V9 - Functional annotation
Program for today:

- Have all genes been studied with the same intensity?

- Functional annotation of genes/gene products: Gene Ontology (GO)

- significance of annotations: hypergeometric test

- (mathematical) semantic similarity of GO-terms
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In lecture 9, we will deal with the downstream analysis of raw experimental
data.

A typical transcriptomics or proteomic experiment may yield a set of
upregulated or downregulated genes. Functional annotation then deals with
extracting the biological meaning from these findings.

Often, this is done using the hypergeometric test based on functional terms
from the Gene Ontology or based on biochemical pathways from KEGG or
Reactome.



High imbalance in intensity of research on individual genes

Frequency of the number of research
publications associated with individual
human protein-coding genes in MEDLINE.
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o The observed disparity could in principle
@ reflect a lack of importance of many genes.
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0 - existing social structures of research,
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- preceding discoveries,

- the availability of technologies and
reagents, etc.

No. Publications

Stoegeretal. (2018)
PLoS Biol 16(9): €2006643.
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Link to this paper:
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006643

Importantly, the amount of knowledge about individual genes is largely
different. This figure shows how many papers have been published about
individual human protein-coding genes up to 2018.

Some genes (right tail of the distribution) have been studied by more than
1000 publications. On the other hand, some genes were only addressed by a
handful of publications. What is responsible for this imbalance?

Possibly the most studied genes are the most important genes in terms of their
function. But who should decide what functions are important?

Often, the research directions of individual scientists are the result of many
coincidences: How did they pick their PhD supervisor and post-doc advisor?
What were they working on? Which ones of the many grant applications that
scientists write got funded?



What determines the number of publications per gene?

Using information on 430 physical, chemical, and biological features of genes,
one can predict the number of publications for single genes with 0.64 Spearman

supported genes
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Stoegeretal. (2018)

PLoS Biol 16(9): €2006643.
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Here, the authors tried to find out which features determine what genes are
well studied.

Obviously, genes that can be robustly expressed and proteins that can be easily
synthesized have an advantage.

The reason is that scientists don‘t like to work on ,,difficult* things that only
work once in a while.



The number of publications per gene is
highly correlated between the current
decade and preceding time periods of
research (Spearman: 0.84).

specific human gene.

Stoegeretal. (2018)
PLoS Biol 16(9): e2006643.
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Earlier studied genes continue to be studied
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The upper figure shows that the number of publications for a gene in the

period 2011-2015 is strongly correlated to the number of publications until

2010.

This shows that scientists continue to study research questions around certain

genes that they and others have already studied before.

If one includes the year of the first publication, the prediction accuracy
improves considerably, which emphasizes the importance of this feature

relative to the other 430 features.




Scientists working only on model organisms declining

-> Fraction of scientists who—within 100

the indicated year—publish exclusively
on nonhuman genes (or gene
products) or exclusively on human
genes (or gene products), or both.
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In the 1980s and 1990s, the fraction of scientists who exclusively published on
human genes had been stable. But there were two opposite trends during this time:
the fraction of scientists working on human and nonhuman genes has been
steadily increasing in parallel to a decrease of scientists publishing exclusively on
nonhuman genes.

Publishing scientists [%]

Around 2000, the fraction of scientists working on human and nonhuman genes
started to plateau, while the fraction of scientists working exclusively on human
genes increased by approximately 10 percent points and has since been steadily
increasing.

Stoegeretal. (2018)

PLoS Biol 16(9): €2006643.
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There has been a continuous decrease in the scientific activities of model
organisms. This accelerated around the year 2000 in favor of an increased
fraction of scientists that exclusively work on human genes.

One can speculate whether this related to the ability of obtaining funding for
research projects. Also, this may be due to the availability of the human
genome sequence.



Attention of genes
Attention = fractional counting of publications; 4

0=0.91

Rather than counting every publication as 1
towards every gene, the value of a publication
towards a given gene is 1/(number of genes
considered in the publication).

Iog 10 ane}ntlonpublvwllons
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Then, all the values of publications citing a log,, publications

particular gene are summed. |

Plotted here are the ranking of fractional counting versus normal counting
of publications with multiple genes.
In normal counting, the occurrence of a gene in a publication counts as 1.

Stoegeretal. (2018)
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For genes addressed by many publications with logl10 > 2, there is a good
linear correlation of both counting measures.

For genes addressed in only few publications, the attention scores based on
fractional counting are downward shifted = the attention values of such genes
are reduced with respect to normal counting.



Attention of genes

Genes that have received the most
attention in publications are around 3 - 5
times more likely to be sensitive to loss-of-
function (LoF) mutations or to have been
identified in genome-wide association
studies (GWAS).
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research effort concentrates on already
well-studied genes.

Stoegeretal. (2018)
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Given the observed historic continuity of scientific endeavors, Stoeger et al.
wondered whether biomedical research has already identified all particularly
important human genes and hence allocates the production of publications
accordingly. Inspite of the simplifying assumption made for fractional
counting (see previous slide), the authors reassuringly observed that genes that
have received the most attention in publications are around three to five times
more likely to be sensitive to loss-of-function mutations or to have been
identified in genome-wide association studies (GWAS). This enrichment is
greatest for genes that have been repeatedly identified by several independent
studies (“frequent GWAS™) on the most frequently studied human phenotypic
traits.

However, one notices an extraordinarily more extreme 13-fold enrichment in
the average attention (from -10 to more than +2) when comparing the genes
that have received the least attention to those genes that have received the
highest attention. Hence, while biomedical research does focus on important
genes, a disproportionally high amount of research effort concentrates on
already well-studied genes.



What do we know about genes?
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(Top left) Attention_publication levels. Genes with values below 1 (,,unstudied
genes®) were only addressed in publications addressing several or many genes.

(Right) Statistics whether certain types of experiments have been performed,
or whether homologs exist in model organisms.

For some experiments (e.g. Western Blots), there is a drastic difference
between ,,studied genes (> 40%) and ,,unstudied* genes (< 10%).

Also, ,,unstudied* genes are only about half as likely to have a homolog in
model organisms.

Thus, the ,,0ld-fashioned* scientists who worked and are working on a gene-
by-gene basis on model organisms had no chance to detect these genes.



Summary
Using machine learning, we can predict the number of publications on individual

genes, the year of the first publication about them, the extent of funding by the
National Institutes of Health, and the existence of related medical drugs.

We find that biomedical research is primarily guided by a handful of generic
chemical and biological characteristics of genes, which facilitated
experimentation during the 1980s and 1990s, rather than the physiological
importance of individuai genes or their reievance to human disease.
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The authors suggest that an insufficient understanding of the biology of many
disease genes has prevented the successful development of further medical

therapies and that current preclinical research is biased towards experimentally
well-accessible genes



Primer on the Gene Ontology

The key motivation behind the Gene Ontology (GO) was the observation that
similar genes often have conserved functions in different organisms.

A common vocabulary was needed to be able to compare the roles of
orthologous (— evolutionarily related) genes and their products

across different species.
A GO annotation is the association of a gene product with a GO term

GO allows capturing isoform-specific data when appropriate. For example,
UniProtKB accession numbers P00519-1 and P00519-2 are the isoform
identifiers for isoform 1 and 2 of P00519.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876

Vo Processing of Biological Data SS 2020 10

For those of you who are not closely familiar with the Gene Ontology, here is
some introduction or review.

10



The Gene Ontology (GO)

Ontologies are structured vocabularies. ot
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At the top: most general term (root)

Red: tree leafs (very specific GO terms)

Green: common ancestor

Blue: other nodes.

Arcs: relations between parent and child nodes
PhD Dissertation Andreas Schlicker (UdS, 2010)
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The Gene Ontology consists of 3 branches: biological process, molecular
function (chemical details), and the cellular component that the encoded
protein localizes to.

Each branch starts with a root node on top and subsequent child nodes with
more and more specific functions that inherit the functions of all their parents
and grand-parents.
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edges are directed, that is, there
is a source (parent)and a
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Rhee et al. (2008) Nature
Rev. Genet. 9: 509

Simple tree vs. cyclic graphs

[\
= =

\/ O\
H B

b | A directed acyclic

-~

|58

graph (DAG), in which each
child can have either one or
more parents.

The node with multiple
parents is colored red and
the additional edge is
colored grey.
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The Gene Ontology has the topology of a directed acyclic graph where child

nodes can have multiple parent nodes.

12



Gene Ontology is a directed acyclic graph

process (root) An example of the node
v B vesicle fusion
Membrane organizat

Increasing il B et in the BP ontology with
| |es multiple parentage.

Dashed edges : there are other nodes not shown between the nodes and the root
node.

Root : node with no incoming edges, and at least one leaf.

Leaf node : a terminal node with no children (vesicle fusion).

Similar to a simple tree, a DAG has directed edges and does not have cycles.

Depth of a node : length of the longest path from the root to that node.
Height of a node: length of the longest path from that node to a leaf.

V9 Rhee etal. (2008) Nature Processing of Biological Data SS 2020
Rev. Genet. 9: 509 .

This example shows that the leaf node ,,vesicle fusion* (found e.g. in
endocytosis and exocytosis and in vesicular transport between different
compartments) has two branches of parent nodes.

The left branch focuses on the vesicles, the right branch on the membrane
processes.

Although the arrows are directed downwards in this figure, they should be read
in the opposite direction. E.g. ,,vesicle fusion® is a ,,part_of* ,,vesicle-mediated
transport, not the other way around.

13



relationships in GO is_a

is a part_of
Gene X regulates relationship
negatively regulates
positively regulates

4 YA A y— TN

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
V9 Processing of Biological Data SS 2020 https://arxiv.org/abs/1602.01876

Here, the arrows are oriented in the correct upward direction.
There exist five different types of relationships shown on the top right.

All terms (except from the root terms representing each aspect) have an “is a”
sub-class relationship to another term; e.g. GO:1904659:glucose transport is a
GO:0015749:monosaccharide transport.

The Gene Ontology employs a number of other relations, including “part of”,
e.g. GO:0031966:mitochondrial membrane is part of
G0:0005740:mitochondrial envelope

and “regulates”, e.g: GO:0006916:anti-apoptosis regulates
GO:0012501:programmed cell death

As shown in the figure, ,,regulating® arrows may connect different branches or
reach directly to upper levels.

Obviously, ,,negatively regulates™ and ,,positively regulates are
specifications of ,,regulates®. Sometimes, the direction of regulation (up/down)
may not be known — then one would assign ,,regulates®.

Also, in some cases, the direction of regulation may be in both directions
depending on the particular condition. Also then, one would assign
,regulates®.

14



Full GO vs. special subsets of GO

GO slims are cut-down versions of the GO ontologies
containing a subset of the terms in the whole GO.

They give a broad overview of i ntoiogy content

he o
without the detail of the specific fine grained terms.

GO slims are created by users according to their needs, and may be
specific to species or to particular areas of the ontologies.

GO-fat : GO subset constructed by DAVID @ NIH
GO FAT filters out very broad GO terms

www.geneontology.org
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The gene ontology terms are of different nature ranging from very general
terms that are annotated to thousands of genes to very specialized terms that
are annotated only to few genes.

Depending on the application, scientists may consider using either only subsets
of general terms (GO slim) or subsets of specific terms (GO fat).



Significance of GO annotations

3

Very general GO terms such as “cellular metabolic process
are annotated to many genes in the genome.

Very specific terms belong to a few genes only.
— One needs to compare how significant the occurrence of a
GO term is in a given set of genes

compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

PhD Dissertation Andreas Schlicker (UdS, 2010)
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Often, one wants to annotate biological meaning e.g. to the results of a
differential expression analysis. It may not be helpful to know that half of the
upregulated genes carry out ,,metabolic processes*.

But it would be very helpful to know if several among them are e.g. annotated
with ,,purine nucleotide biosynthetic process ““, which is a much more
specific GO term (0006164).

Hence, one needs to determine the statistical significance of the fact that out of
393 human genes in total that are annotated with this GO term, e.g. 100 are up-
regulated.

16



Hypergeometric test
min(n,K ) ([\'ﬂ.) (N—]\'ﬂ.)

p-value = E : Lo

sl ()

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation T is statistically
significant enriched in a given test set of genes compared to the full genome.

N : number of genes in the genome

n . number of genes in the test set

K, : number of genes in the genome with annotation 1.
k; - number of genes in test set with annotation 1.

The hypergeometric test provides the likelihood that k;; or more genes
that were randomly selected from the genome also have annotation Tr.

V9 Processing of Biological Data SS 2020 http://great stanford.edu

Often, one uses the hypergeometric test to compute a p-value for the statistical
significance of GO terms.

The formula needs to be interpreted in the following way:

In the denominator (Dt. Nenner), we consider the combinatorial number of
drawning n genes out of a large set of N genes.

In the numerator (Dt. Zéhler), we enter the current situation: the first term is
the number of i genes having a particular GO term (out of K_pi genes in the
full set of N genes).

The second term considers the remaining n-i genes that do not have this GO
term assigned (here, we assume that they then actually do not have this
function — which may be incorrect due to partial knowledge).

These n-i genes can be drawn from the remaining N-K_pi genes in the full set
of N genes that do not have this GO term assigned.

By computing this ratio, we compute the number of cases where we could
generate such a scenario by chance.

If there exist many such cases, then the p_value would be quite high, and
hence the statistical significance low.

17



Selecti 2 k; genes with
annotation 1 fromthe genome.
There are K;, such genes.

min(n, K

) & hY
\ ) i v

i=kn

The sumruns from k;
elements to the maximal
nossiblenumber of elements,
This is either the number of
genes with annotation T in the
genome (K;,) or the number of
genesin the test set (n).

Hypergeometric test

The other n—jgenesin the test
set do NOT have annotation .
There are N — K, such genesin
the genome.

() (C27)
p-value = Z T\

corrects forthe number of
possibilities for selecting
n elements froma set of
N elements.

This correctionis applied if the
sequence of drawing the
elements is not important.

A& Processing of Biological Data SS 2020 http://great stanford. edu/

http:/iwww.schule-bw.de/

The p-value is the probability that a scenario at least as extreme as observed
could occur by chance.

Therefore, we also consider cases where more than k_pi genes in the small set
of n genes have this GO term. This is the reason why we need to sum over all
these more extreme cases.

At least k_pi genes should have the GO term. At most all n genes could have
the GO term.



Example
min(n,K;) (I\"ﬁ) (;‘\"—I\’,.,)

i n—i

p-Wert = Z —
1=k ( n )

r Gene transcription start site
+—==— Curated/inferred gene regulatory domain
% Ontology annotation (e.g. “actin cytoskeleton”)

Y  Genomic region (e.g. ChiP-seq peak)

K R K
e L2 | W v vvy v v[lyvy
(———  (—— | )l
—_—— ¢ )k :
Hypergeometric test over genes
N = 6 total genes
. . . . Kn = 3 genes annotated with x
Is annotation 1T significantly enriched n = 3 genes with an assaciated genomic region
. Kn =3 gene tated and with e eqgic
in the test set of 3 genes? g g;ncs annotated and with a genomic region

Yes! p = 0.05 is (just) significant.
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This is a small-scale example, where we can evaluate the hypergeometric test
by hand. We assume a case where a genome contains only N = 6 genes (linear
bars between brackets below the line, the arrows indicate the position of
transcriptional start sites and the direction of transcription). Further, we
assume that the K pi 3 genes colored green possess a property (GO
annotation) pi.

Now we perform an experiment, e.g. differential expression analysis, and find
that n = 3 genes are upregulated in condition 2 vs. condition 1. Interestingly,
all these 3 genes have property pi -> k _pi = 3.

Is this reason enough to get superexcited about this finding? What is the
chance of obtaining a similar result by chance, i.e. blindly picking the 3 white
balls out of a box with 3 white balls and 3 black balls.

In total, there are 6 over 3 possibilities of selecting 3 genes out of 6 genes. In
this example, k pi, K pi and n are all equal to 3. Therefore, we only need to
consider the case 1 =3 and can omit the summation.

In the numerator, the first term is 3 over 3, which is equal to 1 by definition.
The second term is 3 over 0, which is also equal to 1 by definition.

The denominator is 6 over 3, whichis (6 x 5x4) /(1 x2x 3)=20. So the
observed result of this experiment is just significant (p-value = 0.05).

19



Multiple testing problem

In hypothesis-generating studies it is a priori not clear,
which GO terms should be tested.

o

but many tests with many, often all terms that the Gene Ontology provides

and to which at least one gene is annotated.

Result of the analysis: a list of terms that were found to be significant.

Given the large number of tests performed,
this list will contain a large number of false-positive terms.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
V9 Processing of Biological Data SS 2020 http://great stanford.edu
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In the example just discussed, we had considered only 1 property named pi.

However, in a typical differential expression analysis, we consider a large
number of GO terms.

This leads to a severe problem, the so-called multiple testing problem, because
we subject the same experimental outcome (which genes are up/down-
regulated for a given number of samples?) to many statistical tests for the
various GO terms. Each hypergeometric test applies to a particular GO term.

20



Multiple testing problem

If one statistical test is performed at the 5% level
and the corresponding null hypothesis is true, there is only
a 5% chance of incorrectly rejecting the null hypothesis

Armm Avimmnda N NE immmeean 4+ rmimabiama

However, if 100 tests are conducted and all corresponding
null hypotheses are true, the expected number of incorrect rejections
(also known as false positives) is 5.

If the tests are statistically independent from each other,
the probability of at least one incorrect rejection is 99.4%.

www.wikipedia.org

V9 Processing of Biological Data SS 2020 http://great stanford.edu
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Now we will discuss the so-called multiple testing problem.

This typically leads to the application of the False Discovery Rate (FDR)
correction of the obtained p-values and yields ,,adjusted p-values®.

First, we need to understand what the problem is.

There is no problem if we only perform one statistical test where we test one
null hypothesis.

The problem arises if we conduct a lot of statistical tests on the same data.

For example, we could have a cohort of 100 tumor patients and 100 healthy
individuals.

The first test could be to see if gene 1 is differentially expressed between both
groups.

The second test would be the same for gene 2 and so on.
In the end, we would have conducted 20.000 statistical tests.

The chance that some of these genes will in fact show a significant difference
between both groups is very high.

21



Bonferroni correction

Therefore, the result of a term enrichment analysis must be subjected
to a multiple testing correction.

P = T 45
I IS UIC DOUINICIori currecuvrl.

The most simple o u
Carlo Bonferroni
Here, each p-value is simply multiplied by the number of tests. (1892-1960) did not
invent the ,Bonferroni“
correction, but it uses

his inequalities.

This method saturates at a value of 1.0.

Bonferroni controls the so-called family-wise error rate,
which is the probability of making one or more false discoveries.
It is a very conservative approach because it handles all p-values as independent.

Note that this is not a typical case of gene-category analysis.
So this approach often leads to a reduced statistical power.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017); wikipedia.org
V9 Processing of Biological Data SS 2020 http://great stanford.edu
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Let us consider the same example (100 healthy, 100 tumor patients, 20000
genes and assume that the smallest (not adjusted) p-value is 10-5.

The Bonferroni correction simply multiplies all p-values by the number of
statistical tests (20000). This yields 2 x 10-1 as smallest adjusted p-value,
which would not be considered significant.

22



Benjamini Hochberg: expected false discovery rate

The Benjamini-Hochberg approach controls the expected false discovery rate
(FDR), which is the proportion of false discoveries among all rejected null
hypotheses.

This has a positive effect on the statistical power at the expense of having less
strict control over false discoveries.

Controlling the FDR is considered by the American Physiological Society as
“the best practical solution to the problem of multiple comparisons”.

Note that less conservative corrections usually yield a higher amount of significant
terms, which may be not desirable after all.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
V9 Processing of Biological Data SS 2020 http://great stanford.edu
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Let us consider an example where 500 genes were determined as differentially
expressed.

With a "false discovery rate" set to 0.1, this actually means you expect 50 of
them to be false positives, so they are actually NOT differentially expressed.

This is a nice video that motivates the BH method:
https://www.youtube.com/watch?v=K8LQSvtjcEo
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Benjamini Hochberg correction: how to recipe

0. Select a FDR threshold Q (this is a percentage, chosen by you). Depending on
the specific project, FDR may be set to values between 1% and 25%.

1. Put the individual p-values in ascending order.

2. Assign ranks to the p-values. For example, the smallest has a rank of 1, the
second smallest has a rank of 2 etc

3. Calculate each individual p-value’s Benjamini-Hochberg critical value, using the
formula (i/m)Q, where:

i = the individual p-value’s rank,
m = total number of tests,
Q = the false discovery rate

4. Compare your original p-values to the critical B-H from Step 3; find the largest p
value that is smaller than the critical value.

https://www.statisticshowto.com/benjamini-

V9 Processing of Biological Data SS 2020 hochberg-procedure/
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Steps 1 — 4 are the main steps of the Benjamini Hochberg procedure.

I have added step 0 to this because the FDR threshold should be determined

first, not after seeing what results are obtained.

24



Benjamini Hochberg correction: how to recipe

As an example, the following list of data shows a partial list of results from 25
tests with their p-values in column 2.

The list of p-values was ordered (Step 1) and then ranked (Step 2) in column 3.
Column 4 shows the calculation for the critical value with a false discovery rate of
25% (Step 3). For instance, column 4 for item 1 is calculated as (1/25) * .25 = 0.01:

The bolded p-value (for Children)is

Variable PValue  Rank (I/m)Q

the highest p-value that is also smaller Depression 0.001 1 0.01

than the critical value: .042 < .050. All [Family History  0.008 - 0.02

L . |Obesity 0.039 3 0.03

values above it (i.e. those with lower 'Other health 0.041 4 0.04

p-values) are highlighted and (Children 0.042 5 0.05

considered significant, even if those p- Divorce 0.060 6 0.06

" Death of Spouse  0.074 7 0.07

values are not lower than the critical Linvted income 0.205 8 0.08
values.

E.g. Obesity and Other Health are individually not significant when you compare the
result to the final column (e.g. .039 > .03). However, with the B-H correction, they are
considered significant; i.e. you would reject the null hypothesis for those values.

https://www.statisticshowto.com/benjamini-
V9 Processing of Biological Data SS 2020 hochberg-procedure/
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This is an example how FDR-adjusted p-values are computed in practice.

Column 2 contains the p-values obtained by applying a statistical test to the
data, e.g. a t-test.

Then, for a particular FDR-threshold, one determines the critical value
(I/m)xQ.
Interestingly, the magnitude of the p-values itself does not enter here.

If the p-values are very small, they have a better chance of being smaller than
the critical value. Note that p-values tend to become smaller and smaller the
more data points are available.

On the other, the critical values decrease inversely with the number of tests
performed (m). This penalizes against doing many tests on the same data.
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GO is inherently incomplete
The Gene Ontology is a representation of the current state of knowledge,;
thus, it is very dynamic.
The ontology itself is constantly being improved to more accurately
represent bicle
The ontology is augmented as new discoveries are made.
At the same time, the creation of new annotations occurs at

a rapid pace, aiming to keep up with published work.

Despite these efforts, the information contained in the GO database
is necessarily incomplete.

Thus, absence of evidence of function does not imply absence of function.

This is referred to as the Open World Assumption

Gaudet, Dessimoz,
V9 Gene Ontology: Pitfalls, Biases, Remedies Processing of Biological Data SS 2020 25
https://link springer.com/protocol/10.1007%2F978-1-4939-3743-1_14

Now, we will discuss an important aspects of the Gene Ontology: its
incompleteness.

(1) The functional annotations in GO try to follow the expansion of the
scientific knowledge, but can only do this with a significant time delay.
Also, it is impossible to completely cover all scientific discoveries.

Sometimes, there may be even contradictory scientific reports in the literature
about the function of one gene.
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Statistics of Gene Ontology terms
Ontology Property Value
Valid terms 44411 (A=-97)
Obsoletedterms 2947 (A= 23)
Mergedterms 2056 (A=91)
Biological processterms 29112
Molecular function terms 11118
Cellular componentterms 4181
Annotations Property Value
Number of annotations 7,975,639
Annotations for biological process 3,069,526
Annotations for molecular function 2,455,089
Annotations for cellular component 2,451,024
Annotations for evidence PHYLO 4,163,423
Annotations for evidence IEA 1,978,576
Annotations for evidence EXP 759,654
Annotations for evidence OTHER 791,743
Annotations for evidence ND 241,978
Annotations for evidence HTP 40,265
Number of annotated scientific publications 159,963
V9 Processing of Biological Data SS 2020
http://geneontology.org/stats.html

This statistics was taken from the Gene Ontology website and refers to the
current release of June 2020.



Gene Ontology evidence codes

Experimental evidence codes

The EXPerimental (EXP) evidence codes indicate that there is evidence from an
experiment directly supporting the annotation of the gene.

E.g. an association between a gene productand its subcellular localization as
determined by immunofluorescence would be supported by the Inferred from Direct
Assay (IDA) evidence code, a subtype of EXP evidence.

The experimental evidence codes are:

Inferred from Experiment (EXP)
Inferred from Direct Assay (IDA)
Inferred from Physical Interaction (IPI)
Inferred from Mutant Phenotype (IMP)
Inferred from Genetic Interaction (IGI)
Inferred from Expression Pattern (IEP)

http://geneontology.org/docs/guide-go-evidence-codes/

V9 Processing of Biological Data SS 2020
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The link
http://geneontology.org/docs/guide-go-evidence-codes/
provides detailed further information about each ,,inferred from* code.

Experimental evidence codes are the strongest informations because the

evidence is taken from direct experimental assays of this particular gene in this

organism.
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Gene Ontology: Phylogenetically-inferred annotations

Phylogenetic principles, reconstructing evolutionary events to infer relationships
among genes, provide a powerful way to gain insightinto gene function.

Phylogenetically-based annotations are derived from an explicit model of gain and
loss of gene function at specific branches in a phylogenetic tree.

Each inferred annotation can be traced to the direct experimental annotations that
were used as the basis for that assertion.

Inferred from Biological aspect of Ancestor (IBA)
Inferred from Biological aspect of Descendant (IBD)
Inferred from Key Residues (IKR)

Inferred from Rapid Divergence (IRD)

A curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators
to infer annotations among members of a protein family.

V9 Processing of Biological Data SS 2020
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http://geneontology.org/docs/guide-go-evidence-codes/

Phylogeny-based annotations make up an important part of all GO annotations.

On the next slides, we will discuss a few examples how how the PAINT tool is
used to decide on phylogeny-based annotations.
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Gene Ontology: PAINT

MONDO_ENSMODP00000030934
MONDO_ENSMODP00000001308
ORI

ORNAN_ENSOANP00000021201 -
XENTR_ENSXETP00000048949
FUGRU_ENSTRUP00000009237

XENTR_ENSXETPO
FUGRU_ENSTRU

spolt ~——
ANOGA_AGAP010282-PA

MSH oo

Q752H0_ASHGO
Q58374_EMEN!

Q58374_EMENI
msh-2 =

msh2
BINALE_ENTHI
EMI_172750 .
msh2

BINALE_ENTHI
EMI_172750 ==
msh2

This example presents a MutS homolog family showing experimental evidence for
‘GO term’. (A) Primary experimentally based annotations to one term or any of its
ancestors (light green labels) are used to infer that the most recent common
ancestor (CA) of the all those proteins also had that function. The curator notes this
by dragging the term onto the node of the MCRA (orange box).

(B) Subsequently, PAINT propagated this annotation forward to other descendant

leaves (blue labels). https://pubmed.ncbi.nim.nih.gov/21873635/

V9 Processing of Biological Data SS 2020
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Publication on PAINT: https://pubmed.ncbi.nlm.nih.gov/21873635/

The first element necessary for PAINT curation is the generation of
phylogenetic trees to be annotated with functional evolution events. PAINT
presents the biocurator with a phylogenetic tree and a multiple sequence

alignment dynamically retrieved from the PANTHER database, and auxiliary

information such as gene and protein names and identifiers. In addition it

displays all the experimentally based annotations dynamically retrieved from

the live GO database.
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Gene Ontology: PAINT — gain of function

The most recent common ancestor
(MRCA) of all eukaryotic MSH2
orthologs (leftmost orange circle)
already likely functioned in DNA
repair and maintenance of DNA
repeats. The gene was then coopted
in the animal MRCA for a role in
apoptosis, and later, in the vertebrate
MRCA for a role in somatic hyper-
mutation of immunoglobulin genes.
Inferences for ancestral genes
(orange circles) are based on
experimental GO annotations for the
genes shown in green, which are
inferred by inheritance for
descendants including uncharac-
terized genes in extant organisms
shown in blue. Thus, the ortholog in
Bos taurus, for example, will be
annotated by PAINT with different
https://pubmed.ncbi.nim_nih.gov/21873635/ functions than the ortholog in

) ! Saccharomyces cerevisiae.
V9 Processing of Biological Data SS 2020
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A gain of function is the addition of a function to a protein, while retaining its
other existing functions. In PAINT, a biocurator is presented with all of the
experiment-based GO annotations for the genes in a given family. For each
annotation, the curator infers when in the evolutionary history of the family a
given function was most likely to have first evolved, i.e. which ancestor
‘gained’ the function. This is recorded as an annotation of a gene at an internal
node in the phylogenetic tree and means that the function is inferred to have
evolved along the branch leading to that gene. The location of the inferred
annotation determines the possible ‘phylogenetic span’ of the inferred
annotations, since only direct descendants of the annotated ancestral gene can
inherit that annotation. Gain of function may occur after a speciation event,
meaning that orthologous genes will not share all functions in common. One
example occurs in the MSH2 subfamily of PTHR11361, where a gene
originally involved in recognizing DNA mismatches and recruiting the DNA
repair machinery was co-opted in animals to regulate apoptosis and in
vertebrates to mediate somatic hypermutation of immunoglobulin genes
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Gene Ontology: PAINT - loss of function

Curated active site information from CDD (cd03085)

The active site residues of PGM1
T 3T relatives have been annotated
""""""" based on the 3D protein structure

ILTASHcpggp

b e for PGM from Paramecium

1 EASHepash tetraurelia.

15 EABHepg g5 FOMS sublamly

15 ERRNCRy o5 In PAINT, the biocurator used the
1o RaRNE RS o integrated multiple sequence
o alignment viewer to determine
TTERNNEDS ot that key active site residues are
15 EARERE o mutated in all of the vertebrate
;t::::::ZZZ PGMS5 orthologs, suggesting that
LEABNAD g g5 POM! sty phosphogiucomutase activity was
;EE-E-{%EE lost shortly after duplication. The
ILTASHAPG 9P biocurator correspondingly

ILTASHAPggP

annotated the vertebrate
ancestor of PGM5 with ‘NOT
phosphoglucomutase activity’,
which PAINT then propagated to
all vertebrate orthologs of PGM5.

https://pubmed.ncbi.nim.nih.gov/21873635/

V9 Processing of Biological Data SS 2020
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When a biological characteristic was lost during evolution, GO annotates an
ancestral (or extant) gene with the ‘NOT’ qualifier prefixed to the relevant
annotation. ‘NOT” annotations are inherited by descendants just like other GO
annotations, in addition to preventing the inheritance of the corresponding
positive annotation. ‘NOT” annotations of ancestral genes must be supported
by evidence, either: (i) an experiment-based annotation of a descendant
sequence indicating it lacks this function; or (ii) absence of specific residues in
the sequence, e.g. a missing active site residue.

In this example, loss of function can be observed in the phosphoglucomutase
(PGM) family. Based on the phylogeny and experimental annotations,
phosphoglucomutase activity most likely evolved prior to the last universal
common ancestor and is found in most eubacteria and eukaryotes. A gene
duplication event in the vertebrate ancestor in this family resulted in two genes
that would become PGM1 and PGMS5 in humans. Both mouse and human
PGMS5 have been demonstrated experimentally to have lost
phosphoglucomutase activity. These experimental annotations strongly suggest
that the loss occurred before the mouse—human common ancestor, but how
long before? Based on active site mutations present in almost all of the
vertebrate PGMS5 proteins, the biocurator determined that the loss of function
occurred in the vertebrate common ancestor. Obviously, curators must go deep
in the specific biology of this gene, its function, and its phylogeny.
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Gene Ontology evidence codes

Computational analysis evidence codes

Use of the computational analysis evidence codes indicates that the annotation is
based on an in silico analysis of the gene sequence and/or other data as described
in the cited reference. The evidence codes in this category also indicate a varying
degree of manual curatorial input. The computational analysis evidence codes are:

Inferred from Sequence or structural Similarity (ISS)
Inferred from Sequence Orthology (ISO)

Inferred from Sequence Alignment (ISA)

Inferred from Sequence Model (ISM)

Inferred from Genomic Context (IGC)

Inferred from Reviewed Computational Analysis (RCA)

http://geneontology.org/docs/guide-go-evidence-codes/

V9 Processing of Biological Data SS 2020
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Also ,,computational* analysis requires the manual activity of a curator. An
ISS annotation is often based on more than just one type of sequence-based
evidence and may involve searches with BLAST, profile HMMs, TMHMM,
SignalP, PROSITE, InterPro, ctc. Evaluation of output from these search
tools leads an annotator to a particular ISS annotation for a particular protein.

E.g., a BLAST search might reveal that a query protein matches an
experimentally characterized protein from another species at 50% identity over
the full lengths of both proteins. After reading literature about the match
protein, the curator sees that the match protein is known to contain a domain
located in the plasma membrane and another domain that extends into the
cytoplasm. It is also known from the literature that the experimentally
characterized match protein requires the binding of ATP to function. TMHMM
analysis of the query protein predicts several membrane spanning regions in
one half of the protein. In addition there are PROSITE and Pfam results which
reveal the presence of an ATP-binding domain in the other half of the protein
which TMHMM predicts to be cytoplasmic. These four search results taken
together point to a probable identification of the query protein as having the
function of the match protein.
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Gene Ontology evidence codes: electronic annotations

‘Electronic’ (IEA) annotation are not manually reviewed. IEA-supported annotations are
ultimately based on either homology and/or other experimental or sequence
information, but cannot generally be traced to an experimental source.

Three methods make up the bulk of these annotations.

(1) InterPro2GO is based on the curated association of a GO term with a generalized
sequence model (‘signature’) of a group of homologous proteins. Protein
sequences with a statistically significant match to a signature are assigned the GO
terms associated with the signature, a form of homology inference.

(2) computational conversion of UniProt controlled vocabulary terms (including
Enzyme Commission numbers describing enzymatic activities, and UniProt
keywords describing subcellular locations), to associated GO terms.

(3) annotations are made based on 1:1 orthologs inferred from Ensembl gene trees,
an approach which automatically transfers annotations found experimentally in one
gene, toits 1:1 orthologs in the same taxonomic clade (e.g. those within the
vertebrate clade, and separately, those within the plantclade).

http://geneontology.org/docs/guide-go-evidence-codes/

V9 Processing of Biological Data SS 2020
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Electronically inferred annotations are the ,,weakest* functional annotations in
GO. Still, they are based on careful methodological considerations.



Statistics of Gene Ontology terms

Number of annotations by evidence

Species filter: [ All v]

2018-09 2018-11 2019-01 2019-03 2019-05 2019-07 2019-11 2020-01 2020-03 2020-05
2018-10 2018-12 2019-02 2019-04 2019-06 2019-10 2019-12 2020-02 2020-04 2020-06

Il PHYLO W IEA MMND [N OTHER [ EXP | HTP

V9 Processing of Biological Data SS 2020
http://geneontology.org/stats.html

Statistics of the number of GO terms over the past 2 years taken from the listed
GO website. The number of experimental annotations is growing very slowly.
The largest changes are due to modifications in the PHYLO algorithm (blue).



GO annotations are dynamic in time
Example: strong and sudden variation in the number
of annotations with the GO term "ATPase activity”
over time.

Such changes can heavily affect the estimation of the
background distribution in enrichment analyses.
To minimize this problem, one should use an up-to-
date version of the ontology/annotations and

ensure that conclusions drawn hold across recent
(earlier) releases.

Bottom: Number of terms directly annotated to the
human gene GRIN1. Large drops and rises are
observed superimposed over a general gradual
increase in annotation since 2002 (black).

>

== GRIN1
Species mean

Directly annotated terms

https:/iwww.ncbi.nim.nih.gov/pmc/articles/PMC6113503/
Gaudet, Dessimoz,

Gene Ontology: Pitfalls, Biases, Remedies
https://link springer.com/protocol/10.1007%2F978-1-4939-3743-1_14

V9 Processing of Biological Data SS 2020

36

Date

First of all, the number of genes with annotation ,,ATPase activity* increases
constantly over time.

There are 2 problematic cases of up/down jumps: in the blue curve and in the
brown curve.

The blue curve suddenly jumped up near 2012. The reason for this is unclear —
maybe a change of the underlying algorithm was made, that was later
corrected — and then the curve jumped back.

A similar case is visible in the brown curve for ,,computational* annotations.
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Taxon-wide GO annotation statistics

(A) Number of annotated
genes.

>
@

(B) Mean annotations per term
(inferred + direct).

a
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per gene. Times of prominent ‘
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by dashed gray lines in all four
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= -
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~

https:/mwww.ncbi.nlm.nih.gov/pmc/articles/PMC6113503/
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Large jumps and drops are sometimes simultaneously observed in multiple, or
even all, species. E.g. a rapid increase in the number of annotated genes started
in March 2011 for Arabidopsis, mouse, and zebrafish (A). Another dramatic
event was a large drop in the mean number of direct annotations per gene in
March 2012 for all species (C). The jump is not visible in the plots for indirect
annotations (D). This would be consistent with a large-scale purging of
redundant annotations (rejecting higher-level terms that are inferable from
more specific terms).
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Timestamp
2020-02-28
2019.05.04
2017.07-28
2016-03-05

2015-12-09

2014-04-12

2014.04-12

2013.09-06
13-09-
V) 2013-09-06

2013-09-06

Term

Action

Deleted

Added

SLIM
SYNONYM

CONSTRAINT

DEFINITION

DEFINITION

SECONDARY
SYNONYM

SYNONYM

nyms Retatonships Cross-references Other

Detail

MIPS_funcat 40.10 02

goslim_pombe
caspase-dependent programmed cell death
only_in_taxon NCBITaxon 33154 (Opisthokonta)

A programmed cell death process which begins when a cell receives an internal
(e.9. DNA damage) or external signal (e.g. an extracellular death ligand), and
proceeds through a series of biochemical events (signaling pathways) which
typically lead to rounding-up of the cell, retraction of pseudopodes, reduction of
cellular volume chromatin nuclear

y , plasma blebbing and of the cell into
apopioiic bodies. The process ends when ine ceii has died. The process is
divided into a signaling pathway phase, and an execution phase, which is
triggered by the former.

A programmed cell death process which begins when a cell receives an internal
(e.9. DNA damage) or external signal (e.g. an extracellular death ligand), and
proceeds through a series of biochemical events (signaling pathway phase)
which trigger an execution phase. The execution phase is the last step of an
apoplotic process, and is typically characterized by rounding-up of the cell
retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin

¢ nuclear (Kary plasma blebbing
and fragmentation of the cell into apoptotic bodies. When the execution phase is
completed, the cell has died

GO:0006917 (induction of apoptosis)
nduction of apggIeSe ssing of Biological Data SS 2020
commitment to apoplosis

Changes to GO terms are recorded: GO:0006915
Change Log

apoptotic
process

https://www.ebi.ac.uk/
QuickGO/term/GO:00
06915
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GO carefully logs all changes made to GO terms over time at the end of each

QuickGO entry.

QuickGO is a web-based browser of the Gene Ontology and Gene Ontology
annotation data.
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Comparing GO terms

The hierarchical structure of the GO allows to compare proteins
annotated to different terms in the ontology, as long as the terms
have relationships to each other.

Terms located close together in the ontology graph
(i.e., with a few intermediate terms between them)
tend to be semantically more similar than those further apart.

as a measure of their similarity.
However, this is problematic because not all regions of the GO
have the same term resolution.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876
V9 Processing of Biological Data SS 2020
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Before, we introduced the structure of the Gene Ontology and how one can
identify significantly enriched GO terms. Sofar, we dealt with individual GO
terms.

Now, we will discuss how one can compare different GO terms by a numerical
measure.



Information content of GO terms
The likelihood of a node t is typically defined in the following way:

occur(t)

ralativa tn tha rannt nnda? p‘"'""(, nnnnnn " Y
reiatve ¢ Ine reci neCe

vccur\root )

Here, one counts all genes annotated with t and their child nodes.

The likelihood takes values between 0 and 1 an

Q

Define information content of a node from its likelihood:

IC(t) = —log p(t)

Arare node has high information content. PhD Dissertation Andreas Schiicker (UdS, 2010)

https://iwww.ncbi.nim.nih.gov/pmc/articles/PMC27 12090/
V9 Processing of Biological Data SS 2020
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Term information content (IC) approaches can be divided into two families:
annotation and topology-based IC approaches. The definition of p_anno shown
here belongs to the annotation-based approaches.



Common ancestors of GO terms
Common ancestors of two nodes t;and ¢, :

all nodes that are located on a path from ¢t
to root AND on a path from ¢, to root.

The most informative
common ancestor (MICA) of
terms t; undt, is their
common ancestor with

highest information content.

Typically, this is also the
closest common ancestor. /

7~ Trawenption ™\
( Cofactor Activity )
\_JC=s5%

In this example, the MICA of the terms §
‘Transcription Factor Activity’ and - -

‘Transcription Cofactor Activity’ is the I
term ‘Transcription Regulator Activity’, {Bmitea

since it has a higher IC than all other
common ancestors (termsin green).

https:/repositorio.ul pt/bitstream/10

V9 Processing of Biological Data SS 2020 451/14140/1/07-6.pdf
: 41

One way of assigning semantic similarity between GO terms is to consider the
common ancestors of 2 GO terms. Intuitively, the ,,closest™ common ancestor
would be most meaningful.

Due to the DAG-nature of the Gene Ontology, there may be multiple ,,closest*
common ancestors either on the same hierarchical GO level or with the same
path length to them.

Instead, one often selects the common ancestor with the highest information
content (IC). This is called the most informative common ancester.
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Measure functional similarity of GO terms

Lin et al. defined the similarity of two GO terms t; und ¢,
based on the information content of the most informative common ancestor (MICA)

2.IC(MICA)

simpe(t1.17) = —————=
h ’ 1C(1y)+1C(12)

MICAs that are close to their GO terms receive a higher score than those that are
himnbharim im tha MM ~Aranb
THYHch up ni uic owvw yirapii
PhD Dissertation Andreas Schlicker (UdS, 2010)
V9 Processing of Biological Data SS 2020
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One normalizes the IC of the MICA by the sum of the ICs of the two GO
terms.

Because one is taking the ratio of 1 node attribute over 2 node attributes, one

multiplies this ratio by 2 to bring numerator and denominator on the same

level.

At most, this ratio can reach a value of 1 if IC(MICA) =1IC (t1) = IC (t2).
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human/mouse.

minimizing the error rate.

Weichenbergeretal. (2017)

Scientific Reports 7: 381
V9

Test: see whether functional similarity score can
distinguish true homologues from random gene pairs.

Top: scatter plot of BP (x-axis) and MF (y-axis) scores
(IEA* dataset) of orthologous gene pairs (circles)
and randomly selected gene pairs (crosses) from

Solid/dashed iso-lines: 2D density function of the
2 distributions for cases and controls.
Bottom: 1D density function of the FBP*MF scores for

cases (solid line) and controls (dashed line).
Their crossing point defines the optimal threshold for

Processing of Biological Data SS 2020

Optimal functional similarity score
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Link to the paper: https://www.nature.com/articles/s41598-017-00465-5

Any two genes will have a certain semantic similarity, even if they ,,have

nothing to do with eachother. What is a good threshold to distinguish ,,real*

functional similarity from the similarity of random gene pairs?

Here, the authors did a large-scale comparison of gene pairs from human and

mouse. Orthologous gene pairs (circles) have high BP and MF functional
similarity and are placed in the upper right quadrant.

Random gene pairs are in the bottom left quadrant. Shown in the bottom panel
is a combined BP + MF similarity score. Here, the best separation point would

be around 0.55 or so.
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Optimal functional similarity score
Comment:

The human/mouse comparison is based somehow on a cyclic argument:

- Then we test whether their GO-annotations are more similar than for random
p,mfnjn pai_rs_ RUT many GO annotations are made hased on sequen

ce

similarity.

Thus, this is more a test for consistency rather than a real proof.

Weichenbergeretal. (2017)

Scientific Reports 7: 381
V9 Processing of Biological Data SS 2020
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We should not forget where GO terms come from. This may sometimes lead to
circular arguments.



Optimal functional similarity score

' Human/fly
1.00
(b) Human/fly
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Weichenbergeretal. (2017)

Scientific Reports 7: 381
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For the more remotely related organism pair human/fly, the densities for cases
and controls calculated with the sim/C/fsBMA measures overlap to some
extent. Notably, there is a smaller fraction of orthologues that do not share any
similarity in the MF ontology, but do have considerable high BP scores



Summary
The GO is the gold-standard for computational annotation of gene function.
It is continuously updated and refined.

Issues in GO-analysis
protein annotation is biased and is influenced by different research interests:

- model organisms of human disease are better annotated

- promising gene products (e.g. disease associated genes) or specific
gene families have a higher number of annotations

- gene with early gene-bank entries have on average more annotations
Hypergeometric test is most o
gene sets

Semantic similarity concepts allow measuring the functional similarity of

genes. Selecting an optimal definition for semantic similarity of 2 GO terms and
for the mixing rule depends on what works best in practice.

V9 Processing of Biological Data SS 2020
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