
Processing of Biological Data

Prof. Dr. Volkhard Helms
Summer Semester 2017

Saarland University
Chair for Computational Biology

Exercise Sheet 3
Due: 13.06.2017 10:15

Submission

• You are advised to work in groups of two people. If necessary, we will suggest teammates.

• Submit your solutions on paper at the beginning of the lecture in the lecture hall or in
Room 3.01, both E2 1. Alternatively you may send an email with a single PDF attachment
to kerstin.reuter@bioinformatik.uni-saarland.de. Late submissions will not be considered.
In any case, hand in all source code via mail.

• Do not forget to label your axes, append legends etc. when visualizing data. Numbers should
be rounded in a reasonable way.

• Do not forget to mention your names/matriculation numbers.

• You are free to use any programming language to solve the problems. Nevertheless, Python
programming language together with the Seaborn Python visualization library, SciPy, and
Pandas are highly recommended. Thus, you are allowed to use libraries to solve the following
problems.

• Don’t worry about the length of this exercise sheet. The following pages contain a lot of
information on suitable data structures, file formats, and reasonable strategies how to solve
the problems.

Exercise 3.1: Artificial mutation data (30 points = 5+5+5+5+5+5)

In the first part of the assignment you will analyze artificial mutation data in terms of distributions,
statistical significance, and effect size. This exercise serves as an introduction to understand
the basic principles needed for Exercise 3.2. The data is provided in tab-separated files named
artificial1.txt, artificial2.txt, and artificial3.txt. Each file consists of two columns
with every column representing mutation densities (mutations per kilo–base [kb]) found in two
different genomic regions (e.g. promoter and CDS – coding DNA sequence – region). All numbers
are drawn from normal distributions.

(a) Implement a parser that takes an artificial*.txt file as input and returns two lists con-
taining all values of the two columns, respectively. Thus, the lists represent the mutation
densities for the two genomic regions, respectively.

(b) For every artificial dataset, visualize the two distributions via histograms and/or density
plots, e.g. using the seaborn.distplot function. The data for the genomic regions should be
summarized into one plot, hence resulting in a total of three plots (one for every artificial
dataset), each illustrating the two distributions for the genomic regions, respectively.

(c) For every artificial dataset, report the mean, standard deviation, and median mutation
densities of the two genomic regions. A table representation could be beneficial here.

(d) Next, to analyze the statistical significance between mutation densities of different genomic
regions, a statistical significance test is necessary. For every artificial dataset, calculate the
p–value between the mutation densities of the two genomic regions by applying the Wilcoxon
rank-sum test, e.g. using the scipy.stats.ranksums function.

kerstin.reuter@bioinformatik.uni-saarland.de
https://seaborn.pydata.org/
https://www.scipy.org/
http://pandas.pydata.org/
http://seaborn.pydata.org/generated/seaborn.distplot.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html
https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.ranksums.html


(e) Cohen’s d is a simple measure to calculate the effect size in order to quantitatively measure
the difference between two sample distributions. Cohen’s d is defined as

d =
(m2 −m1)√

s21+s22
2

with m1, m2, s1, and s2 the mean m and standard deviation s of two samples, respectively.
Effect sizes are separated into small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8), and large
(d ≥ 0.8) difference. Implement a function that takes two samples and returns the Cohen’s d
value. This function should be applied to the mutation densities of the two genomic regions
of every artificial dataset, respectively.

(f) Compare the three artificial datasets considering the visualized distributions, mean/std/me-
dian values, statistical significance, and Cohen’s d effect size. Explain the different results
between the three artificial datasets (high or low p–values/effect sizes). Also consider the
number of samples within each dataset.

Exercise 3.2: Experimental mutation data (70 points = 15+15+20+20)

In the second part of the assignment you will analyze experimental mutation data from the popular
1000 Genomes Project. The 1000 Genomes Project reports more than 80 Mio. human SNPs and
indels from more than 2,000 individuals across various populations.
A small fraction of these mutations (100,000 SNPs and indels) located on chromosome 1 can
be found in the Mutations 1000 genomes bed chr1.csv file. Mutations are reported in tab-
separated *.bed format:

chromosome start position [bp] end position [bp] identifier reference alternative

chr1 11007 11008 rs575272151 C G

with the genomic location (chromosome, start, and end position), a unique identifier, and the
mutation itself, here a C/G SNP.
You will compare and analyze mutations in different genomic regions, namely the promoter region,
transcript region, coding region, and intergenic region. Genomic information is provided in the
tab-separated genes hg19 chr1.txt file. The following columns are necessary (all other columns
can be ignored):

Column name Explanation

name Reference ID
chrom Chromosome
strand + or – strand
txStart Transcript start [bp]
txEnd Transcript end [bp]
cdsStart Coding start [bp]
cdsEnd Coding end [bp]
name2 Gene name

(a) First, the genomic information from the gene file genes hg19 chr1.txt must be provided
in suitable format for further analyses.

(1) Write a parser that takes the gene file as input and returns all necessary information
saved as useful data structure, such as a Python dictionary with the gene names (name2)
as keys and genomic information as values:

{’SGIP1’:{’chrom’:’chr1’,’txStart’:66999824,’txEnd’:67210768,’cdsStart’:
67000041,’cdsEnd’:67208778,’refid’:’NM 032291’},’NECAP2’:{...},...}
The data structure should only contain genes that fulfill the following criteria:

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://docs.python.org/2/tutorial/datastructures.html


• Located on the + strand

• cdsStart differs from cdsEnd

• Do not encode microRNAs (name2 starts with ’MIR’) or small nucleolar RNAs
(name2 starts with ’SNO’)

• name, i.e. the RefSeq ID, starts with ’NM ’

If there are several entries for one gene name (name2), the longest transcript variant
(length = txEnd–txStart) should be taken into account. If the transcript variants of
a gene have the same length, take the one appearing first in the gene file.

(2) From your final data structure, report the RefSeq gene IDs (name) for the genes NECAP2
and LEPR.

(b) The overall goal is to analyze mutations located in different genomic regions. Therefore,
mutations must be assigned to their respective location. This is accomplished by overlapping
the genomic information (chromosome, start, end) of the mutations with the regions of
interest. An easy–to–use function that intersects two genomic coordinate files is intersectBed
provided by the BEDTools suite.

(1) First, the *.csv files containing the genomic information (chromosome, start, end, Ref-
Seq ID, gene name) of the genomic elements must be generated. We consider the
following elements:

• promoter region: Defined from −2000 bp to +1000 bp around txStart.

• transcript region: Defined from txStart to txEnd.

• coding region: Defined from cdsStart to cdsEnd.

• intergenic region: The region between two genes. For simplicity, defined from the
txEnd up to txEnd+10000 bp.

Implement a function that takes the data structure from Exercise 3.2 (a) as input and
generates four *.csv files – one for every genomic region defined above – that represents
the genomic coordinates for every gene. The files should be named in the following way:
genes hg19 chr1 *.csv with the * representing the genomic region, i.e ∗ ∈{"promo",
"tx", "cds", "intergenic"}. The final tab–separated *.csv file should adhere the
following *.bed format:

chr1 14925493 15441131 NM 201628 KAZN
chr1 15578280 15723909 NM 052929 FHAD1
chr1 15874836 15894672 NM 001287811 DNAJC16

For example: assume a gene gene ABC located on chromosome 1 has the following
txStart: 5000. An entry, i.e. a row in the final genes hg19 chr1 promo.csv promoter
file should look as follows:

chr1 3000 6000 NM ... gene ABC

(2) For every of the four *.bed gene files generated above, apply the intersectBed function
(or implement a function yourself) to the mutation and genomic information, e.g.:

intersectBed -a Mutations 1000 genomes bed chr1.csv

-b genes hg19 chr1 promo.csv -wa -wb > intersect result promo.csv

This step generates four intersect result *.csv files – one for every genomic re-
gion defined above – containing information on the location of mutations within genomic
regions, e.g the file intersect result promo.csv

provides the information that a G/A SNP is located in the promoter region of gene
ISG15.

http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html
http://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html


chrom start end id ref alt chrom start end id name

chr1 949234 949235 rs2465124 G A chr1 946846 949846 NM 005101 ISG15
chr1 949271 949272 rs568580969 C G chr1 946846 949846 NM 005101 ISG15
... ... ... ... ... ... ... ... ... ... ...

(c) For the final mutation analysis, the information on mutation in genomic elements for ev-
ery gene should be provided in a suitable data structure such as a pandas.DataFrame.
Based on the results/files obtained by applying intersectBed, every entry of the final
data frame should thereby contain the element length in kb (kb ...), number of muta-
tions (nbr muts ...), and the mutation density defined as the number of mutations per kb
(den muts ...) for every gene, e.g.

gene name kb promo nbr muts promo den muts promo kb tx nbr muts tx den muts tx ...

FAM213B 3.0 20 6.67 4.72 45 9.53 ...
ESPN 3.0 19 6.33 36.16 302 8.35 ...
... ... ... ... ... ... ... ...

... kb cds nbr muts cds den muts cds kb intergenic nbr muts intergenic den muts intergenic

... 2.63 21 7.98 10.0 131 13.1

... 35.19 293 8.33 10.0 103 10.3

... ... ... ... ... ... ...

Thus, write a function that parses all four intersectBed files and returns this Table (or a
similar data structure if you are not using Python). Only report genes that have a mutation
in at least one of the genomic elements. In other words, column rows with zero entries should
be discarded.

(d) Finally, the distributions of mutations in the four different genomic elements should be
analyzed.

(1) Generate boxplots, e.g. using seaborn.boxplot function, that display the mutation
density (den muts ...) for every of the four genomic regions. All four boxplots
should be summarized into one plot. Column values can be easily retrieved from a
pandas.DataFrame df by list(df["den muts promo"]).

(2) Similar to the boxplots, visualize the mutation density distribution as histograms
and/or density plots, e.g. using the seaborn.distplot function (compare with Exercise
3.1).

(3) Report the mean, standard deviation, and median mutation densities of all genomic
regions. A table representation could be beneficial here.

(4) Analyze the statistical significance between mutation densities of the intergenic region
vs. the mutation densities of all other genomic regions by applying the Wilcoxon rank-
sum test, e.g. using the scipy.stats.ranksums function. Why is it suitable to compare
the distributions of these genomic regions to intergenic regions? This should result in
a total of three p–values.

(5) Calculate the effect size to quantitatively measure the difference between the mutation
densities of intergenic region vs. the mutation densities of all other genomic regions by
calculating Cohen’s d values. This should result in a total of three d values.

(6) Interpret your results. Why are p-values statistically significant/not statistically sig-
nificant? What about the Cohen’s d values? From a biological point of view, which
genomic region(s) should exhibit the largest mutation densities? Which the lowest?
Justify your answer. Did the analysis results match your expectations? When inter-
preting your data, also consider the given mutation/genomic data set as well as the
definition of the genomic regions. For instance, the coding regions consist of introns
and exons as well. The definition of the intergenic regions is kind of arbitrary.

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://seaborn.pydata.org/generated/seaborn.boxplot.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://seaborn.pydata.org/generated/seaborn.distplot.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html
https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.ranksums.html

