V11 Multi-variate analysis

Program for today:

V11

Staphylococcus aureus Africa project — analysis for confounding variables
Overview multivariate analysis for omics projects
Case study: gene-regulatory network for breast cancer

Case study: single cell methylation and expression data
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Review: S. aureus in Germany vs. Africa: StaphNet

6 study sites each collected 100 isolates of ';"r‘;'l‘;tj‘:;

healthy volunteers and 100 of blood culture or
clinical infection sites.

Aim
microbiological and molecular characterization
of African S. aureus isolates

by DNA microarray analysis including clonal
complex analysis

supplemented by Whole Genome Sequencing
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Activitity of individual probes for CCs
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Principle component analysis of 1200 strains

Input data: binary matrix of MA data; dimension 1200 x 334 probes
PCA identifies local clusters that are characteristic
for particular clonal complexes
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Staphylococcus aureus data from Africa project (V1)

Age distribution is heavily skewed:
many small kids / babies in Africa — few seniors in Africa
very few small kids / babies in Germany — many seniors in Germany

Site # of |# of cases # of # of # of cases
cases 1to5 |cases 6 -|cases 26| above 66
below 1 years 25 years - 65 years

year years

Africa + Germany 88 109 90 225 88

(clinical)

Africa + Germany 19 34 363 175 9

(commensal)

Africa (clinical) 86 106 53 54 1

Africa (commensal) (17 34 156 89 4

Germany (clinical) |2 3 37 171 87

Germany 2 0 207 86 5

(commensal)

V11 Processing of Biological Data



Analyze whether age is a confounding variable

To test whether age is a confounding variable, one can compare the results from
simple linear regression with those from multiple linear regression.

The principle difference between these two types of regression models is the
number of explanatory variables:

(1) the simple linear regression (SLR) model uses only one dependent variable y
and one explanatory variable x: y=a+ b - x

In our case, y stands for the binary output from the Alere-chip experiment for a
particular gene. y therefore has values of O or 1.

With the binary variable x we could encode the sites Africa/Germany.
a and b are weights estimated by the model.

Generally SLR tries to find such weights (values for a and b) so that the difference
between the estimated y and actual y will be the smallest.

V11 Processing of Biological Data



Analyze whether age is a confounding variable

(2) the multiple linear regression model also has one dependent variable y but
more than one explanatory variables

y=a+b1'X1+b2'X2+ ...+bn'Xn
As above, y will be the Alere-chip entry for a gene with value 0 or 1.

The site, clinf/com and age categories will be used as explanatory variables .

V11 Processing of Biological Data



Steps of testing age categories for confounding

(1) Estimate a linear regression model for the dependent variable and one or more
explanatory variables.

(2) Repeat step 1 with age categories added as further explanatory variable.

(3) Compare the weights obtained in steps 1 and 2.

As a rule of thumb, if the weight (-s) (regression coefficient(-s)) from step 1
changes by more than 10%, then the variable (here: age) may be considered as a

confounder.

By following these steps, one can test for every significant finding (for example,
gene association) whether age is a confounder.

Reasons for this could be e.g. a significant imbalance in the distribution of age
among samples.

V11 Processing of Biological Data



Case study

Case study: test whether age categories are a confounding variable for the
2 genes lukS.PV and sdrC..total

Previously, we found that these 2 genes have different frequencies in African vs
German sites as well as in clinical vs commensal samples.

Therefore we will now test age as a confounder in the association of those genes
with the Africa/Germany and clinical/commensal categories.

Africa was encoded as 1 and Germany as 0.
Clinical samples were encoded as 1 and commensal with O.

Age categories were encoded from 1 to 5.

V11 Processing of Biological Data
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Multiple linear regression model for the lukS.PV gene

The Alere result for this gene for different samples is the dependent variable and
the site affiliation, clin/com values are explanatory variables.

The table lists the dependent (lukS.PV) and explanatory (Africa_value,
clin_com_value) variables for 10 samples out of 1200 samples.

samples
FR-B0O01
FR-B003
FR-B004
FR-B005
FR-BOO7
FR-B008
FR-B009
FR-B0O10
FR-BO11
0 FR-B012

= OO NOOGPAWN-—-~F

lukS.PV Africa_value

OC OO OO OO0OO0OOo

OC OO OO OOO0OO0OOo

clin_com_value

RS\ L\ G \G I \ . . (. N N

Since all these samples are from a German site, the Africa_value = 0.
Also, all samples are clinical (clin_com_value = 1).

V11
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lukS.PV

Application of linear regression determines optimal weights w,, w,, w,
so that we get for every sample

lukS.PV = w, + w, -Africa.value + w; -clin com value .
For the first sample FR-B001 the formula would be
O=W1+W2'O+W3'1 .

Results from multiple linear regression (coefficients marked in bold):

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.07250 0.01781 -4.070 5e-05***
Africa_value 0.42833 0.02057 20.825 <2e-16***
clin_com_value 0.19500 0.02057 9481 <2e-16 ***

In other words, the following model is estimated:

lukS.PV =-0.07 + 0.42833 - Africa_value + 0.195 - clin_com_value

V11 Processing of Biological Data
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lukS.PV

We then added a further variable “age category” with weight w, to the model.

lukS.PV = w, + w, - Africa.value + wj - clin com value + w, - age

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.06211 0.04559 1.362 0.17333
Africa_value 0.39077 0.02360 16.556 < 2e-16 ***
clin_com _value 0.19470 0.02049 9.503 < 2e-16**
age -0.03618 0.01129 -3.206 0.00138 **

Residual standard error: 0.3549 on 1196 degrees of freedom
Multiple R-squared: 0.3102,

Adjusted R-squared: 0.3085

F-statistic: 179.3 on 3 and 1196 DF, p-value: < 2.2e-16

lukS.PV =
0.06211 + 0.39077 - Africa value + 0.19470 - clin com value - 0.03618 - age

V11 Processing of Biological Data
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lukS.PV

This result shows
(a) that the age category has a very small impact (its own weight is close to 0) and
(b) the two other weights (for the site and clin/com) did not change much.

E.g. the weight of the Africa_values changed in relative terms by :

10.42833-0.39077 )
0.42833

The weight of clin_com_value changed by only 0.15%.

-100%=8.8%

Both values are smaller than 10% (rule of thumb).

Conclusion:
There is no statistical evidence that age acts as a confounding variable.

V11 Processing of Biological Data
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Same analysis for gene sdrC_total
Before adding age categories:

Coefficients: Estimate Std. Error t value Pr(>[t])
(Intercept) 1.02083 0.0125 81.711 <2e-16 ***
Africa_value -0.12833 0.0144 -8.896 < 2e-16***

clin_com_value -0.05833 0.0144 -4.044  5.6e-05***
Residual standard error: 0.2499 on 1197 degrees of freedom
Multiple R-squared: 0.07388, Adjusted R-squared: 0.07233
F-statistic: 47.75 on 2 and 1197 DoF, p-value: < 2.2e-16

After adding age categories:

Coefficients: Estimate Std. Error tvalue  Pr(>|t])
(Intercept) 0.975445 0.0321 30.407 < 2e-16***
Africa_value -0.115667 0.0166 -6.964  5.44e-12 ***
clin_com_value -0.058232 0.0144 -4.039 5.71e-05***
age-category 0.012198 0.0079 1.536 0.125

Residual standard error: 0.2497 on 1196 degrees of freedom
Multiple R-squared: 0.0757, Adjusted R-squared: 0.07339
F-statistic: 32.65 on 3 and 1196 DF, p-value: < 2.2e-16

Weight of Africa_value changed by 9.87%, weight of clin_com_value changed by 0.17%

V11 Processing of Biological Data
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Conclusion

There is no evidence from our preliminary analysis for the genes lukS.PV and
sdrC..total that age acts as a confounder in the associations of genes with
invasiveness and site affiliation.

We wrote in our manuscript:

“The discrepancy in population age between the German and African cohort
potentially biases the ‘true’ distribution of clones and genes between isolates from
the different geographic regions ...

[but] application of a multiple linear regression model for the detection rate of
Panton-Valentine leucocidin genes failed to provide evidence that age acts as a
confounding variable”

Ruffing et al. Sci. Rep. 7, 154 (2017)

V11 Processing of Biological Data
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Diabetes/HIV as confounding variables

Next, we tested using Fisher's exact test whether

(a) diabetes and HIV have similar frequencies in the total groups of African and
German samples and

(b) whether diabetes and HIV have similar frequencies in selected groups of
African and German individuals carrying particular clonal complexes.

The Fisher test considers the distribution provided in a 2 x 2 table.

Africa  Germany Row Total
HIV+ a b at+b
HIV- C d c+d
Column Total a+c b+d at+tb+ctd=n

The formula for the (exact) p-value calculation is :

(a+b)!c+d)!a+c)!(b+d)!

alblc!d!n!
Explanation: these are the number of possible combinatoric combinations for
these fields.

V11 Processing of Biological Data

p—value=
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Analysis of HIV co-infection

First, we will test the null hypothesis that “HIV is equally distributed in African and
German samples”.

(a) For all African samples and all German samples we obtain the following
dependencies of HIV carriers (HIV+) and of individuals without approved HIV status
(you may say non-carriers) (HIV-):

Africa Germany
HIV+ 41 0
HIV- 315 586

The p-value obtained for this table can be interpreted as the sum of evidence
provided by the observed data—or any more extreme table—for the null hypothesis
that “there is no difference in the proportions of HIV carriers among the African and
German individuals tested in our study”.

The smaller the value of p, the greater the evidence for rejecting the null hypothesis.

V11 Processing of Biological Data
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Analysis of HIV co-infection

For the data shown above,
(41+0)/(315+586)!/(41 +315:].’(0+586]!
4170/315/586/942 !

—1.03838e-18

p—value=

Thus, there is very strong evidence from the observed frequencies that African and
German individuals are not equally likely to be HIV carriers.

V11 Processing of Biological Data
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Analysis of diabetes co-infection

Similarly, we can obtain Fisher's exact p-value for the distribution of Diabetes
among African and German samples.

Africa  Germany
diab+ 4 68
diab- 475 526
p-value = 3.73425e-14

Also, here, the null hypothesis of a similar distribution is strongly rejected
suggesting the prevalence of Diabetes in individuals from Germany compared to
individuals from Africa.

Of course, we can trace this imbalance back to the difference in age categories
of the two groups.

V11 Processing of Biological Data
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HIV/diabetes in individuals with selected CCs

Next, we tested the distribution of HIV/Diabetes in individuals carrying S. aureus
from selected clonal complexes (CC15, CC45, CC121, CC30 which showed
significant imbalance in german/african samples).

These are the results (tables + p-values from Fisher's exact test)

RF_HIV

CC15 Africa
hiv+ 4

hiv- 65
p-value 0.126
CC45 Africa
hiv+ 1

hiv- 40
p-value 0.320

V11

Germany

0

57

0.25 (after correction for false discovery rate (FDR))

Germany

0

87

0.42 (FDR-corrected)

Processing of Biological Data
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HIV/diabetes in individuals with selected CCs

CC121 Africa Germany

hiv+ 11 0

hiv- 40 24

p-value 0.0132 0.05 (FDR-corrected)

CC30 Africa Germany

hiv+ 0 0
hiv- 7 75
p-value 1 1 (FDR-corrected)

V11 Processing of Biological Data
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HIV/diabetes in individuals with selected CCs

RF_CCSI_Diab_mel

CC15 Africa Germany

diab+ O 1

diab- 88 o6

p-value 0.393 0.52 (FDR-corrected)

CC45 Africa Germany

diab+ O 12

diab- 47 75

p-value 0.0081 0.03 (FDR-corrected)

CC121 Africa Germany

diab+ O 1

diab- 57 24

p-value 0.305 0.52 (FDR-corrected)

CC30 Africa Germany

diab+ O 7

diab- 9 68

p-value 1 1 (FDR-corrected)

V11 Processing of Biological Data



Interpretation

In most cases, there is no evidence based on our data to reject the null hypothesis
of assuming a similar distribution of HIV and diabetes carriers among African and
German samples belonging to particular clonal complexes.

The only exceptions to this are CC45 (diabetes — p=0.008/g=0.03)
and CC121 (HIV — borderline p=0.013/g=0.05).

Therefore, we concluded

“we observed statistically significant imbalances in the frequencies of all these
clonal complexes XXX, YYY ... between African and Germany.

We tested based on Fisher's exact test that these imbalances were not due to an
imbalance of HIV and diabetes carriers in both groups.

The only exceptions to this are CC45 (diabetes) and CC121 (HIV) where such
associations cannot be ruled out.”

V11 Processing of Biological Data
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Interpretation

On the other hand, the FDR-corrected p-values for CC45 and CC121 are
borderline (0.03 and 0.05).

Therefore, there only exists weak statistical evidence for a significant association
between CC45 and diabetes or between CC121 and HIV.

V11 Processing of Biological Data
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integration of multi-omics data

Overview of methods for multivariate analysis:

Different types of high-throughput technologies allow us to collect information on
the molecular components of biological systems

- e.g. nucleotide sequencing,

- DNA-chips measuring gene expression and

- protein mass spectrometry measuring protein abundances).

Therefore, in order to draw a more comprehensive view of biological processes,
experimental data made on different layers have to be integrated and analyzed.

The development of methods for the integrative analysis of multi-layer datasets is
one of the most relevant problems computational scientists are addressing
nowadays.
Bersanelli et al. BMC Bioinformatics
(2016) 17(Suppl 2):S15

V11 Processing of Biological Data
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Graph-based integration of multi-omics data

Some group of approaches use graphs to model the interactions among variables.

These approaches, designated as “network-based” (NB), take into account
currently known (e.g. protein-protein interactions) or predicted (e.g. from correlation
analysis) relationships between biological variables.

Then, graph measures (e.g. degree, connectivity, centrality) and graph algorithms
(e.g. sub-network identification) are used to identify valuable biological information.

Importantly, networks are used in the modeling of the cell’s intricate wiring diagram
and suggest possible mechanisms of action at the basis of healthy and
pathological phenotypes

Bersanelli et al. BMC Bioinformatics
(2016) 17(Suppl 2):S15

V11 Processing of Biological Data
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Bayesian integration of multi-omics data

The second criterion is whether the approach is Bayesian (BY).

These approaches use a statistical model in which, starting from an a priori
reasonable assumption about the data probability distribution (parametric or non-
parametric)

it is possible to compute the updated posterior probability distribution making use of
the Bayes' rule.

In the network-based area, Bayesian networks are another promising framework
for the analysis multi-omics data.

4 classes of methods:

- network-free non-Bayesian (NF-NBY),

- network-free Bayesian (NF-BY),

- network-based non-Bayesian (NB-NBY) and

- network-based Bayesian (NB-BY) methods Bersanelli et al. BMC Bioinformatics
(2016) 17(Suppl 2):S15

V11 Processing of Biological Data
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Overview of multi-omics methods

Camelot (GT, GE)
CNAmet (CN,DM, GE)
Integromics (2 omics)

Endeavour (DS, GE)

Grey: network-free, non-

e Kernel fusion (05, GE) Bayesian methods;
MCIA (GE, PE) ng;l‘ii'(’;%
MCD (CN, DM, LOH, GE)
SMBPLS (CN, DM, GE) nuChart (DS, GE)
SteinernNet (GE, PE) yellow: network-free,
Coalesce (DS, GE)  SSVM(GE) :
MDI (CC, GE) Bayesian methods;
PSDF (CN, GE) Conexic (CN, GE)
s TMD (CC, GE) Paradigm (GEN, GE, PE)
c;'m:fp | 1 MOLECULAR
NV MECHANISMS  b[ye: network-based, non-
Hi-C FALDA (GE, PE) :
LCI)H Integromics (2 omics) 2’:&'?85"(665) BayeS|an methOdS;
e e
SNP
iCluster (CN, GE) green: network-based
Transcriptome MDI (CC, GE) .
miIRNA PSDF (CN, GE) BayeS|an methods
e . . > PREDICTION
Proteome Camelot (GT, GE) Endeavour (DS, GE)
o Kernel fusion (DS, GE)
Abbreviations: SNF (DM, GE)
CC = ChlIP-chip,
CN = copy number variations, DM = DNA methylation,
D‘,S = DNA sequence, . . Bersanelli et al. BMC Bioinformatics
Hi-C = genome-wide Qata .of chromosomal interactions, (2016) 17(Suppl 2):S15
LOH = loss of heterozigosity,
V11 GT = genOtype’ Processing of Biological Data

GE = gene expression,
PE = protein expression



Method
Camelot
CNAmet
FALDA
Integromics
iPAC

MCD

MCIA
sMBPLS
Coalesce

iCluster

MDI
PSDF
TMD

Kernel Fusion

Endeavour

MOO
Multiplex

NuChart
SNF
SteinerNet
stSVM

Paradigm

Conexic

V11

Multi-omics approach

Bivariate predictive regression model
Multi-omics gene-wise scores

FA + LDA of a joint matrix
Regularized CCA, sparse PLS
Sequential

Sequential

Multiple co-inertia analysis

Sparse Multi-Block PLS regression
Multi-omics probabilities

Joint Gaussian latent variable models

DMA mixture models
Hierarchical DMA mixture models
Hierarchical DMA mixture models

Integration of omics-specific kernels

Integration of omics-specific ranks with order
statistics

Sub-network extraction on MWG
Joint analysis of multi-layered networks

Analysis of a MWG

Similarity network fusion
Sub-network extraction on MWG
MWG

Multi-omics bayesian factor graphs

Sequential

Implementation
NA

R

NA

R

NA

NA

R

Matlab

C ++

R

Matlab
Matlab
Matlab

Matlab

Webserver

R
NA

R

Matlab, R
Webserver
R

C ++

Existing tools

legend

MWG = multi-weighted
graph;

FA = factor analysis;

LDA = linear discriminant
analysis;

CCA = canonical correlation
analysis;

PLS = partial least squares;
DMA = Dirichelet
multinomial allocation

Bersanelli et al. BMC Bioinformatics

(2016) 17(Suppl 2):S15

Java
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Multi-omics anaIyS|s of breast cancer network
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Breast cancer network from TCGA data

ca. 1300 differentially
expressed genes.

Hierarchical clustering of co-
expression network:

10 modules with

26 - 295 genes.

Regulatory info from
databases Jaspar, Tred,
MSigDB.

Shown are 3 modules.

Squares are known drug
targets.

(@)

[ TR N 111 R 1

|
|
|

A T | 01 |1

7

() ?
e (3
[
. &
® °
° ®

QO Genes connected to the key drivers

O Identified key drivers

D Identified key drivers and targeted by drugs

Hamed et al. BMC Genomics 16 (Suppl5):S2 (2015)

° o
* D Q
° ‘ Q SF) - o
°
o 27 4 o
° iy, 2 e
I o i .
& R (=]
i &8 ) ) o gy GALr®
e N |
,".'::J
o\ /® °
=) ® o ° °
o
° °
o
. (d)
NG EF L ]
‘ ° o °
° o °
° °
L R s
o @
° . ° k | e
Q °
L ° L2 e AT n. P
- e
2 < e . . e
> " k'Ml o  d -
° ° ® [ e
o ¢ ° .
. ¢ e
¢ _ g
o
| ° AN
P ] & >4 °
pYC
L
. |
G i ‘
o
b ° . O
@ ° < ° °
o °
.
® o ¢ B
° . °
® e o



Drug Targets in breast cancer network

Table S4. The identified key gene nodes in the breast cancer network (12) whose protein products are targeted by
anti-cancer drugs. (1) means that at least one drug that targets this gene product is reported in this database, and (0)
means no drugs are reported for the respective gene in this database. Not included are substances that are known to
be cancerogenous or mutagenic.

. : Cancer
Target gene Drug and antineoplastic agents CTD PharmGKB Resource
AKTI1 U QlZé:tymhqstin AG 1478; Ursgdgoxychglig Acid:Valproic 1 0 1
Acid:tyrphostin AG 1024: trametinib: Tretinoin
BRCA?2 Tret.inoin: t?‘ichostatin A Estradiol: transplatin: troglitazone: 1 0 1
Tunicamycin; fulvestrant
ESR1 exemestane:tamoxifen 0 1 1
TGFBI1 Doxorubicin; Fluorouracil: Thalidomide: Entinostat: Hyaluronidase 0 0 1
P53 4-biphenylmine: alliin; Apigenin; 0 0 1

Atropine:bicalutamide:butylidenephthalide

Some key genes are protein targets of known anti-cancer drugs,
—> relevance of key genes is validated

Hamed et al. Nucl Acids Res 43: W283-W288 (2015)
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Case study: single-cell analytics

Parallel single-cell
sequencing links
transcriptional and

In the presence of serum, mouse embryonic stem cells (ESCs) epigenetic heterogeneity

. . ] . . . Christof Angermueller!7, Stephen J Clark?7,
) 237 Tain C Macaulav®7?. M: ;
constitute a metastable population with stochastic switching  Heather) Lee?” liin € Macaulay”, Mabel ) Teng’,
Tim Xiaoming Hu'-%, Felix Krueger>,
Sébastien A Smallwood?, Chris P Ponting®*, Thierry Voet>,

between transcriptional states. Gavin Kelsey?, Oliver Stegle! & Wolf Reik?

http://www.nature.com/nmeth/journal/v13/n3/full/nmeth.3728 .html

This transcriptional heterogeneity has been linked to the differentiation potential
of ESCs. E.g. NANOG" cells have an increased propensity to differentiate and
elevated expression of differentiation markers compared with NANOG" cells.

Sorted populations of cells show different levels of DNA methylation between
transcriptional states, such as gains in DNA methylation in NANOG'" and
REX1/ZFP42'° cells compared with, respectively, NANOG" and REX1" cells.

To investigate the link between epigenetic and transcriptional heterogeneity in ESCs,
Reik et al. performed scM&T-seq on 76 individual serum ESCs.

V11 Processing of Biological Data
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scMT & T-seq protocol

Single cells are collected and
lysed.

@ Single cell isolation
Then poly-A RNA is captured on l
magnetic beads and physically ® e
separated from DNA. l

SMARTer Oligo dT-VN

AAAAARA S s o SRR e

Poly-A mRNA capture

C

Angermuller et al.
Nature Methods (2016) 13, 229
V11

Separation of poly-A mRNA and DNA

Processing of Biological Data
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scMT & T-seq protocol

Ampl Ifled CDNA iS c .:E %) Separation of poly-A mRNA and DNA
generated from
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How good is the protocol:
check against single cell bisulfite sequencing (scBS-seq)
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Methylome coverage in scM&T-seq libraries was
lower than that in scBS-seq libraries.

However, genome-wide CpG coverage at matched
sequencing depth (c) and coverage of different
regions (d) was consistent across protocols.

W scBS-seq only
W scM&T-seq

37

Variance



Clustering based on DNA methylation data

Methylation
_ %) Shown is a hierarchical clustering
[ - analysis of gene-body methylation

0 20 40 60 80100 :
smimmAANRnT for the 300 most variable genes in

terms of DNA methylation.
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Clustering based on expression data
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Shown is a hierarchical clustering analysis of
gene expression for the 300 most variable
genes (on the basis of DNA-methylation
variance)

— Both data yield distinct clustering of cells.

This suggests that global methylome and
transcriptome profiles reveal complementary,
but distinct, aspects of cell state.

This is also consistent with previous
observations that the transcriptome and
methylome are partially uncoupled in serum
ESCs.

Processing of Biological Data
39



Associations of expression and DNA-methylation variation

i tMF?‘Q( ) 1,493 associations were found between the expression of
-'”‘.E b — -

T o individual genes and DNA-methylation variation in several

.,:% s genomic contexts (FDR) < 10%).

; “l
:é There exist both positive and negative associations,
highlighting the complexity of interactions between the

methylome and the transcriptome.

Global methylation
101(-) 415(+) g

Also distal regulatory elements including low-methylation
regions (LMRs) had a fair balance of positive and negative
associations.

log4(g-value)

1

: T T
-1.0 =05 0 0.5

Pearson correlation

Angermuller et al.
Nature Methods (2016) 13, 229

V11 Processing of Biological Data
40



Associations of expression and DNA-methylation variation
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Zoomed-in analysis for Esrrb

Correlation of methyla-
tion and expression
(black), variance (blue)
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Esrrb is a known hub gene in pluripotency networks.
Its expression negatively correlates with the
methylation of several LMR and p300 sites overlapping
‘superenhancers’ in the genomic neighborhood.
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Two scatter plots at
the top right:
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p300 region 001

1,000 +

Variance
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Correlations of DNA methylation and expression
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Gene-specific association analysis of correlations between DNA methylation in
different genomic contexts and gene expression in individual cells.

Shown are methylation-expression correlations for all variable genes in single cells,
for each annotation, with the correlation obtained from matched RNA-seq and BS-
seq of a bulk cell population superimposed (orange circles).

Prom = promoter.
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Summary

Multi-variate vs. single-variate analysis reveals possible confounding effects
Multi-omics methods: graph-based and/or Bayesian methods for data integration
Single cell analysis showed:

non—CGl promoter methylation and transcription are negatively associated in single cells /
both positive and negative associations at distal regulatory regions.

expression levels of many pluripotency factors, such as Esrrb are negatively associated
with DNA methylation — an important mechanistic component of fluctuating pluripotency in
serum ESCs is epigenetic heterogeneity

the strength of the connection between the methylome and the transcriptome can vary from
cell to cell

Q: is our understanding / data generation ready for multi-omics analysis?
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