V4

V4 — MS proteomics — data imputation

How does MS proteomics work?
What is the role of bioinformatics in MS proteomics ?
- Peptide mass fingerprinting
- Significance analysis
- GO annotations
Applications of MS:
- TAP-MS

- Phosphoproteome

- Cell-cycle oscillatory proteins

Noble prize in chemistry 2002
Data imputation for MS data John B. Fenn  Koichi Tanaka
“for their development of soft
desorption ionisation methods for
mass spectrometric analyses of
biological macromolecules”

www.nobelprize.org
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Proteomics workflow

(1) Sample SDS-

. : The typical proteomics experiment consists of 5 stages.
fractionation PAGE ypicalp P J

In stage 1, the proteins to be analyzed are isolated

from cell lysate or tissues by biochemical fractionation
or affinity selection.

This often includes a final step of one-dimensional gel

J &

electrophoresis, and defines the 'sub-proteome’ to be
analysed.

MS of whole proteins is less sensitive than peptide MS
and the mass of the intact protein by itself is insufficient
for identification.

Aebersold, Mann

Nature 422, 198-207(2003)
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Proteomics workflow

(1) Sample SDS- Excised (2)Trypsin Peptide
fractionation PAGE proteins digestion mixture
P @ A
— —
:_ni
Table 1. Distrubution of peptide fragment length from 20,639
Therefore, proteins are degraded proteins
. . . Residues Total Avg. fragment
enzymatlca"y to peptldes In Stage 2’ Enzyme/reagent cleaved fragments length
usually by trypsin, leading to peptides  Trypsin K/R 662,981 8
, _ , Lys-C K 359,140 16
with C-terminally protonated amino Asp-N D 321,655 18
_ o ] CNBr M 150,605 38
acids (K/R), providing an advantage in  Hydroxylamine N-G 36,643 152
. ) Dilute acid D-P 35,674 166
subsequent peptide sequencing.
Aebersold, Mann Henzel et al. J Am Soc Mass Spectrom
Nature 422, 198-207(2003) 14, 931-942 (2003)
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Proteomics workflow

(3) Peptide gl g2
chromatography
and ESI

”*F:I::::::::

In stage 3, the peptides are separated by one or more steps of high-pressure
liquid chromatography in very fine capillaries.

Then, they are eluted e.g. into an electrospray ion source where they are
nebulized in small, highly charged droplets.

After evaporation, multiply protonated peptides enter the mass spectrometer.

Aebersold, Mann

Nature 422, 198-207(2003)
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Mass spectrometer
A mass spectrometer consists of an ion source, a mass analyser that measures
the mass-to-charge ratio (m/z) of the ionized analytes, and a detector that
registers the number of ions at each m/z value.

Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization
(MALDI) are the two techniques most commonly used to volatize and ionize the
proteins or peptides for mass MS analysis.

ESI ionizes the analytes out of a solution and is therefore readily coupled to liquid-
based (e.g. chromatographic and electrophoretic) separation tools.

MALDI sublimates and ionizes the samples out of a dry, crystalline matrix via laser
pulses. MALDI-MS is normally used to analyse relatively simple peptide mixtures,
whereas integrated liquid-chromatography ESI-MS systems (LC-MS) are preferred
for the analysis of complex samples

Aebersold, Mann

Nature 422, 198-207(2003)
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In stage 4, a mass spectrum of Proteomics workflow

the peptides eluting at this time (4) MS 55 (5) MS/MS
point is taken. LLEAAAQSTK

516.27 (2+)

Mass peak = sequence y7 |y8

Intensity (arbitrary units)

o : 1004 @2 AA| E |

composition of a peptide. o 516.% o SQAALELL L
y5Y6

The computer the generates a 1lb2  va

T . . 3, y9
prioritized list of the peptides oLl al L;A B 0 l aklbl ,LJ il

. 4 200 600 1000

for a second fragmentation. 00 GrOr(r)/z o0 m/z

In stage 5, a series of tandem mass spectrometric or 'MS/MS' experiments is
performed to determine the sequence of a peptide (here, the peak m = 516.27 Da).

The MS and MS/MS spectra are matched against protein sequence databases
(“peptide mass fingerprinting”).

The outcome of the experiment is the identity of the peptides and therefore the
proteins making up the purified protein population.

Aebersold, Mann

Nature 422, 198-207(2003)
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Peptide mass fingerprinting

Tryptic peptides

Protein sequence database

s

l digest

Peptide masses

Theoretical peptide masses

\ /

FRAGFIT
'

Protein match

The masses of peptides from a
database are compared with
experimentally determined masses
using a software.

Henzel et al. J Am Soc Mass Spectrom
14, 931-942 (2003);
www.matrixscience.com

Amino acid

Ala
Arg
Asn
Asp
Cys
Glu
GIn
Gly
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

Mpeptide =

S

i Eamino acids 1..n

Mono-
Isotopic mass [Da]
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71.037114
156.101111
114.042927
115.026943
103.009185
129.042593
128.058578

57.021464
137.058912
113.084064
113.084064
128.094963
131.040485
147.068414

97.052764

87.032028
101.047679
186.079313

163.06332

99.068414

Average mass [Da]

71.0779
156.1857
114.1026
115.0874
103.1429

129.114
128.1292

57.0513
137.1393
113.1576
113.1576
128.1723
131.1961
147.1739

97.1152

87.0773
101.1039
186.2099
163.1733

99.1311



Peptide mass fingerprinting

1)
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(b) enzyme: Asp-N {N-side of Asp)
Mass of MH+: 1317.400 1449.600 2161.900 (tel: 1.000)

LZCH Lysozyme ¢ (EC 3.2.1.17) precurscr - Chicken

2162.444 84: DGRTPGSRNLCNIPCSALLSS
1449 .706 105: DITASVNCAKIVS
1317.552 137: DVQAWIRGCRL

Mass [Da]

Starting

position
Peptide
fragment

Henzel et al. J Am Soc Mass Spectrom
14, 931-942 (2003)

(a) FAB (“fast atom
bombardment” = old technique)
spectrum of a 250 pmol tryptic
digest of Asp-N digest of
lysozyme.

(b) FRAGFIT output page
showing a match with chicken
egg white lysozyme obtained
using the masses from the MS
spectrum.
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Peptide mass fingerprinting

(a)
@
O
=l |
2| W
3 §
Ie MI
< fita, .|
% 2780.8
] | ] 1 T T ] ] T T
1000 1400 1800 2200 2600 3000
m/z
(b) enzyme: CNBr (C-side of Met)
Mass of MH+: 1763.500 2780.800 (tol: 0.600)
CCHO Cytochrome C - Horse
1764 .031 66: EYLENPEKYIPGTEM
2781.268 8l: IFAGIKEKKTEREDLIAYLKKATNE

CCHOD Cytochrome C - Donkey and common zebra
(tentative seguences)
1764.031 66: EYLENPKEKYIPGTEM
2781.268 81: IFAGIKKKTEREDLIAYLKKATNE

(a) FAB spectrum of a 500 pmol
CNBr cleavage of horse heart
cytochrome c.

(b) FRAGFIT output page
showing a match with cytochrome
¢ obtained using the masses from
the FAB spectrum.

The output includes all proteins
that match the mass list.

The 2 masses observed were sufficient to identify the protein as cytochrome c and

permitted the identification of the species.

At the time this search was performed, the database contained nearly 100

different species of cytochrome c

Henzel et al. J Am Soc Mass Spectrom
14, 931-942 (2003)
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Application: Detect protein-protein interactions:
Tandem affinity purification (also ,,pull-down®)

In affinity purification, a protein of interest (bait) is tagged

with a molecular label (dark route in the middle of the figure) to

allow easy purification.

The tagged protein is then co-purified together with its

interacting partners (W-2).

This strategy can be applied on a genome scale (as Y2H).

|dentify proteins

by mass spectro-
metry (MALDI-
TOF).

a Strategy
PCR product ite COTOBREA: \ PCR of the TAP cassette
Gene Homogogous /
i recombination
tageng Transformation of yeast cells
\ o .
Chromosome (homologous recombination)
Fusion ~ - ion of positive cl
protein NH2 Spacer @BB TEV site-EHIBAD Selection of positive clones
Y -
& |
b &
Large-scale cultivation
& l
Cell lysis
Tandem affinity purification
bt One-dimensional SDS-PAGE
S MALDI-TOF protein identification
Bioinformatic data interpretation
§
(%)

(z @

o
| | |
{ Y{ Bait '—Q>—
\_\---_ __]' i et
— X —ll'
Failed  Success
rate
ORFs
processed: 1,739
Positive
homologous 1,548 191 89%
recombinations: R
Expressing
clones: 1,167 381 75%
{membrane protein 293)
TAP o
purifications: 589 285 62%

Identified complexes: 232

Processing of Biological Dat45avin et al. Nature 415, 141 (2002)
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TAP analysis of yeast PP complexes

|dentify proteins by
scanning yeast protein
database for protein
composed of fragments

of suitable mass.

(2) lists the identified
proteins according to
their localization

-> no apparent bias for
one compartment, but
very few membrane

proteins (should be
ca.25%)

(d) lists the number of

proteins per complex

a
Membrane Mitochondria
-> half of all PP complexes
ER/Golgi/vesicles
Nucleus have |-5 members, the
, other half is larger
* Cytoplasm .
(e) Complexes are involved
Subcellular localization of . .
identified proteins in practically all cellular
processes
d eT DNA Cell cycle
40 ipti .
o1 _{331 0—40‘ > r?:ggnlgn ce/ . Cell polarity and structure
‘ chromatin structure Intermediate and
' energy metabolism
11-20 1-5

6-10

Number of proteins
per complex

RNA metabolism
Protein/RNA transport

Signalling

Membrane biogenesis/
turnover

*Protein synthesis/
turnover

Distribution of complexes
according to function

Gavin et al. Nature 415, 141 (2002)
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Pros and Cons of TAP-MS

Advantages:

* quantitative determination of complex
partners in vivo without prior knowledge

* simple method, high yield, high throughput

Difficulties:
* tag may prevent binding of the interaction partners
* tag may change (relative) expression levels

* tag may be buried between
interaction partners
— no binding to beads

Processing of Biological Data



Protein interactions in nuclear pore complex

Figure (right) shows 20 NPCs (blue) in a slice of a nucleus.
Aim: identify individual PPIs in Nuclear Pore Complex.

Below : mutual arrangement of Nup84-complex-associated proteins
as visualized by their localization volumes in the final NPC structure.
Nup84 protein shown in

b 7 14 20 30 33 39 44 54 60

Nup157

\\\*.
Nup145N ,i ‘ 5

Nup85 Nup120
Sec13

{ Nup84 . : r
Seh1
2
Nup133

Nup145C

S

Composite 33

Composite 7 Composite 14 Composite 20 ? ?
NUP84
0.49 035
& dgd

Processing of Biological Data
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Molecular mass
standards (kDa)

identity of
co-purifying
proteins

SDS + MS:Composites involving Nup84

a above lanes: name of ProteinA-tagged protein and identification number for composite
7 15 14 25 20 30 33 39 4 45 51 53 54 57 60 63 66 68 71 79
Seh1 Nup85  Nup84 Seci3 Nup84 Nup84 NupB84  Nup84 Sehi Nup84 Nup120 Nup145C Nup133 Nup85 Nup84 Nup85 Nup157 Nup133 Nup157 Sehi
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" Nup192 /
Sec31 Nup157 NuS?}B"
Sac31A up1s p”
Sec31A 5. Pom152/
Nup133 Nup132 Pomi152 Yan2s
c31A Nup133 Nup133 Nup120 Nup133 Nup133 Nup133 Nup133 Nup133 Nup133 Nup133
- Decsls Nup116 Ybl104
Nup8s Nup84 Nupg4 Nup84 Nup84  Nupa4 Nups4 Nup145C Nup85 Nupg4 Nup85 Nept
"“HEJ: Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120 Nup120
Nicoé Nicoé
Nup8s Nup85/ Nup8s / Nupas / Nup85/ NLI{PSS/ Nupas Nup8s/ Nupas / Nup8s/ NL;\PBS / Nup85s / Nup85 /
Nupa4 / up! ups4 Nupa4 Nup34 Nup84/ Nup84/ Nup34 up84 ups: up84
Nup145C Nup145C/ Nup145C  Nup145C Nup145C Nup145C Nup145C Nup145C Nup145C Nup145C Nup145C  Nup145C Nup145C Nup145C N?\FJp% / Nup145C NNBB;Q\ZC/
Sec23 o
Nup145N Nup145N Nup145N Nup145N Nup145N
Mex67
Seht Seht e Seht
Cdc19 Sec13 o Cdc19 Cdc19
Tefd Teft Teft Teft Teft Teft
no2
Seht ; ; Seh1 Seh1 Seht Seh1 Seht Sehi Seht Seh1 Seh1 Seh1 Adh1
Adhi Adh1 sp
o ) Lsp1 Tdh3
: Sec13 Sac12 Sec1d Sec13 Sec13 Sec1d Sec13 Sec13 Sec13 Sec13 Sec13 Sec13 Sec13 Sec13

Blue: PrA-tagged proteins, Affinity-purified PrA-tagged proteins and

Black: co-purifying nucleoporins, interacting proteins were resolved by SDS-PAGE
Grey: NPC-associated proteins, and visualized with Coomassie blue. The bands
Red: and other proteins (e.g. contaminants) marked by filled circles at the left of the gel lanes

V4

were identified by mass spectrometry (cut out

band from the gel and use as input for MS).
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Application: Protein phosphorylation during cell cycle

Protein phosphorylation and dephosphorylation are highly controlled
biochemical processes that respond to various intracellular and extracellular
stimuli.

Phosphorylation status modulates protein activity,

- influencing the tertiary and quaternary structure of a protein,
- controlling subcellular distribution, and

- regulating interactions with other proteins.

Regulatory protein phosphorylation is a transient modification
that is often of low occupancy or “stoichiometry”

This means that only a fraction of a particular protein may be phosphorylated
on a given site at any particular time, and that occurs on regulatory proteins
of low abundance, such as protein kinases and transcription factors.

Olsen Science
Signaling 3 (2010)

V4 Processing of Biological Data
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Cell Cvycle and the Phosphoproteome

CELLCYCLE

Quantitative Phosphoproteomics Reveals Widespread
Full Phosphorylation Site Occupancy During Mitosis

Jesper V. Olsen,'?* Michiel Vermeulen,'* Anna Santamaria,** Chanchal Kumar,'5*
Martin L. Miller,?® Lars J. Jensen,? Florian Gnad,' Jiirgen Cox,' Thomas S. Jensen,’
Erich A. Nigg,* Saren Brunak,2? Matthias Mann'21

(Published 12 January 2010; Veolume 3 Issue 104 ra3}

wyaw. SCIENCESIGNALING.org 12 January 2010 Vol 3 lssue 104 ra3

Aim: Analyze all proteins that are modified by phosphorylation during different
stages of the cell cycle of human HelLa cells.

lon-exchange chromatography + HPLC + MS + sequencing led to the
identification of 6695 proteins.
From this 6027 quantitative cell cycle profiles were obtained.

A total of 24,714 phosphorylation events were identified.
20,443 of them were assigned to a specific residue with high confidence.

Finding: about 70% of all proteins get phosphorylated.

V4 Processing of Biological Data
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Review: protein quantification by SILAC

ARTICLE

@ SILAC light
Global quantification of mammalian gene |
expression control > 5w
Bjorn Schwanhiusser!, Dorothea Busse!, Na l,i], Gunnar Dillmar‘, Johannes Schuchhardl", Jana Wolf!, Wei Chen' (t1 ’tz’ta)
& Matthias Selbach! l
. . . 00@0

SILAC: ,stable isotope labelling by :%3:95

amino acids in cell culture” means that

cells are cultivated in a medium i l Syriheatzed

containing heavy stable-isotope
versions of essential amino acids.

When non-labelled (i.e. light) cells are
transferred to heavy SILAC growth
medium, newly synthesized proteins
incorporate the heavy label while pre-
existing proteins remain in the light
form.

Schwanhauser et al. Nature 473, 337 (2011)
V4

Proteins

doi:10.1038/nature10098

. H/Lratio Proteins

L
© H
)

m/z

Intensity

Quantification protein turnover and levels.
Mouse fibroblasts are transferred to medium with
heavy amino acids (SILAC)

Protein turnover is quantified by mass spectrometry
and next-generation sequencing, respectively.

Processing of Biological Data
17



Rates of protein translation

Mass spectra of peptides for

two proteins. S t,(1.5h) - t, (4.5 h) o 100. 1a(135Hh) °
190 Rrm2 Rrm2 Rrm2
% 80 (APTNPSVEDEPLLR) 80 L (APTNPSVEDEPLLR) 80 (APTNPSVEDEPLLR)
. . § N H/L ratio = 0.24 60 © H/Lratio=1.26 60 H/L ratio = 12.8
Top: high-turnover proteln. H 4 © 40
Bottom: low-turnover protein. = 20 20] &
0 3 - l l I‘ N L - l' | RES Ll I Il . A . l' 04, I T by - l‘
770 772 774 776 770 772 774 776 770 772 774 776
. . /. /. /.
Over time, the heavy to light ) " ] m Laash
Hist1h1

(H/L) ratios increase. ooy T 600 100y 7 Llon 1003 (SEAAPAAPAAAPPAEK)

2 80 A 80 Hist1hic 80 H/L ratio = 0.63 H

@ (SEAAPAAPAAAPPAEK) (SEAAPAAPAAAPPAEK) @

g 60 H/L ratio = 0.05 60 H/L ratio = 0.19 60
H-concentration of high-turnover = < 40 H 40

. e 20 20 20
protein saturates. “ , 5 l | | | | | ] .
0 et - " 0 3= 4 - 0 4 - st -

That Of |OW-turnoveI’ proteln Stl” 746 74172_3'/2 750 746 748m/z 750 752 746 748 . 750 752

increases.
This example was introduced to illustrate the
principles of SILAC and mass spectroscopy
signals (peaks).
In the Olson et al. study, the authors used H and

L forms to label different stages of the cell cycle.
Schwanhauser et al. Nature 473, 337 (2011)

V4 Processing of Biological Data
18



Quantitative proteomic analysis
A [Hela S3 cells were SILAC-labeled with
3 different isotopic forms (light — medium —heavy)
of arginine and lysine.

3 individual populations of heavy and light SILAC
cells were synchronized with a thymidine block
(analog of thymine, blocks entry into S phase).
Cells were then collected at six different time

2 samples were collected after a cell cycle arrest
with nocodazole and release. (Nocodazole
interferes with polymerization of microtubules.)

Cells were lysed and mixed in equal amounts using an asynchronously growing cell
population as the internal standard to allow normalization between experiments.
3 independent experiments were performed to cover six cell cycle stages.

V4 Processing of Biological Data Olsen Science
Signaling 3 (2010) 19
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FACS profiles of individual HeLa populations

% cCells

Gy 5 Go/ M
1. Asynchronous 64 27 9
2 Thymidine block 50 46 <
3. Thymidine block + release 22 h 36 60 <
4, Thymidineblock + release 5% h 23 70 7
S. Thymidine block + release 7% h 15 70 15
6. Nocodazole block + release 12 h 1 11 88
7.Nocodazole block +release 3 h 82 12 6

Cell number

Processing of Biological Data

Cells were fixed and collected
by centrifugation.

Then the DNA content of the
" cells was determined with
" propidium iodide.

" This is the basis for classifying
the state along the cell cycle.

Olsen Science
Signaling 3 (2010)

20



Quantification of cell cycle markers

N R 2 Immunoblot analysis of known
°> e > L
B v & & & &% cell cycle marker proteins in the
& & < €
0‘0 \Q 6\0 Q . .
SN < different cell populations.
% o N < Q)

- _ The abundance of a fifth of the
- - CyclinD1
proteome changed by at least
e CyclinE fourfold throughout the
cell cycle (difference between
Cyclin A lowest and highest abundance).
- —— —— |  CyclinB1 Because a fourfold change
o also best accounted for the
D S S| Gominin dynamics of already described
— — e ——— | Tubulin cell cycle components, this ratio

was used as a threshold for

< & S
N, 00 oy W
O™ A subsequent analysis.

o (o

\Z Processing of Biological Data Olsen Science
Signaling 3 (2010)



Relative abundance

Monitori

ng of protein abundance by MS

Exp.1 < phase Bxp. 3 Early
35 T}jl“.‘;;‘r‘l R 5' ah Thiym R: 2% h
100 3 528.2751 528.2759
90 g 25
s0] 3 2 Noco 30
- 524,2689
70 g : N
501 =5 ENELSACLS 5
50 3
Gy Gi/S EalyS S S/G; M g Async
40 Cell cycle stage g;;g:.zcgm 5987767 % 5247700 526.2814 528.7774
30 &
20 Gl p}'\a‘_-':e 5267822 5267832
1o 5427 527.2456 529.2779 525.2734 527'2417‘ 59.2520
o e | ) e | )T TR B o O O I
523 524 525 526 miz 527 528 529 530 523 524 525 526 527 528 529 530
miz
Exp. 2 Representative MS data showing how the abundance of
A the proteins was monitored in three experiments (Exp. 1,
Exp. 2, Exp. 3) to obtain information from the 6 stages of
" 268 the cell cycle.
2 The data show the MS analysis of a tryptic SILAC peptide
g T e triplet derived from the cell cycle marker protein Geminin.
E 5287777
505.2752 . Relative peptide abundance changes were normalized to
the medium SILAC peptide derived from the asynchro-
e B P Y A wd b 20 nously grown cells in all three experiments. The inset
523 524 525 526 527 528 529 530 ' . . . e
miz shows the combined six-time profile of Geminin over the
cell cycle.
V4 Processing of Biological Data Olsen Science
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Proteins

V4

Bioinformatics Workflow (1)

Unclustered proteomics data
Time points

— o
e .,
& =1
Select a protein jwithfold | <
experssion ratios G
. . 1:
for & time points S -
=
cn
<
-

-0.5

Processing of Biological Data

Time points

Olsen Science
Signaling 3 (2010)
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Bioinformatics Workflow (2)

1.0

0.5

Logs[Fold changeratio ]
0.0

L) L) L) L)
1 2 3 4 H 6
Timne points

CFor each protein j transform expression fold ratios to [O,D

-0.5

Log,[Fold changeratio]

= ‘ ‘

L] L]
1 2 3 4 5 6
Time points

0.0

Processing of Biological Data

Olsen Science
Signaling 3 (2010)
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Bioinformatics Workflow (3)

:. For each protein a peak time
. index was calculated as
weighted mean of its maximal
expression at time point {; w.r.t
| ‘ its adjacent time points

! t.,and t;,,.

Log,[Fold change ratio ]

0.0

Time points
Assign peak time(tpeakiji by weighted mean of maximal expression
ratio and cluster all proteins according to increasing peak time

J

Clustered proteomics data

— The proteins were then
clustered according to
increasing peak time indices.

Olsen Science
Signaling 3 (2010)
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Bioinformatics Workflow (4)

Further functional bioinformatics
analysis for circular enrichment of
Gene OntologwGO) categories.

\

Clustered proteomics data
Time points

Assign angular peak
measure{6 peakijito each
protein j based onits peak
time(tpeakijj) and arrange

increasing order of 6 peakj)

Inf2

Proteins

Olsen Science
Signaling 3 (2010)

V4 Processing of Biological Data
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Dynamics of the proteome during the cell cycle

(mw

i

A

©
o N
& & N @ 3 ov

~ Proteins whose abundance changed at least
S fourfold during the cell cycle were clustered in
const oeinei) @ll cell cycle stages by calculating a time peak
o index by weighted mean of the ratio of
maximal abundance.

For each cell cycle stage, there are clear
patterns of up- and down-regulation.

CDKY

WEEA
GMNN

Processing of Biological Data Olsen Science

Signaling 3 (2010)
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Determine protein peaks

PTTGH (Securin)

IR

GCNBA (Cyelin B1)
PLK1
CDKA

[

e

i

WEEH
GMNN

c

(B) A circularized representation of the data shown in (A) was used to determine the
angle in the cell cycle where the abundance of particular proteins peaks.
Coordinately regulated protein complexes and organellar proteins at each cell cycle
stage are indicated around the circle.

va Processing of Biological Data Olsen Science

Signaling 3 (2010)
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Comparison of mMRNA and protein dynamics

High

A = Regulated
~-= Non-Regulated

Low

~ Protein &~~ mRNA
~ Protein & AmMRNA
AProtein &-. mRNA

AProtein & AmRNA

Comparison of mMRNA and protein dynamics during the cell cycle.
Measured protein dynamics were correlated to published mRNA data.

Proteins were grouped on the y axis in four categories from top to bottom:

- unchanging mRNA and protein

- changing mRNA and unchanging protein

- unchanging mRNA and changing protein

- and changing mRNA and changing protein.

The x axis shows clustered gene ontology (GO) biological process terms enriched
in at least one of the above four categories.

High and . statistical over- or underrepresentation.

V4 Processing of Biological Data Olsen Science
Signaling 3 (2010) 29



Absolute phosphorylation site stochiometry

Now we want to derive the phosphorylation state of protein residues during the cell cycle.
We need to substract out the changes of protein abundance.
-> we want to determine (1) and (2) below

NEHOS
EsEe—— a
Nlll\lonP

is the total copy number of a given phosphopeptide in the light SILAC state, and N}Yo™F

is the total copy number the corresponding unphosphorylated peptide in the light SILAC state

(1) Proportion of phosphorylated to unphosphorylated peptide in Light SILAC state:

PHOS
N

NPHOS

H —
(2) Proportion of phosphorylated to unphosphorylated peptide in Heavy SILAC state: W =b

N,';”OS is the total copy number of a given phosphopeptide in the heavy SILAC state, and

N/°"P is the total copy number the corresponding unphosphorylated peptide in the heavy

SILAC state

NZHOS N NgonP ) NfHOS N NILVMP
(3)  We expectthat PROTEIN - PROTEIN
Ny Ny,

N[ROTEIN js the total copy number of the phosphoprotein in the light SILAC state, and

NﬁROTE’N is the total copy number the phosphoprotein in the heavy SILAC state

Olsen Science
Signaling 3 (2010)

V4 Processing of Biological Data
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Available experimental data

To determine phosphorylation sites that show dynamic profiles due to changes in phosphory-
lation state rather than due to changes in protein abundance, we consider the measured
phosphopeptide H/L ratios.

| I
Il. |I II

From the experiment we have:

- the SILAC ratio x for a particular phosphopeptide

- the SILAC ratio y for the respective non-phosphopeptide,

- and protein ratio z (the total amount of the protein in both phosphorylated and
nonphosphorylated forms).

V4 Processing of Biological Data Olsen Science
Signaling 3 (2010)
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Absolute phosphorylation site stochiometry

From the MS data we know:
NPHOS
H
(4)  Relative phosphopeptide ratio = _NIIJDHOS =X
N}I}JonP
(5) Relative unphosphorylated peptide ratio = _NNonP =Y
L
NII_’IROTEIN

(6) Relative total phosphoprotein ratio = NfROW =12

If we know x, y and z then we can solve equations 1 and 2 by substituting in equations 3:

NIIIJHOS Z=7y
(1) Occupancy rate in Light SILAC state: W =dad= o
L z
NZHOS x-(z=y)
(2) Occupancy rate in Heavy SILAC state: = — D =
NPI\IIonP Y- (x-2)

I =
and can therefore calculate the phosphorylation site occupancy in the Light and Heavy SILAC state as:

We expect that NEHOS+ NNonP_ NI_I;HOS-F N}I_;.’onP = 100% =1

(3) Light SILAC occupancy: a/(1+a) and Heavy SILAC occupancy: b/{1+b)

va Processing of Biological Data Olsen Science

Signaling 3 (2010)
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Example: Dynamic phosphorylation of CDK1

CDK1 phosphaorylation site kinetics Dynamic profile of two CDK1
phosphopeptides during the cell

100 [——— — cycle.
age pTRYGWYK pT14 & pY 15 (inhibitory sites)
- VWYpTHEWTLWYR pT161 @ctivation loop)
=
€10 | The activating site T161 (red)
E peaks in mitosis, whereas
g phosphorylation of the inhibitory
5 \ sites T14 and Y15 (blue) is
' decreased in mitosis
0.1
G, G,/S Early S LlatesS G, il
Celleycle stage

Olsen Science
Signaling 3 (2010)
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Total phosphosite occupancy in different stages of cell cycle

100

30 —-= Async
%: 20 : Péﬂ;tosis
j e G115
GE) 19 —= Barly3 Mitasis
S 60 — late
S - 5/G2
S 50
240
£ 30
&
2 20
o

10

0

0 10 20 30 40 50 60 70 a0 30 100
Cumulative phosphosite fraction (%6)

Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more.

Olsen Science
Signaling 3 (2010)
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Differential phosphorylation

Gene ontology (GO) analysis of protein and phosphoproteins subcellular
localization. All proteins identified by MS were clustered according to their GO
annotation for sub-cellular localization (Blue bars). The same clustering was done for

all phosphoproteins (Red bars).
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Probability of significant difference by Two-sided Fisher exact test: Significance p < 1e-03

V4 Processing of Biological Data

y-axis : percentage of the
indicated sub-cellular fractions
from the total.

Compared to the proteome
distribution, phosphorylated
proteins are over-represented
in the nucleus and under-
represented amongst
mitochondrial and secreted
proteins.

Olsen Science
Signaling 3 (2010)
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Dvnamics of the Phosphoproteome
A Helaphosphopeptide clusters

¢ oot e Dynamics of the phosphoproteome
during the cell cycle.

Clustering of regulated phosphorylation
sites in all cell cycle stages.

M phase
More than half of all identified
regulated phosphorylation sites
peak in mitosis.
Gy
Gy/S —
.
.
Early S E
E
Late § e
&

Olsen Science
Signaling 3 (2010)
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Detect periodic oscillations in time-series analysis
Aim: detect periodic oscillations in  ° r T T

b
protein expression over time. 000000080 %
Phase
(a) Amplitude (expression level) N =
=

L L i
Loty byttt byt bty o by ottty

and phases (upregulation or :
downregulation) are determined by & -
optimizing a cosine function fit to ;
the data.

Randomize

A permutation-based approach akeutih

in which the time points are eonecne e
randomly reshuffled multiple times  (b) A total of 180 proteins were found to follow
identifies the statistically circadian rhythm over two cycles, and charac-
significantly oscillating proteins, teristic phases of upregulation and down-
exemplified by global circadian regulation were clearly characterized as
oscillations of the proteome in illustrated by the red and blue clusters,

mouse liver. respectively.

Tyanova et al., Nature Methods 13, 731 (2016)
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Data imputation

What is the role of data imputation in MS data?

If no signal is detected, this can have various reasons:

- The peptide is not detected or falsely identified

- The peptide is really not at all present in the sample

- The peptide concentration is below the detection threshold ...
The reason for missing data is generally not known.

Simply setting all missing data to zero would generate false positive signals
= proteins appear to be significantly deregulated, but are in fact not.

V4 Processing of Biological Data
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Imputation methods: KNNimpute

Lets assume that gene g, lacks data point /.

The KNNimpute method (Troyanskaya et al., 2001) finds k (k < m) other genes with
expressions most similar to that of g, and that do have a measured value in
position /.

The missing value of g, is estimated by the weighted average of the values in
position / of these k closest genes.

*

W85, + 285, + -+ - + W Es,
W] + -+ @y 1
Here, the contribution of each gene is weighted by the similarity of its expression to

that of g,.
w; = 1/]|lw — a2,

Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: SVDimpute

SVDimpute method (Troyanskaya et al., 2001):

- Given: matrix G where some data is missing.

- Generate initial matrix G* from G by substituting all missing values of the G by
Zero or row averages.

- Compute SVD of G'.

- Determine the t most significant eigengenes of G’ (with largest eigenvalues).

- Regress every gene with missing values against the t most significant eigengenes
(by ignoring position i)

Using the coefficients of the regression, the missing value in G is estimated as a
linear combination of the values in the respective position / of the t eigengenes.

This procedure is repeated until the total change of the matrix G becomes
insignificant.

Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: Local Least squares

(1) select k genes that have similar properties (e.g. expression profiles) to the gene
with missing information based on the L2-norm or Pearson correlation
coefficients of the expression profiles.

(2) regression and estimation, regardless of how the k genes are selected.

SP.ELU

? -o-IKNNimplute
| - LLSimpute/PC
0.8 —&— | LSimpute/L2 |]
Spellman data set: yeast cell cycle o7} TS
5% of data were missing oef
Z o5}
-> LLSimpute outperforms KNNimpute L
0.4}
g —
[I) SIU 1(IJO 1 ISO 260 2é0 360 3I50 400

The number of similar genes used (k)

Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: Local Least squares

Based on the k-neighboring gene vectors, form the matrix A € Rk*("=1) and the two
vectors b € Rk*Tand w € R(M-1)*1,

The k rows of the matrix A consist of the k-nearest neighbor genes g™, € R'*",
1 < i<k, with position i/ deleted.

The elements of the vector b consists of position i of the k vectors g, .
The elements of the vector w are the n — 1 elements of the
gene vector g, whose missing position is deleted.

After the matrix A, and the vectors b and w are formed, the least squares problem

is formulated as : T
mm ||A' X — w||»
X

Then, the missing value a is estimated as a linear combination of the respective
values of the neighboring genes

a=bx=blaAl)Tw
Kim et al., Bioinformatics 21, 187 (2005)

V4 Processing of Biological Data 42



Models for missing values

Missing Completely At Random (MCAR): in a proteomics data set, this
corresponds to the combination of a propagation of multiple minor errors or
stochastic fluctuations. e.g. by a misidentified peptide

Missing At Random (MAR): this is a more general class than MCAR, where
conditional dependencies are accounted for. In a proteomics data set, it is
classically assumed that all MAR values are also MCAR.

Missing Not At Random (MNAR) assumes a targeted effect. E.g. in MS-based
analysis, chemical species whose abundances are close enough to the limit of
detection of the instrument record a higher rate of missing values.

Imputation methods for MCAR and MAR are general.
For MNAR, they are methods-specific.

Lazar et al., J Proteome Res 15, 1116 (2016)
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Simulation benchmark

Use real data (Super-SILAC and label-free quantification) on human primary tumor-
derived xenograph proteomes for the two major histological nonsmall cell lung
cancer subtypes, adenocarcinoma and squamous cell carcinoma, using.

MNAR values: one randomly generates a threshold matrix T from a Gaussian
distribution with parameters (u; = q, o, = 0.01), where q is the a-th quantile of the
abundance distribution in the complete quantitative data set.

Then, each cell (i,j) of the complete quantitative data set is compared with T; ;.

If (i,j) 2 T;;, the abundance is not censored.

If (i,j) < T,;, a Bernoulli draw with probability of success pBa - 100 determines if the

i,
abundance value is censored (success) or not (failure).

MCAR values are incorporated by replacing with a missing value the abundance
value of n m*((100 - B) a /100) randomly chosen cells in the table of the quantitative
data set.

Lazar et al., J Proteome Res 15, 1116 (2016)

V4 Processing of Biological Data 44



Imputation methods: benchmark

MLE: maximum likelihood
estimator

80 100

60

Percentage of MNAR
40

MinDet: simply replace
missing values by the
minimum value that is
observed in the data set.

MinProb: stochastic version
of MinDet. Replace missing
values with random draws
from a Gaussian distribution
centered on the value used
with MinDet and with a
variance tuned to the
median of the peptide-wise
estimated variances
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(d) MinDet (e) MinProb

RSR = RMSE / std.dev.
Blue: low RSR
Red: high RSR

Lazar et al., J Proteome Res 15, 1116 (2016)
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Conclusion on data imputation
Algorithms SVDimpute, kNN, and MLE perform better under a small MNAR ratio.

Algorithms MinDet and MinProb better under a larger MNAR ratio.

Algorithms of the first group generally seem to give better predictions.

Kim et al., Bioinformatics 21, 187 (2005)
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