VI Processing of Biological Data

Leistungspunkte/Credit points: 5 (V2/Ü1) This course is taught in English language.

The material (from books and original literature) are provided online at the course website:

https://www-cbi.cs.uni-saarland.de/teaching/ss-2017/special-topic-lecture-bioinformaticsprocesbioldata/

Topics to be covered:

This course will discuss the handling of different sorts of biological data, often on the example of recent publications.

Tutorial

We will handout 6 bi-weekly assignments.

Groups of up to two students can hand in a solved assignment.

Send your **solutions** by e-mail to the responsible tutors until the time+date indicated on the assignment sheet.

The **tutorial** on Tuesday 12.45 am – 2.15 pm (same room, time is negotiable) will discuss the assignment solutions.

On demand, the tutors may also give some advice for solving the new assignments.

Schein conditions

The successful participation in the lecture course ("Schein") will be certified upon fulfilling

- Schein condition $1 :\ge 50\%$ of the points for the assignments
- Schein condition 2 : pass final written exam at end of semester

The grade on your "Schein" equals that of your final exam.

Everybody who took the final exam (and passed it or did not pass it) and those who have missed the final exam can take the **re-exam** at the beginning of WS17/18.

Lecture content

- V1: bacterial data (*S. aureus*): clustering / PCA (R. Akulenko)
- V2: bacterial data/DNA methylation: prediction of missing values (BEclear, R. Akulenko)
- V3: differential gene expression, detection of outliers (A. Barghash)
- V4: MS proteomic data, imputation, normalization (D. Nguyen), protein arrays (M. Pedersen)
- V5: breathomics, peak detection (AC Hauschild)
- V6: processing of kidney tumor MRI scans (Vera Bazhenova)
- V7: genomic sequences, SNPs (M. Hamed, K. Reuter, Ha Vu Tran)
- V8: functional GO annotations (M. Hamed, Ha Vu Tran)
- V9: curve fitting, data smoothing (AKSmooth ...)

V10: protein X-ray structures: titration states, hydration sites, multiple side chain and ligand conformations, superposition ... protein-protein complexes: crystal contacts, interfaces, ... V11: analysis of MD simulation trajectories: correlation of snapshots, remove CMS motion V12/V13: integrative analysis of multidimensional data sets (D. Gaidar, M. Nazarieh)

Whole Genome Sequence Typing and 1icroarray Profiling of Methicillin-Resistant Staphylococcus aureus isolates

- (1) Classification of MSSA / MRSA S. aureus strains in Saarland (PLoS ONE 2012)
- (2) WGS analysis of invasive / nasal CC5 strains (Infect. Dis. Genet. 2015)
- (3) DFG Germany-Africa project (J. Clin. Microbiol. 2016; Sci. Reports 2017)

Co-workers

(1) Ruslan Akulenko, Ulla Ruffing, Mathias Herrmann, Lutz von Müller,

(2) Mohamed Hamed, Lutz von Müller, Jan Brink, Mathias Herrmann, Patrick Nitsche, Ulrich Nübel

(3) StaphNet Consortium led by Mathias Herrmann, funded by DFG

Pilot study: classification of resistant Staphylococcus aureus strains

Table 1. Risk factors of MRSA and matched MSSA control group isolates.

Risk factors	MRSA, n (%)	MSSA, n (%)	p-value
Male	18 (39.13%)	18 (39.13%)	#
Female	28 (60.87%)	28 (60.87%)	#
<70 years	24 (52.17%)	24 (52.17%)	#
≥70 years	22 (47.83%)	22 (47.83%)	#
Hospitalisations <6 months	21 (45.65%)	21 (45.65%)	#
Inter-hospital transfer	5 (10.64%)	1 (2.17%)	ns
Previous MRSA colonization	3 (6.52%)	1 (2.17%)	ns
MRSA contacts	8 (17.39%)	4 (8.70%)	ns
Long-term care	11 (23.91%)	2 (4.26%)	0.014
Retirement home	3 (6.52%)	0 (0.00%)	ns
Diabetes mellitus	9 (19.57%)	8 (17.39%)	ns
Antibiotic therapy	21 (45.65%)	8 (17.39%)	0.007
Dialysis	3 (6.52%)	0 (0.00%)	ns
Medical devices	8 (17.39%)	0 (0.00%)	0.006
Skin lesions	6 (13.04%)	2 (4.26%)	ns

[#]statistical analysis was not performed for clinical criteria applied for selection of matched MSSA cases, ns = not significant.

OPEN ORCESS Freely available online

Matched-Cohort DNA Microarray Diversity Analysis of Methicillin Sensitive and Methicillin Resistant *Staphylococcus aureus* Isolates from Hospital Admission Patients

Ulla Ruffing¹, Ruslan Akulenko², Markus Bischoff¹, Volkhard Helms², Mathias Herrmann¹, Lutz von Müller¹*

1 Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, Homburg/Saar, Germany, 2 Center for Bioinformatics, Saarland University, Saarbrücken, Germany

December 2012 | Volume 7 | Issue 12 | e52487

Aim: classify MRSA / MSSA according to gene repertoire

Methycillin sensitive/resistant Staphylococcus aureus (MSSA/MRSA)

MSSA

anaerobic Gram-positive coccal bacterium,

frequently part of the normal skin flora.

MRSA

any strain of S. *aureus* with **resistance** to beta-lactam antibiotics:

- penicillins;
- cephalosporins;

Need to classify MRSA strains to detect infections, prevent transmission

routine: Characterize MRSA by Spa-typing

- DNA preparation of polymorphic X-region of **protein A** from S. *aureus* (Spa)
 - amplify by PCR
- sequencing assignment using Ridom StaphType

software

Spa-	Repeats:	Total	Strain	Strain
types:		strains:	records:	countries:
11553	572	245335	126083	96

Results from Spa-typing: splits graph

For MSSA, *spa*-typing allowed for good discrimination of patient isolates.

However, the majority of MRSA isolates clustered into CC5/t003 which hampered subclassification by *spa*typing

Unrouted tree generated with www.splitstree.org

DNA microarray (IdentiBAC – Alere)

Microarray contains 334 probes that are clinically relevant and/or relevant for clonal typing

alere-technologies.com

DNA microarray principle

The extracted RNA free genomic DNA from the bacterial overnight culture is internally biotin labelled through a set of many antisense primers.

The resulting single stranded and biotin labelled amplicons are hybridized to a set of discriminative probes that are covalently bound onto the microarrays.

The biotin labelled DNA bound to the probes on the array is subsequently stained.

alere-technologies.com

Process microarray data (334 probes)

StaphyType Test Report

Operator	
Sample ID	2192119
Experiment ID	2192119 - {4083AD2C-7D42-4FB9-82D5-E50CC0FD6206}
Date of Result	Thu Apr 14 10:46:01 2011
Assay Name	StaphyType
Assay ID	10248
Well Position	01 (01-A)
Software Version	2009-07-09
Device	04a0022

Internal Controls

Data Quality	passed

Genetic markers for S. aureus / MRSA / PVL

Taxonomy	Species Marker (S.aureus) positive
MRSA (mecA)	positive
PVL	negative

Resistance Genotype

Hybridisation (Gene)	Result		Expected Resistance
mecA	ро	sitive	Methicillin, Oxacillin and all Beta-Lactams, defining MRSA
blaZ	negative		Beta-Laktamase
ermA	ро	sitive	Macrolide, Lincosamide, Streptogramin
ermB	negative		Macrolide, Lincosamide, Streptogramin
ermC	negative		Macrolide, Lincosamide, Streptogramin
linA.	negative		Lincosamides
			20.00

	11	46	10	33	28
MRSA (mecA)	0	0	0	0	0
PVL	0	0	0	0	0
23S-rRNA	1	1	1	1	1
gapA	1	1	1	1	1
katA	1	1	1	1	1
соА	1	0) 1	1	1
Protein A	1	1	1	1	1
sbi	1	1	1	1	1
nuc	1	1	1	1	1
fnbA	1	1	1	1	1
vraS	1	1	1	1	1
sarA	1	1	1	1	1
eno	1	1	1	1	1
saeS	1	1	1	1	1
mecA	0	0	0	0	0
blaZ	0	(1	0	0	0
blai	0	1	0	0	0
blaR	0	1	0	0	0
ermA	0		0	0	0
ermB	0	0	0	0	0
ermC	0	0	0	0	0
linA	0	0	0	0	0

Simple idea: Compute **Euclidian distance** between samples

$$||a - b||_2 = \sqrt{\sum_i (a_i - b_i)^2}$$

Other distances are possible, also weighted distances, where some probes get higher weights.

Hierarchical agglomerative clustering based on MA data

Hierarchical clustering:

(I) Calculate pairwise distance matrix for all genes to be clustered.

(2) Search distance matrix for two most similar genes or clusters (initially each cluster consists of a single gene).

If several pairs have the same separation distance, a predetermined rule is used to decide between alternatives.

(3) The two selected clusters are merged to produce a new cluster that now contains at least two objects.

(4) The distances are calculated between this new cluster and all other clusters.

(5) Repeat steps 2-4 until all objects are in one cluster.

Clustering based on Euclidian distance yields almost perfect separation between MSSA/MRSA

except the encircled resistant samples

Quackenbush, Nature Reviews Genetics 2, 418-427 (2001)

NGS analysis of invasive vs. nasal CC5 strains

Compare 12 blood stream and 15 nasal MRSA isolates of clonal complex 5.

Idea: identify SNPs/genes that are associated with invasiveness.

Bacterial genomes contain **mobile genetic islands** that evolve at much faster evolutionary rates -> ignore these regions

Core genome: genes that are present in all known S. *aureus* genomes

Hamed et al. Infect Dis Genet (2015) wikipedia.org

NGS analysis of invasive vs. nasal CC5 strains

I2 blood stream andI5 nasal MRSA isolates ofclonal complex 5

Phylogenetic tree (SeaView) based on **SNPs in core-genome**

Regional clustering of 2 closely related CC5 subgroups (clade *t504* and clade I *t003*)

Phylogeny is not associated with invasiveness

0.02 NAS_30_t003 NAS_37_t003 INV_8_t003 NAS 19 t003 -NAS_23_t003 NAS 22 t003 NAS 24 t003 Clade1 t003 -INV 13 t003 NAS_36_t003 NAS 17 t504 INV_6_t504 INV 5 t504 NAS_4_t504 -NAS_8_t504 Clade t504 -INV_14_t504 INV_15_t504 -INV_2_t504 NAS_18_t504 INV_7_t504 -INV_9_t003 -NAS 32 t003 -INV_10_t003 -INV 11 t003 -NAS_40_t003 Other t003 06-1100 NAS_25_t003 -NAS_39_t003 -07-00952 ST225 INV_4_t003 -08-02865 09-02312 CC5 ST5 NC 017340 ref N315

Hamed et al. Infect Dis Genet (2015)

Hierarchical Clustering on full microarray data

Hierarchical clustering on virulence genes only

homogenous clusters.

SNPs in CC5 strains wrt. reference sequence

WGS identified 478 SNPs and 56 Indels outside of mobile genetic elements and repetice sequences

Clade $t504 (36 \pm 7)$ and clade $t003 (43 \pm 8)$ contain fewer mutations than other regional t003isolates (56 ±11)

SNPs in CC5 strains wrt. reference sequence

	Mutated	genes detected by WGS					
Phylogenetic groups (WGS)	Known virulence genes	Twice mutated genes					
Clade1 t003	sdrD, msrR, hysA, tcaA, ssaA, sasA						
		sbnD, mutS2, prkC, glpF, miaA, thrC, trpD, ebhB, sodA,pfoS/R, tagG, kdpD, metT, tcaB, opp-1F,					
Clade t504	essA, saeS, atl, isdF, hlb, lip	уvсР					
	capA, rnr, isdE, arlS, hlb, hlgB, aur,						
Other t003	sasA	gnd, feoB					

18 genes containing 24 variants were previously characterized as **virulencerelated** genes in PATRIC and VFDB databases.

All of these 18 known virulence-related genes had variants in at least one invasive sample; yet no variants were found in nasal isolates.

 \rightarrow Interpret variants that exclusively occur in ≥ 2 invasive samples as candidate virulence-genes

Locus tag	Gene name	Description	SNP position	Refe- rence NT	Vari ant NT	Amino acid change
SA2981_0120	sbnD	Siderophore staphylobactin biosynthesis protein SbnD	131858	G	т	W to C
SA2981_0148	-		162408	T	С	none (D)
SA2981_0542	-		616048	А	G	none (G)
SA2981_0561	-		631881	G	A	R to K
SA2981_0710	-		783925	т	С	none (I)
SA2981_0711	-		784904	А	G	Q to R
SA2981_0724	-		797606	G	GA	ORF shifted
SA2981_0874	-		921757	G	Α	G to D
642004 0070			1035879	А	G	I to V
SA2981_0978	-		1036742	G	A	M to I
SA2981_1074	-		1131989	С	т	T to I
SA2981_1100	mutS2	Recombination inhibitory protein MutS2	1157221	С	т	none (S)
SA2981_1178	prkC	Serine/threonine protein kinase PrkC, regulator of stationary phase	1237441	G	т	A to S
SA2981_1251	-		1324647	С	Α	T to N
SA2981_1256	glpF	Glycerol uptake facilitator protein	1331327	С	СТ	ORF shifted
SA2981_1260	miaA	tRNA delta(2)- isopentenylpyrophosphate transferase	1336837	А	G	D to G
SA2981_1284	thrC	Threonine synthase	1361487	С	т	S to F
SA2981_1288	-		1365826	Т	С	T to A
SA2981_1323	trpD	Anthranilate phosphoribosyltransferase	1409763	т	с	R to R
SA2981_1390	ebhB*	Putative Staphylococcal surface anchored protein; adhesin emb	1503065	С	т	S to N
SA2981_1468	gnd	6-phosphogluconate dehydrogenase, decarboxylating	1585512	G	Α	none (F)
SA2981_1511	sodA	Superoxide dismutase (Fe)	1622766	C	Т	G to D
SA2981_1815	pfoS/R	Regulatory protein	1946895	С	CAA T	add R
SA2981_1826	tagG	Teichoic acid translocation permease protein TagG	1967972	Α	т	F to Y
SA2981_2019	kdpD	Osmosensitive K+ channel histidine kinase KdpD	2151346	G	GA	ORF shifted
SA2981_2265	metT	Methionine transporter MetT	2394447	А	Т	none (G)
SA2981_2284	-		2414503	G	Α	A to T
SA2981_2294	tcaB	Teicoplanin resistance associated membrane protein TcaB	2424068	А	G	I to T
SA2981_2329	-		2462332	С	Т	none (L)
SA2981_2366	-		2504026	G	Α	P to S
SA2981_2367	-		2504949	Α	G	I to V
SA2981_2370	-		2507139	С	CA	ORF shifted
SA2981_2400	opp-1F	Oligopeptide transporter putative ATPase domain protein	2541624	С	т	A to T

Table 1: Genes targeted by mutations of at least two cases

Twice mutated genes

Gene **ebhB** showed genetic variations with amino acid modification at 7 positions

 \rightarrow This is statistically significant (p-value = 0.0009, Fisher exact test)

Other genes do not show significant imbalance of SNPs.

Double mutants are close to virulence genes

Genomic position of the ref genome NC_017340.1

Manhattan plot:

Genes mutated in ≥ 2 invasive samples (green) are closer to variants in 18 known virulence genes (red) than to random SNP positions

(p-value 0.035)

Virulence islands?

S. aureus in Germany vs. Africa: StaphNet

6 study sites each collected 100 isolates of healthy volunteers and 100 of blood culture or clinical infection sites.

Aim

microbiological and molecular characterization of African S. *aureus* isolates by DNA microarray analysis including clonal complex analysis

supplemented by Whole Genome Sequencing

What does the microarray measure?

Naively, one can interpret the microarray result as

- I: gene is present in the strain
- 0 : gene is not present in the strain

However, false negative non-detections of particular targets may occur due to non-binding of the sample amplicon to the microarray's probe or primer oligonucleotide due to polymorphisms in the respective target gene.

On the other hand, **false positive results** may occur between highly similar probe and amplicon sequences, e.g. between agrI and agrIV.

MA assignment to CCs confirmed by wholegenome sequencing

154 S. aureus isolates (182 target genes) from Germany-vs-Africa study

				Fu					
Result	Category	Result caused by Microarray and WGS (de now Microarray and WGS (de now itive Microarray and WGS (de now itive Microarray and WGS (de now gative Microarray WGS Assembly error Cropped contig Not sequenced or aberrant allele N Total number of typing results	ult caused by	Identification	Regulation	Resistance	Virulence	Total	% Total
Concordant	Positive	Microarray a	and WGS (de novo)	829	990	1,060	8,495	11,374	40.6%
n=27,119	Negative	Microarray a	and WGS (de novo)	0	1,159	8,100	6,486	15,745	56.2%
(96.8 %)									
Discrepant	False Positive	Microarray	Mishybridizations	0	78	21	103	202	0.7%
n=909 (3.2 %)									
	False Negative	Microarray Polymorphisms		0	3	14	140	157	0.6%
		WGS	Assembly error	88	42	16	164	310	1.1%
			Cropped contig	1	12	15	28	56	0.2%
			Not sequenced or	6	9	8	100	123	0.4%
	Unknown		aberrant allele	0	0	4	24	28	0.1%
		Total num	ber of typing results	924	2,310	9,235	15,554	28,028	100%

\rightarrow 97% agreement of MA and WGS

Strauss et al. J Clin Microbiol (2016)

Distribution of clonal complexes

Some clonal complexes more prevalent in Africa, others predominant in Germany.

Activitity of individual probes for CCs

	S2 Excel Book - Microsoft Excel											_								
D	atei Start Einfü	gen Seitenlayout Formeln Daten Überprüfen	Ansio	:ht AB	BYY FineRe	ader 12	Acroba	t												
Ausschneiden Calibri \cdot 11 \cdot A^{*} \equiv \equiv \approx				Zeilenu	mbruch		Standa	rd	*		C 3		Stand	ard	Gut		-	€	×	Σ
Eint	fügen			a Verbin	ten und ze	ntrieren	- 💷 -	% 000	00, 0,	Bedir	<u>⊒≥</u> ngte A	Is Tabelle	Neutr	al	Schle	cht	т _ Ei	infügen	Löschen F	ormat
	Format übertr			- verbing	ich and ze	intercerent		70 000	,00 → ,0	Formatie	erung * fo	matieren v					—	*	*	- Q
	Zwischenablage	Schriftant is	Ausrie	intung			ы	Zani	la.				Formatvo	riagen					Zellen	
	B80 ·	r (<i>f</i> _x tet.K.																		
	۵	B	C	D	F	F	G	н	1	1	ĸ	1	м	N	0	p	0	P	ç	т
1	0	5	U U		2					Gen	e distribut	ion in Afri	ican vs Ge	erman S. d	aureus iso	lates of	the 10 pred	ominant	: CCs	
2		Groups	African	German	African	German	African (German	African	German	African	German	African	German	African	German	African (German	African	German Afr
3		Numbers (n)	600	600 CCs	109	57	51	5	105	25	48	53	44	51	11	75	83	2	11	48
5	SPECIES MARKERS	rrnD1.S.aureus.	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
6		gapA	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
7		katA	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
8		coA	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
9		nuc1	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
10		spa shi	100%	100%	100%	100%	98%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
12	REGULATORY GENES	sarA	100%	100%	100%	98%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
13		saeS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
14		vraS	100%	100%	100%	100%	100%	100%	99%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
15		agrltotal.	35%	55%	0%	0%	41%	99%	0%	0%	100%	100%	0%	0%	0%	0%	100%	100%	100%	100%
16		agrB.I	54%	60%	0%	0%	100%	100%	84%	92%	100%	100%	0%	0%	0%	0%	100%	100%	100%	100%
1/		agrC.I	5/%	59%	0%	2%	95%	92%	99%	100%	100%	100%	0%	0%	0%	0%	100%	100%	100%	98%
19		agril total	27%	25%	99%	100%	41%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%
20		agrB.II	27%	25%	99%	100%	0%	0%	0%	0%	0%	0%	98%	100%	0%	0%	0%	0%	0%	0%
21		agrC.II	27%	25%	99%	100%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%
22		agrD.II	27%	25%	99%	100%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%
23		agrilltotal.	16%	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%
24		agrB.III	16%	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%
25		agrc.m	15%	14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%
27		agrIVtotal.	37%	6%	0%	0%	59%	1%	100%	100%	6%	2%	0%	0%	0%	0%	100%	100%	0%	0%
28		agrB.IV	53%	41%	0%	0%	59%	1%	100%	100%	96%	98%	0%	0%	0%	0%	100%	100%	100%	98%
29		agrC.IV	23%	5%	0%	0%	59%	1%	100%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
30	METHICILLIN DESISTANCE	hid	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
31	AND	meca delta mecR	3%	4%	0%	0%	2%	2%	0%	0%	13%	2%	5%	16%	0%	0%	0%	0%	0%	0%
33	SCCmec TYPING	ugpQ	3%	4%	0%	0%	2%	2%	0%	0%	13%	2%	5%	16%	0%	0%	0%	0%	0%	0%
34		ccrA.1	1%	0%	0%	0%	0%	0%	0%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%
35		ccrB.1	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
36		plsSCCCOL.	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
37		Q9XB68.dcs	1%	3%	0%	0%	0%	2%	0%	0%	10%	0%	5%	12%	0%	0%	0%	0%	0%	0%
38		ccrB 2	3%	4%	0%	0%	0%	2%	0%	0%	10%	2%	5%	16%	0%	0%	0%	0%	0%	0%
40		kdpA	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%
41		kdpB	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%
42		kdpC	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%
43		kdpD.SCC	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%
44		kdpE.SCC	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%
45		meci	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%

Imbalance of hybridizing resistance genes?

			A	II Isolate	s						
		German, n (%)	African, n (%)	OR	Cl ₉₅	Р	German, n (%)	African, n (%)	OR	CI ₉₅	Р
Regulatory genes	sarA	599 (100)	600 (100)	n/a			300 (100)	300 (100)	n/a		
	saeS	600 (100)	600 (100)	n/a			300 (100)	300 (100)	n/a		
	vraS	600 (100)	599 (100)	n/a			300 (100)	300 (100)	n/a		
	agri total.	331 (55)	209 (35)	2.30	1.82-2.91	<0.0001	179 (60)	99 (33)	3.00	2.15-4.19	<0.0001
	agrll.total	151 (25)	161 (27)	0.92	0.71-1.19	ns	179 (60)	99 (33)	0.83	0.57-1.21	< 0.0001
	agrIII.total	84 (14)	93 (16)	0.89	0.65-1.22	ns	68 (23)	78 (26)	0.83	0.57-1.21	ns
	agrIV.total	38 (6)	221 (37)	0.12	0.08-0.17	<0.0001	36 (12)	50 (17)	0.10	0.06-0.16	ns
Toxins	tst1consensus	67 (11)	36 (6)	1.96	1.29-3.00	ns	23 (8)	12 (4)	1.9	0.97-4.08	ns
	sea	68 (11)	92 (15)	0.71	0.50-0.99	ns	28 (9)	44 (15)	0.60	0.36-0.99	ns
	seh	45 (8)	114 (19)	0.35	0 24-0 50	<0.0001	23 (8)	72 (24)	0.00	0 16-0 43	<0.0001
	Seb	92 (15)	19 (8)	2.07	1 41-2 94	0.0001	57 (19)	19 (6)	3.47	2 01-5 99	0.0001
	sec	52 (10)	21 (4)	2.07	1.56-4.40	0.02	35 (12)	9 (3)	4 27	2.01-0.05	0.001
	Seu	1 (0)	21 (4)	2.02	1.00-4.40	0.05	1 (0)	0 (0)	4.21	2.02-3.05	0.01
	see	26 (4)	24 (6)	0.75	0.45.1.07		12 (4)	10 (0)	0.65	0 21 1 20	lis
	sen	20 (4)	34 (0)	1.60	1.01.1.06	0.01	12 (4)	10 (0)	0.05	1 27 6 04	lis
	sej	27 (5)	20 (4)	0.46	0.20.0.74	0.01.	27 (8)	27 (0)	2.07	0.25.0.04	115
	Sek	27 (3)	50 (9)	1 00	1 28-2 97	0.03	14 (J) 57 (19)	27 (8)	3.29	1 92-5 62	0.002
	and total	322 (15)	253 (42)	1.35	1 35-2 14	0.03	173 (58)	120 (40)	2.04	1.92-0.02	0.002
	egototai	27 (5)	56 (9)	0.46	0.20.0.74	0.02	14 (5)	27 (9)	0.50	0.25.0.96	0.04
	seq	27 (6)	20 (3)	1 01	1 00 3 32	ns	24 (8)	27 (3)	3.17	1 40 7 18	ns
	lukE	599 (100)	596 (99)	4.02	0.45-36.07	ns	300 (100)	297 (99)	0.99	0.98-1.00	ns
	luks	595 (99)	510 (85)	6.99	3 92 12 04	ne	202 (08)	244 (81)	9.61	4 20.21 46	ns
	blaA	597 (100)	595 (99)	1.67	0.40.7.03	ns	299 (100)	296 (99)	4.04	0.45-36.37	ns
		15 (3)	272 (45)	0.03	0.02-0.05	<0 0001	15 (5)	187 (62)	0.03	0.02-0.06	<0 0001
	lukS PV	15 (3)	273 (46)	0.03	0.02-0.05	<0.0001	15 (5)	188 (63)	0.03	0.02-0.06	<0.0001
	lukM	1 (0)	0 (0)	n/a	0.02 0.00		0 (0)	0 (0)	n/a	0.02 0.00	
	lukD	331 (55)	424 (71)	0.51	0 40-0 65	0 004	166 (55)	215 (72)	0 49	0 35-0 69	ns
	lukE	326 (54)	435 (73)	0.45	0.36-0.57	<0.0001	166 (55)	220 (73)	0.45	0.32-0.63	0.08
	bla	597 (100)	598 (100)	0.67	0 11-4 0	ns	297 (99)	300 (100)	n/a	0.02-0.00	0.00
	hlb	423 (71)	351 (59)	1 70	1 33-2 15	ns	223 (74)	185 (62)	1.8	1 27-2 55	ns
	hld	600 (100)	600 (100)	n/a	1.00-2.10	115	300 (100)	300 (100)	n/a	1.21-2.00	115
	etA	24 (4)	39 (7)	0.60	0.36-1.01	ns	9 (3)	19 (6)	0.46	0 20-1 03	ns
	etB	7 (1)	21 (4)	0.33	0 14-0 78	ns	4(1)	12 (4)	0.32	0 10-1 02	ns
	etD	17 (3)	21 (4)	0.80	0 42-1 54	ns	9 (3)	10 (3)	0.90	0.36-2.24	ns
Immune evasion	sak	466 (78)	477 (80)	0.90	0.68-1.18	ns	243 (81)	246 (82)	0.94	0.62-1.41	ns
	chp	353 (59)	311 (52)	1.33	1.06-1.67	ns	173 (58)	134 (45)	1.69	1 22-2 33	ns
	scn	552 (92)	589 (98)	0.21	0.11-0.42	ns	276 (92)	298 (99)	0.08	0.02-0.33	ns
	edinA	2 (0)	26 (4)	0.07	0.02-0.31	0.001	2 (1)	13 (4)	0.15	0.03-0.66	ns
	edinB	18 (3)	103 (17)	0.15	0.09-0.25	< 0.0001	10 (3)	67 (22)	0.12	0.06-0.24	< 0.0001
	edinC	5 (1)	16 (3)	0.31	0.11-0.84	ns	3 (1)	8 (3)	0.37	0.09-1.40	ns

OR: odds ratio ; ratio of events to non-events

Cl₉₅ : confidence interval

Antibiotic resistance

Table S2: Rates of *in vitro* antibiotic resistance of *Staphylococcus aureus* from colonization and infection in Africa and Germany

Source	Antimicrobial agent Resistant isolates, % (n)		tes, % (n)	p value
		Africa (n=300)	Germany (n=300)	
Colonization	Cefoxitin	2.3% (7)	0.7% (2)	ns
Infection	Tetracycline	35.6% (107)	8% (24)	<0.001
	Erythromycin	20.3% (61)	15.7% (47)	ns
	Clindamycin	4.7% (14)	12.7% (38)	0.005
	Gentamicin	5% (15)	0.3% (1)	0.006
	Trimethoprim- sulfamethoxazole	18.3% (55)	0.3% (1)	<0.001
	Cefoxitin	3.3% (10)	7.3% (22)	ns
	Tetracycline	49.7% (149)	5.7% (17)	<0.001
	Erythromycin	18.7% (56)	19.7% (59)	ns
	Clindamycin	3.7% (11)	14.3% (43)	< 0.001
	Gentamicin	1% (3)	2.6% (8)	ns
	Trimethoprim- sulfamethoxazole	19.2% (58)	1.3% (4)	<0.001

NS=not statistically significant

The majority of resistance genes were equally distributed among isolates from Africa and Germany. Striking differences in phenotypic resistance could be observed for tetracycline and trimethoprim-sulfamethoxazole with a larger proportion of resistant isolates in the African population, and clindamycin, with resistance more prevalent among German isolates

I HYIVZEHELIL LICE DAJEU VII WUJ UALA VI IJT

strains

neighbor-joining tree based on the allelic profiles of 1861 S. *aureus* core genome features.

-> the majority of clusters are based on the geographical region. Clusters of isolates from infection or colonization were not detected

Principle component analysis of 1200 strains

Input data: binary matrix of MA data; dimension 1200 x 334 probes

PCA identifies local clusters that are characteristic

for particular clonal complexes

PCA- intro

PCA is the most popular multivariate statistical technique and is used by almost all scientific disciplines.

It is likely also the oldest multivariate technique.

Its origin can be traced back to Pearson, Cauchy, Jordan, Cayley etc

This part of the lecture is based on the article "Principal component analysis" by Herve Abdi & Lynne J. Williams in WIREs Computational Statistics, 2, 433-459 (2010)

PCA- intro

PCA analyzes a data table representing observations described by several dependent variables, which are, in general, inter-correlated.

The goal of PCA is to extract the important information from the data table and express this information as a set of new orthogonal variables called **principal components**.

We will consider a data table **X** for *I* observations and *J* variables. The elements are x_{ij} .

The matrix **X** has rank *L* where $L \leq \min[I,J]$

PCA- preprocessing data entries

In general, the data table will be **preprocessed** before the analysis.

The columns of **X** are centered so that the **mean** of each column is equal to 0.

If in addition, each element of **X** is divided by \sqrt{I} or $\sqrt{I-1}$, the analysis is referred to as **covariance PCA** because, in this case, the matrix **X**^T**X** is a covariance matrix.

PCA- preprocessing data entries

In addition to centering, when the variables are measured with different units, it is customary to standardize each variable to unit norm.

This is obtained by dividing each variable by its norm (i.e. the square root of the sum of all squared elements of this variable).

In this case, the analysis is referred to as a **correlation PCA** because, then, then matrix $X^T X$ is a correlation matrix.

The matrix **X** has the **singular value decomposition (SVD)**

 $\mathbf{X} = \mathbf{P} \Delta \mathbf{Q}^T$

Insert: review of eigenvalues

A vector **u** that satisfies $\mathbf{A} \mathbf{u} = \lambda \mathbf{u}$ or $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{u} = 0$

is an **eigenvector** of this matrix **A**.

The scalar value λ is the **eigenvalue** associated with this eigenvector.

For example, the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$ has the eigenvectors

$$u_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 with eigenvalue $\lambda_1 = 4$.
Test $2 \cdot 3 + 3 \cdot 2 = 4 \cdot 3$; $2 \cdot 3 + 1 \cdot 2 = 4 \cdot 2$

and

$$u_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ with eigenvalue } \lambda_1 = -1.$$

Test 2 · (-1) + 3 · 1 = (-1) · (-1) ; 2 · (-1) + 1 · 1 = (-1) · 1

Insert: review of eigenvalues

For most applications we normalize the eigenvectors so that their length is equal to 1, i.e.

 $\mathbf{u}^T \mathbf{u} = 1$

Traditionally, we put the set of eigenvectors of **A** in a matrix denoted by **U**.

Each column of **U** is an eigenvector of **A**.

The eigenvalues are stored as diagonal elements of a diagonal matrix Λ .

Then we can write $\mathbf{A} \mathbf{U} = \Lambda \mathbf{U}$ or also as: $\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^{-1}$

For the previous example $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{-1}$ = $\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$

This is the eigendecomposition of this matrix. Not all matrices have a EDC.

Insert: positive (semi-) definite matrices

A type of matrices used often in statistics are called positive semi-definite (PSD)

The eigen-decomposition of such matrices always exists, and has a particularly convenient form.

A matrix **A** is positive (semi-)definite, if there exists a real-valued matrix **X** and

 $\mathbf{A} = \mathbf{X} \, \mathbf{X}^T$

Correlation matrices, covariance, and cross-product matrices are all semi-definite matrices.

The eigenvalues of PSD matrices are always positive or null

The eigenvectors of PSD are pairwise orthogonal when their eigenvalues are different.

Insert: positive (semi-) definite matrices

This implies $\mathbf{U}^{-1} = \mathbf{U}^T$

Then we can express **A** as $\mathbf{A} = \mathbf{U} \wedge \mathbf{U}^T$ with $\mathbf{U}^T \mathbf{U} = 1$

where \mathbf{U} is the matrix storing the normalized eigenvectors.

E.g. $\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ can be decomposed as

$$\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{-1} = \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} \text{ with } \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Singular Value Decomposition (SVD)

SVD is a generalization of the eigen-decomposition.

SVD decomposes a rectangular matrix **A** into three simple matrices: Two orthogonal matrices **P** and **Q** and one diagonal matrix Δ .

$$\mathbf{A} = \mathbf{P} \Delta \mathbf{Q}^T$$

P : the normalized eigenvectors of the matrix $\mathbf{A} \mathbf{A}^T$. (i.e. $\mathbf{P}^T \mathbf{P} = \mathbf{1}$) The columns of **P** are called *left singular vectors* of **A**.

Q :the normalized eigenvectors of the matrix $\mathbf{A}^T \mathbf{A}$. (i.e. $\mathbf{Q}^T \mathbf{Q} = \mathbf{1}$) The columns of **Q** are called *right singular vectors* of **A**.

 Δ : the diagonal matrix of the singular values. They are the square root values of the eigenvalues of matrix **A A**^T (they are the same as those of **A**^T **A**).

Goals of PCA

(I) Extract the most important information from the data table

(2) Compress the size of the data set by keeping only this important information

- (3) Simplify the description of the data set
- (4) Analyze the structure of the observation and the variables.

In order to achieve these goals, PCA computes new variables called principal components as linear combinations of the original variables.

The principal components are obtained from the SVD of \mathbf{X} .

Deriving the components

With $\mathbf{X} = \mathbf{P} \Delta \mathbf{Q}^T$

The $I \ge L$ matrix of factors scores, denoted **F**, is obtained as

$$\mathbf{F} = \mathbf{P} \Delta = \mathbf{P} \Delta \mathbf{Q}^T \mathbf{Q} = \mathbf{X} \mathbf{Q}$$

Thus, **Q** can be interpreted as a projection matrix because multiplying **X** with **Q** gives the values of the projections of the observations on the principal components.

PCA of MA hybridization data

PCA identifies local clusters that are characteristic

for particular clonal complexes

Summary

What we have covered **today**:

- Detection of DNA probes by DNA microarray
- Euclidian distance of 1/0 signals as distance measure
- Clustering of MA data
- PCA analysis of MA data

Next lecture:

- Reconstruct missing (ambiguous) data values with BEclear