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What is measured by microarrays?
Microarrays are a collection of DNA probes that are bound

in defined positions to a solid surface, such as a glass slide. :

The probes are generally oligonucleotides that are ‘ink-jet :° RS9 : : ' “esas
printed’ onto slides (Agilent) or synthesised in situ RS 58006506990
(Affymetrix). s il ¥iite tans

Labelled single-stranded DNA or antisense RNA fragments
from a sample are hybridised to the DNA microarray.

The amount of hybridisation detected for a specific probe is
proportional to the number of nucleic acid fragments in the
sample.

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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2-color microarrays

In 2-colour microarrays, 2 biological samples

are labelled with different fluorescent dyes,
usually Cyanine 3 (Cy3) and Cyanine 5 (Cy5).

Equal amounts of labelled cDNA are then
simultaneously hybridised to the same
microarray chip.

Then, the fluorescence measurements are
made separately for each dye and represent
the abundance of each gene in the test sample
(Cy5) relative to the control sample (Cy3).

Test Control
sample sample
l RNA isolation l
mRNA mRNA
Reverse
transcriptase
A 4 labelling Y
Mix
Hybridization

LT Scanning
e Data Acquisition

Relative value of hybridization is determined

http://www.ebi.ac.uk/training/online/course/

functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Counter acting dye bias
One issue for two-colour arrays is related to dye bias effects introduced by the

slightly different photo-chemistry of the two dyes.
This effect can be corrected in 2 different ways.

Dye swap design Reference design

Hybridization 1

. Hybridization 2

In a dye swap design, the same pairs of The most common design for two colour
samples (test and control) are compared  microarrays is the reference design in

twice with the dye assignment reversed in  which each experimental sample is
the second hybridisation. hybridised against a common reference

sample.

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Analysis of microarray data: workflow

. . Feature extraction
Microarrays can be used in many types of

CEL

experiments including " -
- genotyping, .
- epigenetics, Quality Control

- translation profiling and | 3
- gene expression profiling. :
Normalisation
Gene expression profiling is by far the
most common use of microarray

Differential Expression analysis

tech nology. Biological interpretation
Clustering analysis Geneset Pathway or network
. 1] enrichment analysis
Both one and two colour microarrays can IIII
be used for this type of experiment. 5 &

Submit data to a public repository

G0

ArrayExpress

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Extraction of features
Common microarray raw data file types.

Feature extraction is the
process of converting the
scanned image of the
microarray into quantifiable
values and annotating it with
the gene IDs, sample names
and other useful information

CEL

e 5

This process is often
performed using the
software provided by the
microarray manufacturer.

http://www.ebi.ac.uk/training/online/course/

Affymetrix | .CEL (binary) R packages (affy, limma,
oligo...)
feature extraction file
Agilent (tab-delimited text file Spreadsheet software
o (Excel, OpenOffice, etc.)
per hybridisation)
GenePix .gpr (tab-delimited text file | Spreadsheet software
(scanner) per hybridisation) (Excel, OpenOffice, etc.)
idat (binary) R packages (e.g.
illuminaio)
lllumina
txt (tab-delimited text Spreadsheet software
matrix for all samples) (Excel, OpenOffice, etc.)
NimbleScan, .pair
Nimblegen (tab-delimited text matrix Spreadsheet software
(Excel, OpenOffice, etc.)
for all samples)

functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Limma Package

Storage Class

Step in Analysis Function
1-colour | 2-colour
read.maimages / read.ilmn / EListRaw | RGList
read.idat
Data Import readTargets / read.ilmn.targets
readGAL / readSpotTypes
controlStatus
backgroundCorrect / nec FListRaw | RGList
normalizeWithinArrays _ )
}ELst | MmAList

Preprocessing
&
Quality
Assessment

normalizeBetweenArrays / neqc
voom /vooma / voomaByGroup EList
plotMA

plotDensities

plotFB

imageplot

plotMDS

arrayWeights / voomWithQualityWeights
removeBatchEffect

Rapaport et al. (2013) Genome Biol. 14: R95
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Linear
Modelling
&
Differential
Expression

Limma Package

modelMatrix

ImPFit

ImscFit

avereps
duplicateCorrelation
makeContrasts
contrasts.fit

eBayes

topTable

treat

topTreat
decideTests

write.fit
propTrueNull

genas

volcanoplot
heatdiagram / heatDiagram
plotSA
vennDiagram

Rapaport et al. (2013) Genome Biol. 14: R95
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Quality control (QC)

QC of microarray data begins with the visual inspection of the scanned microarray
Images to make sure that there are no obvious splotches, scratches or blank areas.

Data analysis software packages produce different sorts of diagnostic plots, e.g.
of background signal, average intensity values and percentage of genes above
background to help identify problematic arrays, reporters or samples.
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http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Normalisation

Normalisation is used to control for technical variation between assays, while
preserving the biological variation.

There are many ways to normalise the data. The methods used depend on:
- the type of array;

- the design of the experiment;

- assumptions made about the data;

- and the package being used to analyse the data.

For the Expression Atlas at EBI, Affymetrix microarray data is normalised using
the 'Robust Multi-Array Average' (RMA) method within the 'oligo’ package.

Agilent microarray data is normalised using the 'limma’' package:
'‘quantile normalisation' for one-colour microarray data;
'Loess normalisation’ for two colour microarray data.

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Differential expression analysis: Fold change

The simplest method to identify DE genes is to evaluate the log ratio between two
conditions (or the average of ratios when there are replicates)

and consider all genes that differ by more than an arbitrary cut-off value to be
differentially expressed.

E.g. the cut-off value chosen could be chosen as a two-fold difference.

Then, all genes are taken to be differentially expressed if the expression under one
condition is over two-fold greater or less than that under the other condition.

This test, sometimes called 'fold’ change, is not a statistical test.

- there is no associated value that can indicate the level of confidence in the
designation of genes as differentially expressed or not differentially expressed.

Cui & Churchill, Genome Biol. 2003; 4(4): 210.
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Differential expression analysis: f-test
The t test is a simple, statistical method e.g. for detecting DE genes.

R, : mean log ratio of the expression levels of gene g = “the effect”
SE : standard error by combining data across all genes = “the variation in the data

”

Global t-test statistics : t = ?—g

Standard error: standard deviation of the sampling distribution of a statistic.

For a value that is sampled - _

with an unbiased normally °

distributed error, the figure e |

depicts the proportion of “

samples that would fall Q3 34.1% | 3a.1%

between 0, 1, 2, and 3
standard deviations above and = -
below the actual value.

Cui & Churchill, Genome Biol. 2003; 4(4): 210;
www.wikipedia.org (M.M. Thoews)
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Differential expression analysis: t-test
SE, : standard error of gene g (from replicate experiments)
Rg

Gene-specific t-test statistics: t = —
SEg

In replicated experiments, SE, can be estimated for each gene from the log ratios,
and a standard t test can be conducted for each gene.

The resulting gene-specific t statistic can be used to determine which genes are
significantly differentially expressed.

This gene-specific t test is not affected by heterogeneity in variance across genes
because it only uses information from one gene at a time.

It may, however, have low power because the sample size - the number of RNA
samples measured for each condition - is typically small.

In addition, the variances estimated from each gene are not stable: e.g. if the
estimated variance for one gene is small, by chance, the t value can be large even

when the corresponding fold change is small.
Cui & Churchill, Genome Biol. 2003; 4(4): 210.
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Differential expression analysis: SAM

As noted above, the error variance of the gene-specific t statistic is hard to estimate
and subject to erratic fluctuations when sample sizes are small.

Since the square root of the variance gives the denominator of the t tests,
this affects the reliability of the t-test for gene-specific tests.

In the 'significance analysis of microarrays' (SAM) version of the ¢ test (known
as the S test), a small positive constant c is added to the denominator of the gene-
specific t test.

Rg
c+SEg

Significance analysis of microarrays (SAM): S =

With this modification, genes with small fold changes will not be selected as
significant; this removes the problem of stability mentioned above.

Cui & Churchill, Genome Biol. 2003; 4(4): 210.
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Log Odds

Limma Package: Volcano plot

The 'volcano plot' is an easy-to-interpret
graph that summarizes both fold-change and
t-test criteria.

It is a scatter-plot of the negative log,-
transformed p-values from the gene-specific t
test against the log, fold change.

T T T T T T T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Log Fold Change
Genes with statistically significant differential expression according to the gene-

specific t test will lie above a horizontal threshold line.

Genes with large fold-change values will lie outside a pair of vertical threshold
lines. The significant genes identified by the S, B, and regularized t tests will tend
to be located in the upper left or upper right parts of the plot.

Rapaport et al. (2013) Genome Biol. 14: R95
Cui & Churchill, Genome Biol. 2003; 4(4): 210
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DE analysis from RNAseq data

Compared to microarrays, RNA-seq has the following advantages for DE analysis:

- RNA-seq has a higher sensitivity for genes expressed either at low or very high
level and higher dynamic range of expression levels over which transcripts can be
detected (> 8000-fold range).

It also has lower technical variation and higher levels of reproducibility.

- RNA-seq is not limited by prior knowledge of the genome of the organism.

- RNA-seq detects transcriptional features, such as novel transcribed regions,
alternative splicing and allele-specific expression at single base resolution.

- Microarrays are subject to cross-hybridisation bias.
RNA-seq may have a guanine-cytosine content bias and
can suffer from mapping ambiguity for paralogous sequences.

Rapaport et al. (2013) Genome Biol. 14: R95
Cui & Churchill, Genome Biol. 2003; 4(4): 210
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Example: Haemopedia

aStem Cell Reports [SSCR

Resource

OPEN ACCESS

Haemopedia: An Expression Atlas of Murine Hematopoietic Cells

Carolyn A. de Graaf,">* Jarny Choi, ' Tracey M. Baldwin,' Jessica E. Bolden, !> Kirsten A. Fairfax, '

Aaron ]. Robinson, > Christine Biben, !> Clare Morgan,'> Kerry Ramsay,' Ashley P. Ng,”> Maria Kauppi,*>
Elizabeth A. Kruse, !> Tobias J. Sargeant, !> Nick Seidenman,' Angela D’Amico,* Marthe C. D’Ombrain, !~
Erin C. Lucas,' Sandra Koernig,” Adriana Baz Morelli,” Michael J. Wilson,” Steven K. Dower,”’

Brenda Williams,®” Shen Y. Heazlewood,®” Yifang Hu,* Susan K. Nilsson,®" Li Wu,*!” Gordon K. Smyth,*°

Warren S. Alexander,”> and Douglas J. Hilton'>

"Molecular Medicine Division
2Cancer and Haematology Division

Molecular Immunology Division
The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
4Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia
SDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
SDepartment of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3052, Australia
7CSL Limited, Parkville, VIC 3052, Australia

SBiomedical Manufacturing, CSIRO Manufacturing, Clayton, VIC 3169, Australia

?Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
10Tsinghua University School of Medicine, Beijing 100084, China

*Correspondence: degraaf@wehi.edu.au

http://dx.doi.org/10.1016/j.stemcr.2016.07.007
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Cells included in Haemopedia

54 hematopoietic cell populations were purified by flow sorting from mouse and

then analyzed by gene-expression profiling.

Here, they are grouped

in their respective lineages.

V3

Erythrocyte
PreCFUE
MEP

CFUE
EryBIPB
EryBIPO
Retic

Meg
Meg8N
Meg16N
Meg32N

Non Haematopietic

Liver
Testis
Lung
Kidney

Ovary
Brain
ES Cell
EmbFib

Eosinophil
EoP
Eo

Multi Potential
Progenitors
LTHSC
STHSC

MPP

Restricted Potential Progenitors

I CMP BEMP

GMP CD9Hi FcgrRBP
PreGM1 PreGM2
Neutrophil Macrophage DC
NeutLN MonoPB CDP
NeutPt MonoLN cDC1
Mac cDC2
MigDC

Basophil Mast Cell
Baso Mast

Processing of Biological Data

T Cell
CD4Thy1Lo
TN1

TN2

TN3

TN4
DblPosT
CD4TLN
CDETLN
NveCDA4T
NveCD8T
EffCDAT
EffCD8T
RegT
MemCD8T

NK Cell
NK
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Relationship of Cells in Haemopedia

Relationships of cells inferred

by expression data recapitulate the
progressive order of maturation; e.g.

(Meg8N, 16N-32N) or

- T cell progenitor maturation
(CD4TThy1Lo [Thy1e T cell
progenitors], TN1, TN2, TN3 to
TN4) or

- B cell development (ProB, PreB

A total of 890 probes (719 genes) with SD > 2 on to ImmB).
a log, scale across all cell types were selected.

A minimum spanning tree based on Euclidean
distance measurements was calculated using
these probes. Lengths of branches reflect the

distance between cell types.

V3

Processing of Biological Data
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Identifying Lineage-Specific Genes

Commitment, maturation, and activity of specific hematopoietic lineages are
regulated by transcription factors and receptors that are expressed selectively
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Lineage-specific genes: high
expression in a single mature cell type
and substantially lower expression in all
other mature lineages

Heatmap is colored by the absolute
expression value (log,) for each gene,
blue is low, intermediate, and
red high expression.

Top line: number of genes specific for
each lineage.

Mature cells are highlighted in black and
progenitor cells in gray.

Heavily-lined boxes: expression of

lineage signature genes in their

associated lineage.
20



Mouse cells
||

Expression in Mouse and Human Cells

Human cells
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Heatmap of correlations between mouse and
human cell types after mean normalization of
expression for ca. 9300 one-to-one orthologs
between the species.

Genes with SD > 0.8 on a log2 scale were
chosen, leaving 2,026 genes.

Heatmap scale is according to Pearson
correlation of cell types, with no correlation
(dark blue) through to highly correlated
(dark red).

Lineages that are equivalent between
species are highlighted by heavily lined
boxes.

21



Detection of Outlier Samples/Genes

@ ooooo a% ) .
.“"EB \’g'-.l JO“l llill Of Barghash et al., J Proteomics Bioinform 2016, 9:2
'»\5% — 65,3.-' . « . http: / /dx.doi.org/10.4172/jpb. 1000387
‘e’ Proteomics & Bioinformatics

Robust Detection of Outlier Samples and Genes in Expression Datasets

Ahmad Barghash'?, Taner Arslan' and Volkhard Helms™

"Center for Bioinformatics, Saarland University, Saarbruecken, Germany
2Saarbruecken Graduate School of Computer Science, Saarbruecken, Germany

Outlier : an observation that deviates “too much” from other observations.

Detecting outliers might be important either because the outlier observations are of
interest themselves or because they might contaminate the downstream statistical

analysis.

One common reason for outliers is mislabeling, where accidently a sample of one
class might be falsely assigned to another one.

An outlier might also be a gene with abnormal expression values in one or more
samples from the same class. In the case of cancer, this may reflect that this
patient or his/her disease is a special case.

V3 Processing of Biological Data 22



Median absolute deviation (MAD) of a gene

MAD does not rely on the variance or standard deviation and thus it
assumes no special statistical distribution of the data.

First the raw median expression for each gene j is calculated over all
samples.

Then the median absolute deviation (MAD) of data points for this gene
from its raw median is calculated as

Data points with maximum MAD are labeled as possible outliers

MAD, = median(‘Xj —medianj (Xj)

V3 Processing of Biological Data 23



GESD

GESD was developed to detect 21 outliers in a dataset assuming that the body of
its data points comes from a normal distribution.

First, GESD calculates the deviation between every point x; and the mean p,
Max. |x, — i
Ri — .’| 1 !“|
SD
normalized by the standard deviation and then removes the point with the
maximum deviation at each iteration.

This process is repeated until all outliers that fulfill the condition R!.>)t!. are
identified where A is the critical value calculated for all points using the
percentage points of the t distribution.

/1_ _ (ﬂ _i)tp.fzfl

| \/(l’l—l-—l—*—l‘}z),”_i_l)(ﬂ—l.‘F1)
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GESD

GESD and its predecessor ESD will always mark at least one data point as
outlier even when there are in fact no outliers present.

Therefore, using GESD to detect outliers in microarray data must be
accompanied with a threshold of outlier allowance where a certain amount of
outliers are detected before marking a gene as an outlier.

The GESD method is said to perform best for datasets with more than 25 points.

Additionally, the algorithm requires the suspected amount of outliers as an input.

The default in our work was half of the tested size.

V3 Processing of Biological Data
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V3

Simulated expression data sets

Different gray levels represent different
classes.

OQutlier cases are in black.

SDS1/2 (left) has two known outliers

SDS1-3 follow Gaussian distributions
while SDS4 follows a Poisson
distribution.

Processing of Biological Data

(black) and 3 known switched samples.

SDS3/4 (right) contain 50 outliers each.
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Effect of 2 outliers on auto-correlation of a gene

= a .
. N o~ COAD 143 samples
N . a- GBM 594 samples
\\ : A ¢ HCC 247 samples
- “ ‘e -4- OV 591 samples
o \ o
N o e
N )
-~
= ™,
=2 - -] \\ A
= o |
=
- \a o q
t -h""*-. rn
g ~ | ~ .
| o .
g - A,
= ¢ T @ Re
o P X
o T~
o,
o
wn e
= o
—~e_
~t _--"6‘
o I T 1
0 Qutlier 25D 45D 65D 8sD 10SD 125D

Effect of 2 introduced outlier points on co-expression analysis of a gene with itself
(4 datasets from TCGA for COAD; GBM; HCC, OV tumor).

X-axis : magnitude of perturbations applied as multiples of standard deviations (SD).

For the smallest sample (COAD), two 2SD outliers, reduce the correlation to 0.75.
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Height

Clustering dendogram

O SO Mom
m% QQNHO‘)‘?-—N

o

26

Clustering dendrogram of dataset of simulated expression.

Average Hierarchical Clustering bases on Euclidean distances (AHC-
ED) clustered SDS1 into 3 main classes grouping the outlier samples
(50 and 100) in a separate class.

All switched samples — marked by asterisks - were correctly clustered
into their original classes.

V3 Processing of Biological Data 28



Silhouette: validates clustering

n=100
j:nlave,g !
1: 49035
Large s(i)
means good
clustering
2: 49| 035
3: 2080
[ T I T I |
0.0 0.2 0.4 0.6 08 1.0

Silhouette width s;

Silhouette validation of the AHC-ED clustering of SDS1.
The average distance of 0.36 indicates that AHC-ED succeeded in clustering SDS1.

PLOETI0

Silhouette coefficient: max{a(z), b(z)}

a(i) : average dissimilarity of / with all other data within the same cluster
b(i) : lowest average dissimilarity of / to any other cluster, of which j is not a member

V3 Processing of Biological Data
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# of detected svnthetic outlier data points

GESD
Boxplot
MAD

GESD
46
33
33

Table 2: Detection results of simulated gene outliers.

Average of commonly detected outliers by GESD, Boxplot, and MAD algorithms in 100 simulated datasets of the SDS3 form. An outlier is considered as correctly detected

Boxplot

34
31

if four out of five outlier values are detected from the other 50. DS3/4 has in total 50 outlier genes out of 1000.

MAD

33

Approximate Intersection

Class' Distributions

Qutlier distribution

Detection Result

1SD C1: N(0,22) C1: N(10,22) GESD: 45
C2: N(5,1?) C2: N(11,1?) Boxplot: 37
MAD: 36
25D C1: N(0,29) C1: N(8,2?9) GESD: 30
C2: N(5,19) C2:N(10,13) Boxplot: 18
MAD: 17
3sD C1: N(0,2?) C1: N(6,22) GESD: 10
C2: N(5,13) C2: N(9,12) Boxplot: 4
MAD: 4

Table 3: Distributions of simulation datasets.

Lists of all distributions used in different runs creating matrices of simulated expression.

Top: In normally distributed data, GESD identified largest number (46/50) of

synthetic outliers.

Bottom: If the two distributions have larger overlap (1 SD - 2 SD -3 SD),
detection outliers becomes considerably harder.

V3
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Clustering real data
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Clusters found in TCGA colon expression dataset

Detected clusters in public colon cancer dataset from TCGA.

All 7 normal samples with barcode 11A were clustered together on the
left side of the dendrogram away from tumor samples with barcode 01A.

V3 Processing of Biological Data
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Functionally relevant outliers

= om0 | Idea: some outlier
- genes have functional
similarity with other
outlier genes in the
same samplex and this
may be functionally
relevant.

60 70

50

40

30

Fraction detected/returned (%)
20

10

GSED MAD Boxplot
Detection algorithms

Outlier detection statistics in TCGA methylation datasets.

Percentage of detected and returned outliers - due to functional similarity (from

GOSemSim package, see V8) and common positions - in the TCGA methylation
datasets COAD, GBM and OV.

The left column in each group refers to the fraction of detected and the right
column refers to the fraction of returned outliers.
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MA quality control

Genomics 95 (2010) 138-142

Contents lists available at ScienceDirect

Genomics

journal homepage: www.elsevier.com/locate/ygeno

Minireview
Microarray data quality control improves the detection of differentially
expressed genes

Audrey Kauffmann *, Wolfgang Huber

EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 15D, UK

These authors compared four strategies of data analysis :

- Strategy 1 No outlier removal

- Strategy 2 Outlier removal guided by arrayQualityMetrics (outliers of boxplot)
- Strategy 3 Removing random arrays (same number of arrays as in strategy 2)

- Strategy 4 Array weights using the function arrayWeights from the limma
Bioconductor package

Kauffman, Huber (2010) Genomics 95, 138
V3 Processing of Biological Data
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Number of DE genes

Data -> rma -> DE genes with moderated Number of differentially expressed
t-test in limma, FDR correction genes identified:

. - on the whole dataset (white bars),

O All arrays
O Weights
m Outlier(s) removed

4000

- after removing outliers identified by
- arrayQualityMetrics (black bars) and

3000

- using weights obtained by
arrayWeights from limma (grey bars).

2000
!

- Many more DE genes identified

Number of differentially expressed genes

after removing outlier genes.

1000
I
B

B e 1)

X d T & & . E-MEXP-170 has additional
2 @ = @ o = = :
© 9 4 & 9 u u confound-ding effect of
experiment date! This
Kauffman, Huber (2010) Genomics 95, 138 explains high # of DE genes.
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Effect of Outlier removal on DE genes
a

All arrays Ouitlier(s) removed All arrays  Outlier(s) removed All arrays  Outlier(s) removed

7(\ / 7(\ /7( \ In (c), (d), (e) good

overlap of outlier

2 W removal and weight
\\/ : w method.

Weights Weights Weights
e
AT  Ovlisia o AN OURERTGe Venn diagrams representing the number of

DE genes identified by each method: all
arrays, after removing outlier arrays, using
array weights.
(a) E-GEOD-3419,
(b) E-GEOD-7258,
Weights Weights (c) E-GEOD-10211,
(
(

d) E-MEXP-774,

Kauffman, Huber (2010) Genomics 95, 138 e) E-MEXP-170.
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Number of differentially expressed genes

40

Effect of removing random genes on DE genes
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E-GEOD-3419

Kauffman, Huber (2010) Genomics 95, 138

V3

E-GEOD-7258

E-GEOD-10211

All arrays
® without aQM outliers
A Using limma arrayWeights

E-MEXP-774

E-MEXP-170

Processing of Biological Data

Boxplots representing the
number of DE genes in each
experiment when removing
arbitrary subsets of size K, the
number of outlier arrays
identified from the N samples.

When N over K < 1000, all possible
subsets were considered, otherwise 1000

subsets were sampled randomly.

If the same number of random
genes is removed, fewer DE
genes are detected.
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KEGG pathway enrichment analysis

Does removal of outliers result gene set enrichment analysis :
in better biological sensitivity? 5 most enriched KEGG pathways
among DE genes for
Pathway name Genes p-value when p-value experiments E-GEOD-3419 and
removing when all
outliers arrays E-GEOD-7258, with and without
E-GEOD-3419 I I
Pyrimidine metabolism 37 <1073 0.701 OUt ler removal.
Base excision repair 17 0.001 0.542
DNA replication 19 0.003 0.451
Cell cycle 69 0.009 0.387
TGF-beta signaling pathway 48 0.009 0.558 2 The pathways are related to
ECEOD.7258 the biology studied in the
Pentose phosphate pathway 13 0.003 0.588 :
Fructose and mannose metabolism 28 0.003 0.326 experlments.
Biosynthesis of steroids 20 0.003 0.012
Oxidative phosphorylation 44 0.003 0.299
Starch and sucrose metabolism 16 0.003 0.317 N Their enrichment is more

significant after outlier removal.

Kauffman, Huber (2010) Genomics 95, 138
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Results from other outlier detection methods

ArrayExpress arrayQuality GESD Hampel
ID Metrics

E-GEOD-3419 6, 12 3,6, 12 12
E-GEOD-7258 7,15, 16 7,15, 16 7,15, 16
E-GEOD-10211 2,7 2,7 2
E-MEXP-774 4,17 4,17 4, 17
E-MEXP-170 6 6 6

Comparison of different outlier detection methods:
method implemented in arrayQualityMetrics (it is based on boxplots),

generalized extreme studentized deviate (GESD),

method of Hampel (it is based on the median absolute deviation (MAD)).

The results of different methods overlap mostly -> robustness

Kauffman, Huber (2010) Genomics 95, 138

V3

Processing of Biological Data
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DE detection in RNAseq data

If sequencing experiments are considered as random samplings of reads from a

fixed pool of genes,
then a natural representation of gene read counts is the Poisson distribution of

the form f(n, ) = (k”e_;“)/n!

where n : number of read counts
A : expected number of reads from transcript fragments.

An important property of the Poisson distribution
is that variance AND mean are both equal to A.

Rapaport et al. (2013) Genome Biol. 14: R95
V3 Processing of Biologcal Data
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DE detection in RNAseq data

However, in reality the variance of gene expression across multiple biological
replicates is larger than its mean expression values.

To address this over-dispersion problem, methods such as edgeR and DESeq use
the related negative binomial distribution (NB)
where the relation between the variance v and mean p is defined as

V=4 + op”

where « is the dispersion factor.

Estimation of this factor is one of the fundamental differences
between the edgeR and DESeq packages.

k+r—1\ ,
NB distribution: flksryp) =Pr(X =k) = ( +,: >P‘(1 —p)" fork=0,1,2,...

Rapaport et al. (2013) Genome Biol. 14: R95
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Reference data

Samples from group A : Strategene Universal Human Reference RNA (UHRR),
which is composed of total RNA from ten human cell lines.

Samples from group B: Ambion’s Human Brain Reference RNA (HBRR).

ERCC spike-in control : mixture of 92 synthetic polyadenylated oligonucleotides,
250 to 2,000 nucleotides long, which resemble human transcripts.

The two ERCC mixtures in groups A and B contain different concentrations of
4 subgroups of the synthetic spike-ins such that the log expression change is
predefined and can be used to benchmark DE performance.

Rapaport et al. (2013) Genome Biol. 14: R95
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Comparison against reference data

RMSD correlation between q RT-PCR RMSD correlation with TagMan fold changes
and RNA-seq log, expression _
changes computed by each method.

_
o

2.0

Overall, there is good concordance
between log, values derived from the
DE methods and the experimental
values derived from gRT-PCR

1.5

1.0

measures.

RMSD from QRT-PCR log2 expression changes

0.5

Upper quartile normalization
(baySeq) is least correlated (highest S
RM SD) Wlth qRT_PCR ValueS. DESeq edgeR limmaQN limmaVoom PoissonSeq  CuffDiff baySeq

Rapaport et al. (2013) Genome Biol. 14: R95
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Performance for DE detection

Differential expression analysis
using gRT-PCR validated gene set.

ROC analysis was performed using
a qRT-PCR log, expression change
threshold of 0.5.

Sensitivity

The results show a slight advantage
for DESeq and edgeR in detection
accuracy.

Rapaport et al. (2013) Genome Biol. 14: R95
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ROC of TagMan data

logFC cutoff= 0.5

DESeq AUC = 0.894
= adgeR ALUC = 0,884
limmaQMN AUC = 0.865
== limma\ioom AUC = 0.87
PoissonSeq AUC = 0.878
s CufiDiff AUC = 0.865
baySeq AUC = 0.884
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Specificity

V3 Processing of Biological Data

44



Performance for different thresholds

Increasing log, expression ratios
represent a more stringent cutoff
for differential expression.

- one would expect a better
performance of the DE methods.

Indeed, the performance of
increases, whereas
that of the Cuffdiff and limma

methods gradually reduce.

AUC, area under the curve.

Rapaport et al. (2013) Genome Biol. 14: R95

TagMan AUCs

DESeq
- gdgeR
limmaQN
w—limmaVoom
PoissonSeq
w— CuffDiff
baySeq

T | | T
0.5 1.0 15 20
logFC cutoff values
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Intra-condition comparisons

Intra-condition comparisons
using the SEQC technical replicate
samples from each condition.

BgféDiﬁ —
eq

edgeR —
limmaQN
limmavVoom —
PoissonSeq

I
25%

No DE genes are expected in these

|
|

comparisons. C
50% ~°
. . . 10 -; u
The distribution of P values is 8 1 pN -
expected to be uniform since they 2 = N L
: £ 04 : _
are derived from the null model. = __ 75%
Indeed, we found that the P values i /\2‘_:"# - i
- : — 0
for all methods were largely uniform __ 100% i
8 - _
E ] S - S "—’—ﬂ-—“ B
0 I I | | | 3
0.00 0.05 0.10 0.15 0.20
p.val
Rapaport et al. (2013) Genome Biol. 14: R95
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all genes

As expected, all
methods hada .. . ...
smaller number -
of FPs with
increasing
number of
replications and
increased
sequencing
depths. o] I

Ngmber of FP detected genes

Number of false positives

First count quartile Second count quartile Third count quartile Fourth count quartile

T I v 2 w & » & I = = = 5 x & I
I
I 1
i I o i AN N A !

' ' ' [ [ ' 1 1 [ [ ' ' ' ' 1 '
)% 100 % 1 20% 30% 40% 5( N i 10 2( 30% 4 50% 100° ) 1(

Sequencing depth

Replicate:

2rep 3rep

FP calls among the lowest 25% of expressed genes increased with sequencing depth

and number of replicates in contrast to the higher expression quartile where the FP rate
reduces when more data is provided. However, the total number of FPs is lowest in the

bottom 25% expression indicating that all methods are conservative when predicting

DEVrg\t low expression ranges.

Processing of Biological Data

Rapaport et al. (2013) Genome Biol. 14: R95
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Sensitivity rates

_ Fraction of detected DE

all genes First count quartile Second count quartile Third count quartile Fourth count quartile
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2rep asep SENSItivity rates defined as the
fraction of true set genes improves
significantly with the sequencing

Rapaport et al. (2013) Genome Biol. 14: R95 depth and number of replicates.

( b) Replicate
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Comparison of methods

Table 2 Comparison of methods.

Evaluation Cuffdiff DESeq edgeR limmaVoom PoissonSeq baySeq

Normalization and clustering All methods performed equally well

DE detection accuracy measured by AUC at increasing Decreasing Consistent Consistent Decreasing  Increases up to log Consistent

gRT-PCR cutoff expression change < 2.0

Null model type I error High Low Low Low Low number of FPs Low
number of number of number of Number of number of
FPs FPs FPs FPs FPs

Signal-to-noise vs P value correlation for genes Poor Poor Poor Good Moderate Good

detected in one condition

Support for multi-factored experiments No Yes Yes Yes No No

Support DE detection without replicated samples Yes Yes Yes No Yes No

Detection of differential isoforms Yes No No No No No

Runtime for experiments with three to five replicates Hours Minutes Minutes Minutes Seconds Hours

on a 12 dual-core 3.33 GHz, 100 G RAM server

AUC, area under curve; DE, differential expression; FP, false positive.

Rapaport et al. (2013) Genome Biol. 14: R95
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Summary

Removing outlier data sets from the input data is essential for the downstream
analysis (unless these outliers are of particular interest -> personalized medicine).

Analysis tools: box-plots, PCA, density plots, clustering
Some outlier methods (GESD) are based on variants of the t-test.
MAD and boxplots are other simple methods.

Robust outlier detection methods for RNA-seq data should yield better performance
expected for higher number of replicates + sequencing depth.
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