the variant
calls by three variant callers (see GATK-HC N Samtools N Freebayes) based
on the average score of data sets. Concordance levels among variant calling
pipelines varied across the data sets (82~97% overlap of called variants).
These results indicate that not only the variant calling pipelines but also the
data sets affect concordance of the identified variants. Therefore, caution is
advised in interpreting concordance levels based on a single data set.

For Ion Proton data set, four callers showed 15.5% of overlap for the same
quality score threshold (see GATK-HC N Samtools N Freebayes N TVC). This
low overlap among called variants is likely to originate from the high false
positive rates for calling indel variants by Freebayes and Samtools.

18



Variant calling: recommendation

The authors recommend the use of BWA-MEM and Samtools pipeline for SNP
calls and BWA-MEM and GATK-HC pipeline for indel calls.

Low coverage data is not suitable for reliable SNP calling.

Indels are detected at lower accuracy than SNPs.

Hwang et al., Scientific Reports
5,17875(2015)

V8 Processing of Biological Data SS 2020

Concluding remarks by the authors.

19



(3) SNPs in 1000 Genomes project
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The 1000 Genomes Project ran between 2008 and 2015 and created the largest
public catalogue of human variation and genotype data up to date.

The goal of the 1000 Genomes Project was to find most genetic variants with
frequencies of at least 1% in the populations studied.

http://www.internationalgenome.org/
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In the third application, we wanted to characterize the locations of SNPs found
in genomes. We used the largest public data source available, the 1000
Genomes project which in fact sequenced the genomes of around 2500
individuals from the countries marked on the map.



Data set

We used only the European super-population with 503 individuals and focused on
autosomes (chromosomes 1 — 22). Genes on sex chromosomes X and Y were ignored.

We kept autosomal SNPs with a minor allele frequency larger than zero — SNP exists
allele : variant form of a given gene
major allele : most common variant

minor aiieie: second-most common variant

We removed:
- genes starting with "SNO* (small nuclear RNAs) or "MIR* ( microRNAs)
- genes with CDS start equal to the CDS end

Neininger K, Marschall T, Helms V (2019).
PLoS ONE 14(4): 0214816
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We focused on the European super-population with ca. 500 individuals.

The reason was that we also analyzed in parallel the 500 parent genomes from
the ,,Genomes of the Netherland* project. The results for both data sets were
very similar (data not shown).

We felt that data for the European cohort from the 1000G project would be
more compatible with the GoNL data.

Also, we omitted the sex chromosomes X and Y because they appear to behave
differently from autosomes.

E.g. the International SNP Map Working Group
(https://www.nature.com/articles/35057149) found that the sex chromosomes
have a lower diversity than autosomes. They suggested that the lower rate of
polymorphism on the X chromosome may be explained by a lower effective
population size, a lower mutation rate or by strong selection acting on the sex
chromosomes in males.

Also, we filtered for genes annotated to have more than one allele, excluded
SNO and MIR genes, or erroneous genes.

21



Problem: there exist many overlapping genes
Shown is overlap between 3 human genes: MUTH, FLJ13949, and TESK2.
Dark boxes : coding sequence.
Light boxes : untranslated regions.
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Table 1. Frequency of Different Types of Overlaps Between Protein-Coding Genes in Human
and Mouse Genomes

Human Mouse
Overlapping Genes with Overlapping Genes with
genes overlapping exons genes overlapping exons

Total 774 542 578 455
Embedded 126 (16.28%) 15 (2.77%) 53 (9.17%) 7 (1.54%)
Tail to tail 414 (53.49%) 360 (66.42%) 314 (54.32%) 280 (61.54%)
Head to head 234 (30.23%) 167 (30.81%) 211 (36.51%) 168 (36.92%)
Involving coding sequence 299 (55.17%) 232 (50.99%)
Coding-coding overlap 57 (10.52%) 31 (96.81%)

Veeramachaneni et al.

Genome Res. (2004) 14: 280-286
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Link to Veeramachaneni et al. paper:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327103/

According to Veeramachaneni et al., it is believed that 3.2 billion bp of the
human genome harbor ~35,000 protein-coding genes. On average, one could
expect one gene per 300,000 nucleotides (nt).

Although the distribution of the genes in the human genome is not random, it
is rather surprising that a large number of genes overlap in the mammalian
genomes.

Veeramachaneni et al. identified >774 gene pairs sharing a locus in the human
genome and 542 in the mouse genome.

22



Overlapping genes

One could speculate that overlapping genes would be more conserved between
species than non-overlapping genes because a mutation in the overlapping
region would cause changes in both genes.

Then, one would expect that evolutionary selection against these mutations is
stronger.

However, Veeramachaneni et al. found that this is not the case.

Overlapping human and mouse genes were similarly conserved as non-
overlapping genes.

Veeramachaneni et al.
Genome Res. (2004) 14: 280-286
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The origin of overlapping genes is not clear. Interestingly, the mutation rates in
the overlap regions are similar to non-overlap regions.



How to deal with overlapping genes

In the case of overlapping genes, it is problematic to define the genomic regions
because they have a different meaning for the 2 overlapping genes.

Therefore, we distinguished 2 cases:

(1) Overlaps where one gene is located inside another gene.

Such genes inside other genes were excluded from the SNP analysis.
(2) staggered overiaps (genes overiap partiaiiy).

We collected all genes with staggered overlap. From each “bundle", only one
gene was selected randomly to avoid overlapping genes.

In total, about 5% of all genes were removed due to overlaps.

Neininger K, Marschall T, Helms V (2019).
PLoS ONE 14(4): e0214816
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We wanted to analyze the location of SNPs with respect to certain genomic
regions, see slide 26.

However, a SNP in an overlapping region may belong to different regions with
respect to either of the two genes.

To avoid confusion, we excluded shorter genes that are located inside longer
genes and we randomly selected one of the genes showing staggered overlaps.

Since we had ,,enough* data for our analysis, we rather prefered to analyze a
,purified* data set.

24



Refseq
The Reference Sequence (RefSeq) collection at NCBI provides a
comprehensive, integrated, non-redundant, well-annotated set of sequences,
including genomic DNA, transcripts, and proteins.

RefSeq transcript and protein records are generated in different ways:
- Computation  Eukaryotic Genome Annotation Pipeline
Prokaryotic Genome Annotation Pipeline

- Manual curation
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Research question:

Are the Single Nucleotide Polymorphism (SNP) frequencies in different
genomic regions similar to eachother or not?

https://www.ncbi.nim.nih.gov/refseqg/about/
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The RefSeq annotation from NCBI is a very comprehensive, sophisticated and
reliable annotation source for the location of genes and exons.



Definition of genomic regions
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Every gene is located between two intergenic regions. Our definition for these is:
First intergenic region : interval between the transcription start site (TSS) of the

tion and site (TES) of the claosest unstraam agene
ucnh eng site (1 -o) OF tne ciesest upsiream gene.

Second intergenic region : defined analogously according to the TSS of the closest
downstream gene.
Intragenic region of a gene : part between its TSS and its TES.
Gene promoter : region from 2000 bp upstream to 1000 bp downstream of the TSS.
Exons : intervals between the exon start positions and exon end positions (taken from
UCSC genome browser).
5' UTRs : exonic segments between the TSS and the CSS
3' UTRs : exonic regions between the CES and the TES.

Introns : regions between the exonic gene parts. Neininger K, Marschall T, Helms VV (2019).
PLoS ONE 14(4): e0214816
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Based on the Refseq annotations, we analyzed the frequency of transition and
transversion SNPs as well as indels in nine types (regions) of coding and non-
coding genomic elements in the human genome.
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Intergenic region
CpG island
Promoter
5'UTR exons
Coding exons

3' UTR exons
All exons

Introns
Intragenic region
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Neininger K, Marschall T, Helms V (2019).
PLoS ONE 14(4): 0214816

SNP density in genomic regions

Number of SNP variants per
kb for different genomic
regions.

— lowest SNP density in
coding exons (green)

— highest SNP density in
CpG islands (red, due to
frequent deamination of
methylated cytosines into
thymines)

Second-highest SNP
density in intergenic regions
(grey, low evolutionary
pressure)
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Considering 1000G data, median SNP densities were ~ 8—9 SNPs per kb for

each genomic element and all variant types.

Protein-coding regions are conserved with a median SNP density of about 7
SNPs/kb for all SNP types. The boxplot for the 5° UTR contains some outliers
with a maximum SNP density of up to about 35 SNPs per kb for 1000G data.
This effect is due to the short 5° UTR length of 230 bp on average (median 180

bp).

Our findings of smaller SNP densities in genetically important gene regions
such as coding exons or 5° UTRs are compatible with purifying selection to

preserve their functionality.
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Indels are especially rare in coding exons, with a mean SNP density of 0.09,
since this type of mutation can cause frameshifts in the translated protein.
Especially CpG islands, 5" UTRs, protein-encoding exons and 3’ UTRs showed a
low amount (median: 0.0) of indels.

Neininger K, Marschall T, Helms V (2019).
PLoS ONE 14(4): 0214816
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Transitions refer to point mutations that change a purine nucleotide to another

purine (A < QG), or a pyrimidine nucleotide to another pyrimidine (C <> T).

Approximately two out of three single nucleotide polymorphisms (SNPs) are
transitions. Transversions interchange a purine with a pyrimidine and are less

frequent. This was also observed by us.

Indels might have more severe effects on transcription factor binding sites

than base exchanges. Hence, the low frequency of indels in CpG islands might
be related to a strict conservation of functional sequences within this genomic
(regulatory) element especially in CpG islands in the promoter regions of the

mammalian genes.
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(4) Isoforms of genes
Gene isoforms are MRNAs that are produced from the same locus but are
differentin their
- transcription start sites (TSSs),
- protein coding DNA sequences (CDSs) and/or
- untranslated regions (UTRs),
All these processes may potentially alter gene function.

Alternative splicing (AS) of mMRNA can generate a wide range of mature RNA
transcripts.

It is estimated that AS of pre-mRNA occurs in 95% of multi-exon human genes.
There is abundantevidence for the expression of multiple transcripts in cells.

However, it is less clear whether these transcripts are expressed more or less
equally across tissues or whether it would be biologically relevant to designate

one transcript per gene as dominant and the rest as alternative.
www.wikipedia.org
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Alternative splicing is a promiment mechanism to enlarge the complexity of
gene regulation.

About 95% of all genes with more than one exon are alternatively spliced.

One important question is now whether (1) all these isoforms will be expressed
in one tissue, (2) only some of them, or (3) only one of them.
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Detect isoforms in proteomic data

Ezkurdia et al. re-analyzed 8 HT proteomics MS data sets.

At least 2 peptides were detected for 12 716 (63.9%) of the protein-coding genes but
alternative protein isoforms only for 246 genes (1.2%).

— the vast majority of genes had peptide evidence for just one protein isoform.
The isoform with the highest number of peptides was the main proteomics isoform.

A unique main proteomics isoform was identified for 5011 genes.

Ezkurdia etal J Proteome Res. (2015) 14: 1880-1887.
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Probably this issue has not been completely settled yet.

For the moment, it is safe to assume that there will exist one major protein
isoform in each tissue.
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(5) Alternative translation: example TrpV6 channel protein

human ESWLALPSVTNSQPSPNWLGL LGDSQGTRQEGRRQETGPLQGDGGPALGGADVAPRLSPVRVWPRPQAPKEPALHPMGL SLPKE .
chimpanzee WLALPSVTNSQPSPDWLGL LGDSQGTRQEGRRQETGPLQGEGGPALGGADVAPRLSPVRVWPRPQAPK EPALHPMGL SLPKE .
gibbon WLALPSVTNSQPSPDWLGL LGDSQGTRQKGRRQETGPLQGEGRPALGGADVAPRLSPVRVWPRPQAPK EPALHPMGL PLPKE .
dog LPGGAPEE EPEEGAPALRRVRNS - - GALCKPCPGATRRLRGGPGRQETGPLQGEGRPAL EGADVAPRLSPFGVWPRPQPPKEPALRSMGLPLPKE .
rat RSSDIQAQQISSSAKWNKAGALFGLLRAATGSLTSSTGE - VGGRTQETGPLQREGRPALGDANVAPGSSPGGVWHQPQPPKDSAFHPMGWSLPKE .
mouse GAPETQAQQISSPAKRNKAGAL FRLLGAATGSLSSSTGE -VGDRRQETGPLQREDRPALGGANVAPGSSPVGVWHQPQPPKEPAFHPMGHSLPKE .
Chinese hamster ALPSGTTQEPSSDLGVATGSLTSSTGE - VGARSQETGPLQREGRPALGGANVAPRPSPVGVWHQPQPPKEPAFHPMGWSLPKD .
guinea pig SRTHSEPS------- AETAGRKPSQEKQETGPPQAEDRPAF GGAHVAPRPSPVGVWRKPQPPKESTFQSMGLSLSKE .
cow GPSSAQCNELLQGRPLVSGCLHLGE TPPG-LEG- - PETAPLRE EGGLALGAAHVAPRLSPGGVWPWPQPPRELALCSMGL PLPKE .
rabbit LALPSVTESEPSPAPLERPQAVSQG- LARK* EDTGPLQWEGTSALRGTDVAPRLNS VRVWPWPQPPKEPALHSMGL SLPKE .
African clawed frog STAH*TPFSRNAAGGMKPNWTLA.
trout FLKSA*RCMFP*YLTVN* E*RINCILL*KPFQIDSPYER-MAPALARS .
red swamp crawfish VHLFSSVLDIFCSPSTSLVWKTIRDSGILLLPFKVESPGVR-MSPSLARS .
zebrafish GCPPADKQTCYSSVTKITLGLSI*-DFCKSCWSRCPPEI -MPPAISGE .
pufferfish KDISLVCWIFFSPPLLIVMTEDYQG*WSVTFVV*GVNPOASMSPSLARS .

MUSCLE multiple sequence alignmentof the |N€ mammalian sequences upstream of
translated 5-UTR of TRPV6 the first AUG codon are conserved, but the

one from rabbit contains an in-frame stop
Identical aa residues (Compared with the codon. In contrast, sequences from the
human sequence) are shaded, other organisms contain several stop
codons upstream of the annotated AUG
and are not conserved. Sequence identity

annotated N termini with the first Met*! are in

Ped; ) is highest among the 40 amino acids
* : stop codon in frame upstream of the first Met residue (position
-~ -9a +1). This suggests that translation in
gap )
Fecher-Trostetal. J. Biol.  mammals may start at a non-AUG
Chem. (2013)288: 16629
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Now we come to something that you may not have expected.

Sometimes, protein translation may start at a non-AUG codon. This is called
,,alternative translation®.

Shown here is an alignment of the calcium channel protein TrpV6 from
different species.

The red colored sequence region on the right is annotated in databases as the
protein-coding region.

It is surprising to find that the sequence upstream of the translation start site is
highly conserved and extends 40 amino acids upstream.
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Alternative translation of human TRPV6

-40 "

ESRARQETEPLQEED GG PALEEADNAPRLSPVRVEDPRCQQAPKETPALRNSPN.
GAAGGCAGGAGACAGGAGAC GGGAC CUCUACAGGGAGAC GGUGGGE CGGC C CUUGGAGGGGCUGAUGUGGE CCCAAGGLUGAGUC CCGUCAGGGUCUGGLCUC GG CUCAGGC CCCCAAGGAGC CGGCCCUACACCCCAUG .
GGAGACAGAAGACAGGAGAC GGGAC CUCUACAGAGAGAGGACAGGL CGGCUCULGGGGGUGE CAAUGUGGL € CCAGGGUC GAGC CCAGUUGGGGUCUGGCAUCAGE CUCAGC CCCCCAAGGAAC CAGC CUUCCACCCCAUG .
rat GOAGGC AGAAC ACAGGAGAC GGGAC CUC UACAGAGAGAGGGUAGGL € GOC UC VUGGHGAUGL CAADGUGGE CCCAGGHX GAGL € CAGGUGLGGUC UGGC AU AGC CCAGC CCCCCAAGGACUCAGL CUUCCACCLCALG .
chimpanzee GAAGGCAGGAGACAGGAGACGGGACCUCUACAGGGAGAGGGLGAGL COGCCCUUGEGGGGOCUGAUGUGGCCCCAAGGCUGAGUC CCGUCAGGGUCUGGL CUCGGCCUCAGGCCCCCAAGGAGC COGCCCUACACCCCAUG .
gorilla GAAGGCAGGAGACAGGAGAC GGGAC CUCUACAGGGAGUC GGUGGGL CGGCC CULGGGGGGGCUGAUGUGGL € CCAAGGLUGAGUC C CGUCAGGGUCUGGE CUC GG CUCAGGL CCCCAAGGAGE CGGC CCUACACCCCAUG .
gibbon AAAGGC AGGAGACAGGAGAL GGGAL CUC UACAGGGAGAGGGE AGKL € GIK C CULGLOGHGLC UGADGUGGL CCCAAGGT UGAGUC CCGUC AGGHUC UGGL CK GGL L AGGL CCCCAAGGAGL CGGL CCUACACCCCALG .
GG CUGGAAGGL C CUGAGAL GGC AL CUCUC CGGGAAGAGGGUGHGL TGGC € CUC GHGGL UGL C CAVGUGGL € CCCAGHT UGAGUC CAGGUGGGGUC UGGC CUIGGE CCCAGC CCCCCAGGHAGL UGGL CCUCUGCUCCAUG .

dog GGACCCOGAAGGCAGGAGAC GGGACCUCUACAGGGC GAGGGCAGGL CGGCCCUUGAGGGOGCUGAUGUGGCCCC TAGGLUGAGUCCGUUGGEGGUCUGEL CUC GG CUCAGC CCCCCAAGGAGC CGGCCCUGCGCUCUAUG .
fien GOUIGIE CUCCAGC AGAL AMAC ARAC AUGEUALIIC AIIC AGIRIACLIAR A ALK IACLE R IGCEACIAAGHS ABGLC AICCEUGHCCUCCUGAMMIC AIGECACCCALG

human

mouse

Nucleotide alignment of 5'-UTR TRPV6 sequences includingthe AUG triplet
encoding the first methionine (red, +1) of the human protein.

Red, putative initiation sites;
underlined, STOP-codon in frame.

Experiments in the Flockerzi group (Medical department, Homburg) showed that
translation starts at Thr40 .

Fecher-Trostetal. J. Biol. Chem. (2013)288: 16629
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The group of Prof. Veit Flockerzi from Homburg discovered some years ago

that the TrpV6 protein is 40 amino acids longer than they and the rest of the
world previously thought.

In principle, this could have drastic consequences. Fortunately, for them, it
turned out that the biological properties of the TrpV6 channel that they
characterized for decades using a cloned version (that was 40 amino acids too
short) were practically the same as those of the full-length protein.
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Protocol resembles ChIP-Seq.

Translation is halted by applying ribosome
inhibitors.

Isolate ribosome-bound mMRNAs by size.

This results in protected mRNA fragments
termed ‘footprints'.

These ribosome footprints are isolated and
converted to a library for deep sequencing.

Brar, Weissman, Nature Rev Mol Cell Biol

Then treat sample with a nonspecific nuclease.

Cell type
of interest

In vivo capture of translating ribosomes

a Ribosome profiling
R ———_ 0

-Q j/_\" / T —AAAAAAAAA
-—Q_f /’\ .//_\.\,\v\v\r\A\;\»\‘\‘\“\

N U T T—AAMAAAAAAA

3 {3 TS—AAMAAAAAAAAA

l Nuclease treatment

- .
=~ Ribosom
— footprints

Library generation
Deep sequencing

\4

Read mapping

footprint reads

Ribosome

Genomic position

A% 16,651-664(2015)  Processing of Biological Data SS 2020

HT discovery of alternative translation: ribosome profiling

33

This slide explains the ribosome profiling protocol that was invented in the lab

of Jonathan Weissman at Stanford.

In an operational cell, ribosomes will constantly bind to mRNA messenger
molecules and translate them into protein sequences.

To monitor the occupancy of ribosomes, one applies small chemical molecules

that act as ribosome inhibitors and stall the further processing of mRNAs.

One can imagine that the conformations of the ribosomes get ,,frozen in a

particular state, such as stopping a video clip.

This situation is shown in the figure below the writing ,,a Ribosome profiling*.

The rest of the protocol is very similar to the ChIP-seq protocol.
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PreTIS: predict alternative translation initiation sites
1 CGGUGAGGGU UCU °GG GGCCUGGGAC AGGCAGCUCC GGGGUCCGCG GUUUCACAUC

61 GGAAACAAAA CAGCGGCUGG UCUGGAAGGA ACCUGAGCUA CGAGCCGCGG CGGCAGCGGG

121 GCGGCGGGGA AGCGUAUACC UAAUCUGGGA GCCUGCAAGU GACAACAGCC UUUGCGGUCC

181 UUAGACAGCU UGGCCUGG AGAACAC. A A A ACCUC. CU Uuuu

241 AAACA GU UCU CAG CUC CA

301

361

421

Suppose that a ribosome profiling experiment detected 2 start sites for this mRNA
sequence: CUG at position -78 and CUG at position -120 (blue colored codons).
These start sites are then considered TP start sites. All near-cognate start sites not
listed in the ribosome profiling dataset and upstream of the most downstream
reported true start site are then considered TN (red colored codons).

Light red colored codons : start sites not considered as false starts in the analyses
since they are iocated downstream of the most downstream reported true start site.

Grey colored downstream part : annotated CDS sequence

Italic (purple) upstream part : -99 upstream window needed to calculate some
features.

All marked start sites (TP and TN) exhibit a surrounding window of 99 nucleotides
as well as a downstream in—frame stop codon. In total, this MRNA sequence would
provide 2 true start sites and 9 false start sites out of 23 putative starts.

S 2020 Reuter et al Plos Comput Biol 34
(2016)12: e10005170
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Which positions are considered as potential alternative translation initiation
sites (aTIS)?

In this example, AUG at position 273-275 (colored light grey) would be the
annotated translation start site in the database. All subsequent sequence is
translated into protein.

But there are many potential alternative start sites upstream of this AUG that
differ by one nuclotide. They are termed ,,near-cognate* sites.

The first one is ACG at position 100-102 (colored red).

Let us assume that ribosome profiling detected two true start sites: CUG at
position 153-155 (which means 120 positions upstream of the canonical start
site) and CUG at position 195-197 (78 upstream).

These are colored blue. It is actually not easy to detect experimentally if both
of them are used or if only the first one is used. We will ignore this
complication.

All other alternative sites upstream of the first aTIS and between the two are
assumed to be true negatives because they are apparently not used.

For the other aTIS candidates downstream of the second true positive aTIS
site, we cannot make a statement whether they are also used or not because
they are ,,overshadowed* by the two aTIS sites upstream of them.
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Data sets used for ML classifier

Cell line Description Genes Start codons TPs TNs Used for

HEK293 Human embryonic kidney cells 3,566 AUG and near-cognate 4,482 49,520 Human prediction model
HEK293 Human embryonic kidney cells 391 AUG 332 447 Validation set

Mouse ES Mouse embryonic stem cells 1,632 AUG and near-cognate 3,009 19,864 Mouse prediction model

Three different datasets were used in this study to establish a human and mouse prediction model and to cross-validate the regression models.
numbers indicate ihe fiitered start sites used in the prediction approach.

doi:10.1371/journal.pcbi.1005170.t001

We only included curated mMRNA sequences with available mMRNA RefSeq
identifier (starting with NM_).

Daw Aata ic varvy iimhalanaad iniimhar Aaf TDa anAd Thle vars Aiffarant)
navv uawa io vl ulivaiaiivocu \IIUIIIUCI Vi 1o aliu 11No Vol UIIICICIIL}
— need to balance data sets (select random TN data points)

Reuter et al Plos Comput Biol (2016) 12: e10005170
V8 Processing of Biological Data SS 2020 35

These were the available suitable ribosome profiling data sets in 2015 when
we conducted this project.

The number of TN is 7-12 fold larger than TPs. Therefore, we downsampled
the TNs by randomly selecting the same number of data points.

If one would not do this, a ,,successful classifier could alway predict
,hegative® and would achieve around 90% accuracy on an imbalanced test set,
simply because there are about 10 fold more negatives in the full data set.

If one would balance the test set (50:50), then this classifier would fail
completely.
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5' UTR of
Flow-chart mRNA sequences
Detected by | Not detected by ribosome profiling
ribosome profiling | Upstream of most downstream true (detected) start
Data balancing was repeated
10 times to investigate model es) (%)
rObUStness Repeat 10 times Balance data
(random sampling)
Number positive starts
. . = Feature set (1252)
Significant features were SHmbar Tegatie st 1229 k-gram features
. . o 30% 70% 20 -motivated features
identified by the Wilcoxon-rank ‘ i 3 PWM features
= Wilcoxon-rank sum test
sum test. i ot L
Significant PWM and Significant k-mer
biologically-motivated features. features
I Prevent over-raining
Reduce complexity
50 features with
smallest p-values
Uncorrelated (r <|0.7])
and significant features
‘Metrics Apply thresholds Training and parameter
Accuracy 0sts1 selection (10-fold-CV)
senstuny (0 OO0 [remama e
- T Jem === m
Reuter et al. Plos ComputBiol | specifity
isi
(2016)12: e10005170 AuC
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This is the flowchart used to train a classifier that predicts which candidate
alternative start sites are used and which ones are not.

As true positives, we used the mRNA sequences detected in ribosome profiling
to be bound to ribosomes.

As true negatives, we used all remaining mRNA sequences that were not
detected.

Note that both steps include assumptions. There may be different reasons why
mRNAs appear to be bound although they are in fact not translated, and the
opposite.

Then, we compute a large number of features for the elements of both sets.
These will be explained on the next slide in more detail.

We select the 50 (out of 1252) features showing the largest differences
between both datasets in order to avoid over-training, and also check for
correlation between them.
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Features used

Mean value and standard
deviation of the 44 features
that were used in the best
human model.

PWM : probability weight
matrix

PF. ""Ilnl i}
P\\"Mlnl.lr = I()g __>

l 28nt

position—
frequency—matrix (PFM) :
sum of occurrences of a
nucleotide at position i
divided by the total number
of sequences contained in S.

Reuter et al Plos Comput Biol (2016)  sansies p-vaves <15= 10%)

12: 210005170
V8

Feature True starts Faise stats P-value
1 5 UTR length 414.412270.48 675.412545.35 107
2 5 UTR conservation oas016 o016 82410
3 PWM positive 27515 0.1422 82 55%10
h Komar; pstroam AUG 0221087 050209 5110
B 5 UTR: percentage A 018005 02:008 9610
6 Kozak sequence context 26721.07 23 92%10°
7. Translational efficlency of flanking sequence 83.75220.11 TTN28214 1.1 %10°
B Kemar: postion 1218.C 013003 0048 27010
9. K-mer: upstream Asparagine 1.26¢1.37 1.6121.61 40% 10
10. 1.1421.15 082211 92%10°
n 17.242743 18.8127.69 40%10°
" Kcmac: - fruma upstream Alanne aenze a2 40510
n K.mar. upstroam Alsine 1027245 susde 62110
14 5" UTR: percentage G 0.3220.06 0312005 7AW
I Codon conservation 02042 01203 32«10
16 K-mer: position -3 is A 0312046 02104 3410
17. K-mer: upstream CCG 2982243 2562231 TAx107™
|u K.mar. downstream CCA 204154 1750145 1110
19 K-maer: position -12is A 032046 019204 4010
2 K-mar.intrame upsiream Methionne 0071020 021048 3310
21 K.mar. upstroam Argiine 12150434 11300064 1510
2 K.mar. upaieam Hstidne 175 1975165 22010
2 K-mer: GCC 642387 5772375 1.1%10°
2 Kemar;postion 4G 0371048 0288045 23010
2 K.mar. upstroam Theoonine ase208 a2 49n10
2 K-mar.upsiream CGG av2st 2724 a2x10
a K.mar:upsream C FY T 96004 10410
2 Kemar; postion 215G 02042 0047 12010
29. K-mer. upstream Stop. 23N 266220 145107
» Kemar. UAG 13012 157313 5610
a K.mor. upsteam CAU 0s8s085 0735095 34x10
= K.mar: upsream Sarne 9441329 e 5710
x Kcmar. downstream Ghsamine asm20n a26e188 24x10
u Kcmar. AGG 20251 472260 21010
* K.mar: AGC sar240 a02s2190 21010
. K.mar: downstream ACC 1450126 1278117 20x10
w Kemar: UAA 1220102 1512176 62110
) Kcmar: ownstream Proine a6 86547 asx10
» K-mar:upsream CAA 075052 0915108 13510
w Kemar in-frama upstroam Histine 084077 o67s087 17010
a Kemar.upsieam GAU osas085 0773096 21010
@ Kcmac.in-fruma upstream GOC 121014 1022 67410
43 K-maer: in-frame upstream GCG 10421 42 0972127 62=10°
“ PWM negative 1.9421.34 1.5921.00 16% 107
Moan vakie aroshownin
bold). A4, 482 10 a0 49,520 fase s anaiysis, A1 between e and aise

1079
language (scipy version 0. 17.0). The PWM-scores are based on the test data (compare 10 F 1 4)
00i:10.1371 fowrnal petr 1005170 003
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These are possible features by which true translation start sites and false start
sites may potentially differ.

Obvious criteria are the length of the 5°UTR region and its conservation.

If the considered codon is actually a false start and real translation starts in

front of it, the annotated UTR may be too long. This matches the observation
that the 5‘UTR in front of false starts is much longer (675 nt) than in front of
true starts (414 nt).

If a UTR regions is highly conserved, this also suggests that it may in fact be
translated.

The K-mer counts are raw counts in a 99 nt upstream or downstream window
from the central codon.
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Evaluation

Accuracy Specificity Sensitivity Precision AUC Threshold
HEK293
Linear SVR 0.8010.01 0.80£0.01 0.810.01 0.800.01 0.80£0.01 0.62+0.01
RBF SVR 0.82+0.01 0.81£0.01 0.83+0.02 0.82+0.01 0.82+0.01 0.55+0.02
Polynomial SVR 0.80%0.01 0.80£0.01 0.81+0.02 0.800.01 0.80£0.01 0.59+0.02
Linear Regression 0.80£0.01 0.80£0.01 0.81x0.01 0.80£0.01 0.80£0.01 0.55+0.01
Mouse ES

Linear SVR 0.75£0.01 0.75+0.01 0.76+0.01 0.75+0.01 0.760.01 0.65+0.03
RBF SVR 0.7610.01 0.7610.01 0.760.02 0.76£0.01 0.7610.01 0.58+0.03
Polynomial SVR 0.75£0.02 0.75£0.01 0.76+0.02 0.75+0.02 0.75£0.02 0.62+0.03
Linear Regression 0.76+0.01 0.75+0.01 0.76+0.01 0.75+0.01 0.760.01 0.55+0.01

The prediction was repeated 10 times to evaluate the model robustness. Shown are the average performance measures.

doi:10.1371/journal.pcbi.1005170.t002

All human models perform very similarly with accuracies of about 80%

while the average performance of the mouse model is lower with average
accuracies of about 76%,

Reuter et al. Plos Comput Biol
(2016)12: e10005170
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Support vector regression gave only slightly better results than standard linear
regression. Hence, we used the robust linear regression for the Webserver
version of PreTIS.

The accuracies for the mouse data set were slightly lower.



Is model transferable to other species?
Unbalanced datasets
Performance of the best Mouse ES Mouse ES
Threshold t=0.54 t=0.52
human HEK293 model = = = =
applied to the mouse ES Predicted positive 2,161 4,569 2,273 5,072
d t t Predicted negative 848 15,295 736 14,792
atase Total 3.009 19.864 3.009 19.864
Accuracy 0.76 0.75
Sensitivity 0.72 0.76
— model is reasonably Specificity 0.7 0.74
Precision 0.32 0.31
tra nSfe rab |e, Balanced datasets
t . | Mouse ES Mouse ES
suggests universa Threshold t=0.54 t=0.52
translation code ™ ™ ™ ™
Predicted positive 2,161 689 2,273 763
Predicied negaiive 848 2,320 736 2,246
Total 3,009 3,009 3,009 3,009
Accuracy 0.74 0.75
Sensitivity 0.72 0.76
Specificity 0.77 0.75
Precision 0.76 0.75
doi:10.1371/journal.pcbi.1005170.1004
Reuter et al. Plos Comput Biol
(2016)12: e10005170
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Interestingly, when applying the trained human model to the mouse embryonic
stem cell data set from ribosome profiling, the results were almost as good as
with the model trained on mouse data.

On the one hand, this suggests that the mouse data set is maybe not so good.

On the other hand, this suggests that the translation code in human and mouse
is quite similar.



Alternative start codons of human gene GIMAP5

AUG at position
-203 is a hot
candidate with
a very high

w W g confidence

§oe ©  value of 0.92 of

£ A being a true
start site.

Predicted start sites were subdivided into 4 confidence groups and highlighted
by different colors and dashed lines:

- very high (best candidates with ¢ = 0.9),

- high (0.8 =¢ < 0.9),

- moderate (0.7 <¢ < 0.8) and

- low (t = 0.54 < ¢ < 0.7) initiation confidence c.

074
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As an example for the application of PreTIS, we show here the predictions for
the human gene GIMAPS.

The annotated start site is a AUG codon at position 0 (right of the shown
codons).

Listed are all alternative start sites upstream of the annotated translation start:
AUGs and codons differing by one nt.

For each putative alternative start site, we show the ,,translation initiation
confidence* predicted by PreTIS s linear regression model.

The predictions are color coded according to the confidence score.

AUG at position -203 is assigned the highest score.
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Here, we tested how the PreTIS prediction changes if one nt is exchanged to
an alternative nucleotide that could result e.g. from a SNP.

In the upper line, CUG at position -36, has a PreTIS score of 0.81 (see
previous slide).

The largest decrease to 0.64 would result from replacing G in position -12 by
C.

On the other hand, G at position +7 appears unfavorable. Replacing this by any
other nt increases the score to 0.86.

The second line considers CUG at position -44 with PreTIS score of 0.50,
which stands for low confidence.

Some mutations, e.g. U->A at position -3 increase the score to a much better
value of 0.66.

In the last line, CUG at position -160 has a low score of 0.25. Most mutations
show practically no change, except for C->A in position -12 (0.47) and C-> A
in position -3 (0.46).
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MS of 29 human tissues

60 20

=2 M Non-canonical coding regions detected
17 . . .
S % . using proteomics data (left) and different
g % 10 . alternative start codons identified by
5 20 1z s L acetylated N-terminal peptides (right). The
* J B J A majority of cases are N-terminal extensions
O — 0 T of annotated genes. All but one of the
L4 N & . . .
§§1@s§°§§?§° § o8 detected alternative translation start sites
&g & ° correspond to point mutations of the first

base of the classical AUG codon.
Novel N-terminus PLS3, ENSP00000289290

GEONAYHEDEREETOEORERDAR Validation of a novel translation start site
[ Reference Nerminus OROROWRRD ciermins for the protein PLS3. (Top) Novel
-« translation site position within the amino
acid sequence context, (bottom) mirror plot
. of the tandem mass spectra of the
= endogenous N-terminally acetylated
peptide (peaks pointing upwards) and the
i - corresponding synthetic peptide spectrum
= e w = w w w (peaks pointing downwards).
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Mol Syst Biol (2019)15:e8503

Wang et al. identified in 29 human tissues 117 aTIS peptides mapping to 89
genes and 99 alternative translation start sites.

Fifty-five of these aTIS peptides represent 5’ N-terminal extensions of the
original gene, 32 peptides represent novel (acetylated) N-termini downstream
of the canonical start site, 17 represent frame-shifts potentially leading to an
entirely new sequence, five peptides likely represent upstream ORFs (uORF)
with a stop codon before the canonical start site and 8 peptides with mixed
annotation.

One can validate the existence of aTIS peptides by comparing their spectra to
synthetic peptides.

Panel E shows an example for a peptide (ac)ATTQISKDELDELKEAFAK
derived from the actin-binding protein plastin-3 (PLS3).

Note the lacking y1 peaks (very left) for the experimentally detected (shorter)
peptide.
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(6) Removing sequence redundancy
Let's assume we want to know whether the amino acid composition of certain
protein sequences differs in one genomic region from the other regions.

For example, we want to know whether transmembrane (TM) segments of
membrane proteins are more hydrophobic than the rest of the protein sequence

To check this, we could simply analyze all protein sequences from NCBI, predict

the TM seaments in them and comnare the amino acid comnositions
e 1V segments inthem an pare the ami mposiions.

LU [LOIE= L0110 e

However, this search would likely be biased by
- what proteins have been sequenced and which ones not, and
- by duplicated sequencing experiments.

— It is very important to remove sequence redundancy before such analyses!
This can be done by software tools such as CDhit or BlastClust

V8 Processing of Biological Data SS 2020 43

For many bioinformatics analyses, we need to process the considered data set
and remove redundant sequences.

Here, we briefly explain for which applications this is important and mention
how this can be done with tools such as CDhit or BlastClust.
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BlastClust
blastclust-i infile -o outfile-p F -L .9-b T -S 95

The sequences in "infile" will be clustered and the results will be written to

The input sequences are identified as nucleotide (-p F); "-p T", or protein.

To register a pairwise match two sequences will need to be 95% identical (-S 95)
over an area covering 90% of the length (-L .9) of each sequence (-b T) .

Another popular package is CD-HIT, see http://weizhongli-lab.org/cd-hit/

https://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html

V8 Processing of Biological Data SS 2020 44

The Link given at the bottom of the slide links to a page explaining how
BlastClust works.

But BlastClust is apparently no longer included in the latest release of the
Blast program.
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Take home messages
- Usually one removes sequence redundancy when correlating sequence
features with properties of proteins etc.

- Check for overlapping genes

- Which translated variant is relevant? May want to try PreTIS

V8 Processing of Biological Data SS 2020
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Today, we addressed several points that may be relevant if you analyze
genomic data sets.
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V8

Additional slides (not used)

Processing of Biological Data SS 2020
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Evidence from mRNA expression

3 contrasting large-scale expression studies came to different conclusions.

(1) An EST-based study with 13 different tissues predicted that primary tissues
generally had a single dominant transcript per gene.

(2) In contrast, a large-scale study using RNAseq found that > 75% of protein-
coding genes had cell-line-specific dominant transcripts.

Thaaa manmaac with $thha s
1TIUST YcTlics willl uic 11

dominant transcri
(3) A second RNAseq study (Illumina Human BodyMap project) found that ca. 50%
of the genes expressed in the 16 tissues studied had the same major transcriptin
all tissues, whereas another third of the genes had major transcripts that were
tissue-dependent.

One curious resultin this study was that the major transcript was noncodingin
close to 20% of the protein-coding genes.

Ezkurdia etal J Proteome Res. (2015) 14: 1880-1887.
V8 Processing of Biological Data SS 2020
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Comparison proteomics - RNAseq

CCDS variants are based on genomic evidence and are variants that are mutually
agreed on by teams of manual annotators from NCBI, the Sanger Institute, EBI and
UC Santa Cruz.

A total of 13 297 genes were annotated with a single CCDS variant. This unique

manually curated variant agreed with the main proteomics isoform for 98.6% of the
3331 genes that were compared.

APPRIS annotates principal isoforms on the basis of conservation of structure and
function and selected a main isoform for 15 172 of the coding genes.

IOVIUINTTIO SATIM WIS i

proteomics isoforms over 4186 genes. The main proteomics isoform agreed with
the isoform with the most conserved protein features for 97.8% of these genes.

Ezkurdia af al weare ahle tn comnare the APPRISQ nrincinal ienfarme and tha main
CZKUrGia el ai. were aie 1 compare in€ Ar-nis principai ne !

In contrast, the longest isoform coincided with the main proteomics isoform only
for 89.6% of the genes.

Ezkurdia etal J Proteome Res. (2015) 14: 1880-1887.
V8 Processing of Biological Data SS 2020
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