V8 - Functional annotation

Program for today:

V8

Functional annotation of genes/gene products: Gene Ontology (GO)
significance of annotations: hypergeometric test
(mathematical) semantic similarity of GO-terms

Issues in GO-analysis

- protein annotation is biased and is influenced by different research
Interests:

- model organisms of human disease are better annotated

- promising gene products (e.g. disease associated genes) or specific
gene families have a higher number of annotations

- gene with early gene-bank entries have on average more annotations
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Primer on the Gene Ontology

The key motivation behind the Gene Ontology (GO) was the observation that
similar genes often have conserved functions in different organisms.

A common vocabulary was needed to be able to compare the roles of
orthologous (- evolutionarily related) genes and their products across different
species.

A GO annotation is the association of a gene product with a GO term

GO allows capturing isoform-specific data when appropriate. For example,
UniProtKB accession numbers P0O0519-1 and P00519-2 are the isoform
identifiers for isoform 1 and 2 of PO0519.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876
V8 Processing of Biological Data



The Gene Ontology (GO)

Ontologies are structured vocabularies. slogcs

/ N\
The Gene Ontology consists of cotutar metabolic
3 non-redundant areas: /7 / \
- Biological process (BP) o . compouns Lot
- molecular function (MF) \7\ \“ \/
- cellular component (localisation). — ——
Shown here is a part of the BP e o
vocabulary. \/

process

At the top: most general term (root)

RNA metabolic
process

Red: tree leafs (very specific GO terms)
Green: common ancestor
Blue: other nodes.

Arcs: relations between parent and child nodes
PhD Dissertation Andreas Schlicker (UdS, 2010)
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Simple tree vs. cyclic graphs

a b
Parent n n Boxes represent nodes and

/ \ / \ arrows represent edges.
H B H B

AN AYA
! pHE DO

a | An example of a simple tree, in which each child has only one parent and the
edges are directed, that is, there is a source (parent) and a destination (child) for
each edge.

b | A directed acyclic graph (DAG), in which each child can have one or more

parents. The node with multiple parents is coloured red and the additional edge is
coloured grey.

Increasing
specificity
and/or

granularity

Rhee et al. (2008) Nature
Rev. Genet. 9: 509
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Gene Ontology is a directed acyclic graph

Parent

¢ Biological

process (root) An example of the node
;" ";‘ vesicle fusion
Increasing kit indbogenens | in the BP ontology with
pecinciy s = multiple parentage.
EranuEny Veslemedited | [\vembrane fusion
part_of\ / s.a
C;d Vesicle fusion

Dashed edges : there are other nodes not shown between the nodes and the root
node.

Root : node with no incoming edges, and at least one leaf.

Leaf node : a terminal node with no children (vesicle fusion).

Similar to a simple tree, a DAG has directed edges and does not have cycles.

Depth of a node : length of the longest path from the root to that node.
Height of a node: length of the longest path from that node to a leaf.

V8 Rhee et al. (2008) Nature Processing of Biological Data
Rev. Genet. 9: 509



relationships in GO
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Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876
V8
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Full GO vs. special subsets of GO

GO slims are cut-down versions of the GO ontologies
containing a subset of the terms in the whole GO.

They give a broad overview of the ontology content
without the detail of the specific fine grained terms.

GO slims are created by users according to their needs, and may be
specific to species or to particular areas of the ontologies.

GO-fat : GO subset constructed by DAVID @ NIH
GO FAT filters out very broad GO terms

www.geneontology.org

V8 Processing of Biological Data



Comparing GO terms

The hierarchical structure of the GO allows to compare proteins
annotated to different terms in the ontology, as long as the terms
have relationships to each other.

Terms located close together in the ontology graph
(i.e., with a few intermediate terms between them)

tend to be semantically more similar than those further apart.

One could simply count the number of edges between 2 nodes
as a measure of their similarity.

However, this is problematic because not all regions of the GO
have the same term resolution.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876
V8 Processing of Biological Data



Evidence Evidence code description

code
IDA
IEP
IGI
IMP
IPI
1SS
RCA
IGC
IEA
IC

TAS

NAS
ND
NR

Inferred from direct assay

Inferred from expression pattern

Inferred from genetic interaction

Inferred from mutant phenotype

Inferred from physical interaction

Inferred from sequence or structural similarity
Inferred from reviewed computational analysis
Inferred from genomic context

Inferred from electronic annotation

Inferred by curator
Traceable author statement

Non-traceable author statement
No biological data available
Not recorded

*October 2007 release

V8

Source of evidence

Experimental
Experimental
Experimental
Experimental
Experimental
Computational
Computational
Computational

Computational

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Indirectly derived from experimental or computational ~ Yes
evidence made by a curator

Indirectly derived from experimental or computational  Yes
evidence made by the author of the published article

No ‘source of evidence' statement given Yes
No information available Yes
Unknown Yes

Where do the Gene Ontology annotations come from?

Manually Current number
checked

of annotations*
71,050
4,598
8,311
61,549
17,043
196,643
103,792

4
15,687,382
5,167

44,564

25,656
132,192
1,185

Rhee et al. Nature Reviews Genetics 9, 509-515 (2008)
Processing of Biological Data



IEA: Inferred from Electronic Annotation

The evidence code IEA is used for all inferences made

without human supervision, regardless of the method used.

The IEA evidence code is by far the most abundantly used evidence code.

Guiding idea behind computational function annotation:
genes with similar sequences or structures are likely

to be evolutionarily related.

Thus, assuming that they largely kept their ancestral function,

they might still have similar functional roles today.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876
V8 Processing of Biological Data
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Significance of GO annotations

Very general GO terms such as “cellular metabolic process”

are annotated to many genes in the genome.

Very specific terms belong to a few genes only.

- One needs to compare how significant the occurrence of a
GO term is in a given set of genes

compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

PhD Dissertation Andreas Schlicker (UdS, 2010)

V8 Processing of Biological Data
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Hypergeometric test
min(n,K;) (KW) (N—KW)

p-value = E L n—e

el ()

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation 1 is statistically

significant enriched in a given test set of genes compared to the full genome.

N : number of genes in the genome
n : number of genes in the test set
K. : number of genes in the genome with annotation Tr.

k. : number of genes in test set with annotation Tr.

The hypergeometric test provides the likelihood that k.. or more genes

that were randomly selected from the genome also have annotation .

V8 Processing of Biological Data http://great.stanford.edu/
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Hypergeometric test

Select i 2 k, genes with

annotation 1 from the genome.

There are K, such genes.

'

min(n,K) (Kﬂ) (

The other n — i genes in the test
set do NOT have annotation Tr.

There are N — K, such genes in
the genome.

p-value = Z .

— (

The sum runs from k;
elements to the maximal
possible number of elements.

This is either the number of
genes with annotation 1T in the
genome (K;,) or the number of
genes in the test set (n).

V8

corrects for the number of
possibilities for selecting

n elements from a set of

N elements.

This correction is applied if the
sequence of drawing the
elements is not important.

Processing of Biological Data http://great.stanford.edu/

http://www.schule-bw.de/
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V8

v

r Gene transcription start site
+—e==—1 Curated/inferred gene regulatory domain

n  Ontology annotation (e.g. “actin cytoskeleton”)
Genomic region (e.g. ChiP-seq peak)

v v vy vy

vy Cyvy

L

———

=

a— J ¢

L) 1)

|s annotation 1T significantly enriched
in the test set of 3 genes?

Yes! p = 0.05 is (just) significant.

Hypergeometric test over genes

N = 6 total genes

Kn = 3 genes annotated with i

n = 3 genes with an associated genomic region
Kn = 3 genes annotated and with a genomic region
P-value = 0.05

Processing of Biological Data
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Multiple testing problem

In hypothesis-generating studies it is a priori not clear,

which terms should be tested.

Therefore, one typically performs not only one hypothesis with a single term
but many tests with many, often all terms that the Gene Ontology provides

and to which at least one gene is annotated.
Result of the analysis: a list of terms that were found to be significant.

Given the large number of tests performed,
this list will contain a large number of false-positive terms.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)

V8 Processing of Biological Data http://great.stanford.edu/
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Multiple testing problem

For example, if one statistical test is performed at the 5% level
and the corresponding null hypothesis is true, there is only

a 5% chance of incorrectly rejecting the null hypothesis

- one expects 0.05 incorrect rejections.

However, if 100 tests are conducted and all corresponding
null hypotheses are true, the expected number of incorrect rejections

(also known as false positives) is 5.

If the tests are statistically independent from each other,
the probability of at least one incorrect rejection is 99.4%.

www.wikipedia.org

V8 Processing of Biological Data http://great.stanford.edu/
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Bonferroni correction

Therefore, the result of a term enrichment analysis must be subjected
to a multiple testing correction.

The most simple one is the Bonferroni correction. Here, each p-value is simply
multiplied by the number of tests saturated at a value of 1.0.

Bonferroni controls the so-called family-wise error rate, which is the probability of
making one or more false discoveries.

It is a very conservative approach because it handles all p-values as independent.

Note that this is not a typical case of gene-category analysis.
So this approach often goes along with a reduced statistical power.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
V8 Processing of Biological Data http://great.stanford.edu/
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Benjamini Hochberg: expected false discovery rate

The Benjamini—-Hochberg approach controls the expected false discovery rate
(FDR), which is the proportion of false discoveries among all rejected null
hypotheses.

This has a positive effect on the statistical power at the expense of having less
strict control over false discoveries.

Controlling the FDR is considered by the American Physiological Society as
“the best practical solution to the problem of multiple comparisons”.

Note that less conservative corrections usually yield a higher amount of significant

terms, which may be not desirable after all.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
V8 Processing of Biological Data http://great.stanford.edu/
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Information content of GO terms

The likelihood of a node t can be defined in 2 ways:

How many genes have annotation t Number of GO terms in subtree below ¢
relative to the root node? relative to number of GO terms in tree
occur(t ) , D(t)
[)anno(f) = pgraph(r) —

D(root)

occur(root)

The likelihood takes values between 0 and 1 and

increases monotonic from the leaf nodes to the root.

Define information content of a node from its likelihood:

IC(t) = —logp(t)

A rare node has high information content.

PhD Dissertation Andreas Schlicker (UdS, 2010)

V8 Processing of Biological Data
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Common ancestors of GO terms

biological_process molecular_function
Common ancestors of [ ¢ ) )
two nodes t1 and t2 : [ metabolic process | ( binding ]
all nodes that are located ( cellular metabolic process | [ nucleicacid binding |
on a path from ¢, to root AND e p'
cellular macromolecule e nucleic acid binding
metabolic process [ inding | transcription factor activity

on a path from t, to root. /o)'\n\

[ RNA metabolic process | (regulatory region DNA binding |  [sequence-specific DNA binding

The most informative ih \l'.l\
common ancestor (MICA) of ("RNA biosynthetic process | ["anscriptgggegi%':::;y - ]

terms t, und t, is their \l\ \rn\

common ancestor with — transcription regulatory region
highest information content — RDNMependem | e oman

regulation of transcription,
DNA-dependent et

Typically, this is the closest -
common anCGStO r. [sequence-specific DNA binding

transcription factor activity

Nucl. Acids Res. (2012) 40 (D1):

V8 Processing of Biological Data D559-D564 20



Measure functional similarity of GO terms

Lin et al. defined the similarity of two GO terms t, und ¢,
based on the information content of the most informative common ancestor (MICA)

2. IC(MICA)
IC(1)) +1C(17)

Simpgel(t1,12) =

MICAs that are close to their GO terms receive a higher score than those that are
higher up in the GO graph

Schlicker et al. defined the following variant:
2-IC(MICA)
IC(t;)+1C(1y)
where the term similarity is weighted with the counter-probability of the MICA. By

this, shallow annotations receive less relevance than MICAs further away from the
root.

SimRel(t1,12) = (1 =p(MICA))

PhD Dissertation Andreas Schlicker (UdS, 2010)

V8 Processing of Biological Data
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Measure functional similarity of two genes
Two genes or two sets of genes A und B typically have more than 1 GO
annotation each. - Consider similarity of all terms j and j:

sij = sim(GO} ,GO%),¥i€ 1,...N¥j€ 1,...M.

and select the maxima in all rows and columns:
| N

1
rowScore(A,B) = N ; l r<nja<)§w Sijs GOscoref%A (A,B) = 5" (rowScore(A,B) + columnScore(A,B))
M
columnScore(A,B) = Z Ezg( Sij- GOscore®™A(A, B) = max(rowScore(A, B), columnScore(A,B))

Compute funsim-Score from scores for BP tree and MF tree:

funsim(A., B) | [( BPscore )2 N ( MFscore )2]
mnsim(A,B) = —-
" 2 L\max(BPscore) max (MFscore)

PhD Dissertation Andreas Schlicker (UdS, 2010)

V8 Processing of Biological Data
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IEA: Inferred from Electronic Annotation

The evidence code IEA is used for all inferences made without human
supervision, regardless of the method used.

|IEA evidence code is by far the most abundantly used evidence code.

The guiding idea behind computational function annotation is the notion that

genes with similar sequences or structures are likely to be evolutionarily related.

Thus, assuming they largely kept their ancestral function, they might still have
similar functional roles today.

Gaudet, Skunca, Hu, Dessimoz

Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876.

Published in : Methods in Molecular Biology

Vol1446 (2017) — open access!
V8 Processing of Biological Data
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Heterogeneous nature of GO may introduce biases

GO data is heterogeneous in many respects — to a large extent simply
because the body of knowledge underlying the GO is itself very heterogeneous.

This can introduce considerable biases when the data is used in other analysis,
an effect that is magnified in large-scale comparisons.

Statisticians and epidemiologists make a clear distinction between

- experimental data — data from a controlled experiment, designed such that
the case and control groups are as identical as possible in all respects other
than a factor of interest — and

- observational data — data readily available, but with the potential presence
of unknown or unmeasured factors that may confound the analysis.

GO annotations clearly falls into the second category.

Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies

https://arxiv.org/abs/1602.01876
V8 Processing of Biological Data
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Simpson’s paradox: perils of data aggregation

Simpson’s paradox is the counterintuitive observation that
a statistical analysis of aggregated data

(combining multiple individual datasets)

can lead to dramatically different conclusions

than if datasets are analyzed individually.

|.e. the whole appears to disagree with the parts.

Classic example from University of California at Berkeley:

UC Berkeley was sued for gender bias against female applicants

because in 1973, in total 44% of the male applicants were admitted to Berkeley
but only 35% of the female applicants — an observational dataset.

Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies

https://arxiv.org/abs/1602.01876
V8 Processing of Biological Data
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Simpson’s paradox: perils of data aggregation

However, when individually looking at the men vs. women admission rate
for each department, the rate was in fact similar for both sexes

(and even in favor of women in most departments).

- The lower overall acceptance rate for women was not due to gender bias,
but to the tendency of women to apply to more competitive departments,

which have a lower admission rate in general.

The association between gender and admission rate in the aggregate data
could almost entirely be explained through strong association of these two

variables with a third, confounding variable, the department.

When controlling for the confounder, the association between the two first
variables dramatically changes.

This type of phenomenon is referred to as Simpson’s paradox.
Gaudet, Dessimoz,

Gene Ontology: Pitfalls, Biases, Remedies
https://arxiv.org/abs/1602.01876

V8 Processing of Biological Data
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GO is inherently incomplete

The Gene Ontology is a representation of the current state of knowledge;
thus, it is very dynamic.

The ontology itself is constantly being improved to more accurately
represent biology across all organisms.

The ontology is augmented as new discoveries are made.

At the same time, the creation of new annotations occurs at
a rapid pace, aiming to keep up with published work.

Despite these efforts, the information contained in the GO database
IS necessarily incomplete.

Thus, absence of evidence of function does not imply absence of function.

This is referred to as the Open World Assumption
Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies
https://arxiv.org/abs/1602.01876 27
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Transitive vs. non-transitive relationships

Some relationships, such as “is a”
and “part of’, are transitive.

- any protein annotated to a specific
term is also implicitly annotated to all
of its parents

On the other hand, relations such as
“regulates” are non-transitive.

- the semantics of the association of
a gene to a GO term is not the same
for its parent: if Ais part of B, and
B regulates C, we cannot make
any inferences about the relationship
between C and A.

Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies
https://arxiv.org/abs/1602.01876

proteolysis

? part of

peptidase activity

T negatively regulates
negative regulation molecular regulator
of peptidase activity activity

lsa\ /isa

peptidase inhibitor
activity
Example of transitive (black arrows) and
non-transitive (red arrow) relationships
between classes.

A protein annotated to “peptidase inhibitor

activity” term does not imply it has a role in
“proteolysis”, since the link is broken by the
non-transitive relation negatively regulates.

V8 Processing of Biological Data
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GO annotations are dynamic in time

Example: strong and sudden variation 1200

. . . . h

in the number of annotations with the . Attsmatic ’f
I P »” . - Compul.alional

GO term "ATPase act|V|ty over time. 1000 -+ Curatorial

% Experimental

Such changes can heavily affect the _
estimation of the background -

distribution in enrichment analyses.

To minimise this problem, one should
use an up-to-date version of the
ontology/annotations and

ensure that conclusions drawn hold T |
across recent (earlier) releases. Date

Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies
https://arxiv.org/abs/1602.01876

V8 Processing of Biological Data
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0

One can argue that, although the number of annotated genes decreased, the
quality of annotations improved, see the steady increase in the number of genes

Number of GO-annotated human genes

121,848 s Number of Annotated
Genes

s Number of Annotated
Genes (non-IEA)

Current Number of
68,320 Known Genes
in the Human Genome

53,692 45,283

2&.0m8;

9.851

11,890

111103 1/1/04 1/1/05 1/1/06 111107 1/1/08 1/1/09

with non-IEA annotations.

However, this increase in the number of genes with non-IEA annotations is very

Between 01/2003 and 12/2003 the
estimated number of known genes in
the human genome was adjusted.

Between 12/2004 and 12/2005, and
between 10/2008 and 11/2009
annotation practices were modified.

slow. Between 11/2003 and 11/2009, only 2,039 new genes received non-IEA

annotations. At the same time, the number of non-IEA annotations increased from
35,925 to 65,741, indicating a strong research bias for a small number of genes.

V8

Khatri et al. (201 2) PLoS Processing of Biological Data

Comput Biol 8: €71002375



Changes to GO terms are recorded

GO:0006915 apoptotic process

Web Services Dataset Term Baskel: 0

) Search' @ w 0
Click for example search —_— _— e

Term Information

ton/synonyms

Timestamp Action Category Detail

2013-09-06 SECONDARY | GO:0006917 (induction of apoptosis)
2013-09-06 SYNONYM apoplosis signaling

2013-09-06 SYNONYM commitment to apoptosis

Added

Added

Added

Added | SYNONYM | induction of apoptosis
2013-09-06 | Added | SYNONYM | activation of apoplosis

Added

Added

Added

SYNONYM apoptosis activator activity
SYNONYM induction of apoptosis by p53

A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g.
an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathways) which typically lead
to rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation,
nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. The
process ends when the cell has died. The process is divided into a signaling pathway phase, and an execution phase, which
is triggered by the former.

A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g.
an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathways) which typically lead
to rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation,
nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptolic bodies. The
process ends when the cell has died. The process is divided into a signaling pathway phase and into an execution phase,
which is triggered by the former.

DEFINITION

2012-12-06 | Deleted | DEFINITION

2011-11-24 | Added | SYNONYM apoptosis
Added

2011-11-24

SYNONYM cell suicide

Figure 1 Changes to the “apoptotic process” term. The most recent changes to the GO term “apoptotic process” as displayed in QuickGO [20].
In total there have been 54 changes over the lifetime of the term.

. S/

Huntley et al. GigaScience 2014, 3:4
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Gene functional identity changes over GO editions

100

»» Shading : fraction of genes that retain a
functional identity between GO editions.

®
o

2]
o

Semantic similarity is calculated and genes
are matched between GO editions.

H
o

Gene Ontology edition

20 ' If a gene is most similar to itself between

editions, it is said to retain its identity.

20 40 60 80 100
Gene Ontology edition

The average fraction of identity maintained in successive editions of GO is 0.971.

This means that, each month, the annotations of about 3% of the genes have

changed so substantially that they are not functionally ‘the same genes’ anymore.

Gillis, Pavlidis, Bioinformatics
(2013) 29: 476-482.

V8 Processing of Biological Data
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then the bias is 1.0.

Annotation bias persists in the GO
If all genes have the same number of GO terms, the annotation bias is 0.5. At the other

extreme, if there are only a few GO terms used and they are all applied to the same set of genes,

Ry - (A) Annotation bias has risen among
S o4 T gom . os human genes. Genes with many
2 082 = 20 annotations have become more
3 - 8 073} 5 . . e .
E ga - S ol N om dominant within GO over time.
- 8 ol \:’; (B) For yeast, annotation bias has
€ | < o o7el, :
076l 07} o w1 generally fallen over time.
0 50 w "% 2 a0 e o 100 (C)The relative number of annotations
Human Gene Ontology edition Yeast Gene Ontology edition . i
per gene has remained fairly stable
Cc D 10°F over time (shown is the correlation of
£ " the distributions).
> 80 = .
g " (D) Number of GO terms per gene is
S . g correlated with the rank of the
§ = 5" numerical ID of the gene in NCBI.
T " w w - --———- | - early sequenced genes are better
uman Gene Ontology edition 0 0:5 1 1:5 2 — hi . .
Gillis, Pavlidis, Bioinformatics  Nesimnk .+ @nnotated = historical bias.

(2013) 29: 476-482.
V8 Processing of Biological Data
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Case study: network “modules” of PSP

Common use of GO: analysis of network ‘modules’ enriched for particular functions.

Case study: ‘post-synaptic proteome’ (PSP) = 620 proteins identified by MS in a
structural component of the synapse that can be observed under the electron
microscope beneath the postsynaptic membrane

Enrichment analysis on this list - 67 significantly enriched functions.

Based on a protein interaction data set for human (= HIPPIE, 73324 interactions),
Gillis and Pavilidis constructed a PSP subnetwork.

Using spectral partitioning, this was split into 6 subnetworks (modules)

varying in size from 11 to 67 genes.

Gillis, Pavlidis, Bioinformatics
(2013) 29: 476-482.

V8 Processing of Biological Data
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Case study: network “modules” of PSP

4 modules had significantly enriched groups of GO terms, suggesting the PPI
modules partly reflect different functions:

Cluster 1: glutamatergic activity and synaptic transmission
Cluster 3: cell junctions and adhesion

Cluster 4: ribosomal components

Cluster 6: endocytosis.

However, the authors speculated that separation of functions by PPI clustering does
not indicate an orthogonal property,

but simply be due that different articles reported both certain P-P interactions and
certain protein functions.

Gillis, Pavlidis, Bioinformatics
(2013) 29: 476-482.

V8 Processing of Biological Data
35



Case study: network “modules” of PSP

RPH3A \ ARHGEF7

PlKacA\
H3KBP1

Module 3 from the PSP case study.

Genes annotated with the enriched
functions shown in dark gray.

Indeed, the 2 interacting proteins JUP and
CDH3 in cluster 3 (diamonds) were
confounded.

2 articles reported both their functional
annotation and their interaction.

Removing the GO terms traced back to
these 2 articles from the 2 genes
reduced the functional enrichment for the
module to the point that no functions met
the FDR < 0.01 threshold.

Gillis, Pavlidis, Bioinformatics
(2013) 29: 476-482.

V8 Processing of Biological Data
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Influence of electronic annotations (IEA)
High-throughput experiments are another source for annotation bias.

They contribute disproportionally large amounts of annotations
by only few published studies.

This information is further propagated by automated methods.

The huge body of electronic annotations (evidence code IEA) has
therefore a strong influence on semantic similarity scores.

Weichenberger et al. (2017)
\%:] Scientific Reports 7: 381 Processing of Biological Data
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Influence of electronic annotations (IEA): BP scores

Average simLin/fsAvg score distributions for o
BP ontology for human/mouse protein pairs. n
For a human protein P, the score average is computed by 0 -
forming pairs of proteins (P, R) over 1000 randomly g
selected mouse proteins R for 5 -
- the IEA(+) dataset (black solid lines, density computed J
from 93806 annotated proteins) and = | . . |
- the IEA(-) dataset (grey lines, 21212 annotated proteins). 0 oo bonctionsl sty B score.

No random pair has SS > 0.4 - good threshold to distinguish random / non-random

Manually annotated protein pairs (grey) show a clear peak at a score of 0.15.

Including IEA evidence generates a second peak close to 0.0. A large portion of this
peak can be attributed to the roughly 70000 human gene products, which are
exclusively annotated with IEA evidence codes

Weichenberger et al. (2017)
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Influence of electronic annotations on MF + CC scores

(b) MF based score distribution.
Unlike BP, this ontology is
characterized by a more uniform
distribution of scores, with a notable
peak near 0.27, generated by ca.
1600 proteins.

GO enrichment analysis of these
proteins shows that they are
significantly enriched in “protein
binding” (GO:0005155, p < 107190),
suggesting that gene products
annotated to this term generally
yield much higher than average
simLin/fsAvg MF scores.

Weichenberger et al. (2017)
Scientific Reports 7: 381
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Mean functional similarity MF score Mean functional similarity CC score

(c) CC score distribution. Here, both manual
and electronic annotation peaks are closer to
each other than in the other 2 ontologies.
Electronic annotations have higher densities in
the upper score range (>0.3), where the
manual annotation scores have already tailed
off.
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| Using similarity z-scores
Another bias:

genes with a higher number of GO annotations tend to receive higher functional
similarity scores.

Weichenberger et al. propose to improve the similarity scores of 2 proteins by taking
into account their respective score background distribution and calculate a
similarity z-score that is less affected by annotation biases of specific proteins.

Mean and standard deviation for each protein P are computed by evaluating
functional similarity scores from protein pairs (P, Q), where proteins Q are randomly
sampled.

This mean score for protein P represents a baseline score that varies from protein to
protein.

Together with a protein-specific standard deviation a normalized z-score is derived
that adjusts for the annotation baseline of the particular proteins.

Weichenberger et al. (2017)
Scientific Reports 7: 381
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Similarity z-scores detect orthologues better

error rates of raw
functional similarity
scores (x-axis) versus z-
scores (y-yxis) for BP
ontology for pairs of
orthologues and
controls from selected
organisms.

Small inlay panel: best
scoring measures.

IEA™

aBL‘-‘

257

20~

16

Error rate (z-score) [%]

simRes
simLin
simRel

simGIC

b

human
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15—

10~

simRes || © fsMax
simLin || & fsAvg

simRel || + fsBMM
X fsBMA
¢ fsABM

simGIC

1 I I I
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Points on the diagonal have the same error rate with raw and with z-scores.

Observed deviations from diagonal - lower error rate using z-scores.

(left) results from an annotation corpus including electronic annotations (IEA+),
(right) outcome where electronic annotations have been excluded (IEA-).

Weichenberger et al. (2017)
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Compare methods to measure functional similarity

s and t : two GO terms that will be compared semantically
S(s, ) : set of all common ancestors of s and t.

Resnik (simRes) simRes(s, t) = 1'1::{&::\:r }I (c)
ceEals,
Lin (simLin) simLin(s, t) = max 210

ceS(s,0) [(s) + I(t)

2 - I(c)

Schlicker (simRel) simRel(s, t) = max TSR (1 — P(c))
ceS(s,1) s) + f
2 - max I(c) ( ‘1
information coefficient (sim/C) simIC(s, t) = cES(s,1) = 1
I(s) + I(t) 1 — max I(c)
\ L‘ES(‘\',” J
Jiang and Conrath (simJC), simJCs, 1) = 1
1 + I(s) + I(t) — 2 - max I(c)
ceS(s,f)
. . . P ) I(C)
graph information content (simGIC). simGIC(s, 1) = 2 ce(S(s.5) NS}
Weichenberger et al. (2017) Z(-E{S(S‘_\-; US{H)}I(C)
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Mixing rules
Given:

protein P that is annotated with m GO terms ¢, t,,.., t,, and
protein R that is annotated with n GO terms r,, r,, .., .

Then the matrix M is given by all possible pairwise SS values
s;j = sim(t; r;) with sim being one of the SS measures introduced above,
i=1,2,..,mandj=1, 2, .., n.

Functional similarity is computed from the SS entries of M according to a specific
mixing strategy (MS). Here 5 different mixing strategies were investigated.

fsMax uses the maximum value of the matrix, fsMax = max;; s;,

fsAvg takes the average over all entries, _ﬁA1g = D iSii

X hn

Weichenberger et al. (2017)
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Mixing rules
Using the maximum of averaged row and column best matches
has been suggested for incomplete annotations,
fsBMM = max(mz max;s;, —Z max s )

Instead of taking the maximum, averaging gives the so-called best match average

,f:‘FBJ;ﬁA = —( Z max,s; + Z max s, )

m E1y

Conversely, the averaged best match is defined as

fSABM = (zf.nm.:»;_,.:«:{ij + 3;maxs;

We additionally study the effect of combining multiple gene ontologies into a single
score, as suggested by Schlicker et al..

A functional similarity F is computed by combining a SS measure with any mixing
strategy defined above over any of the different ontologies: biological process
(FBP), molecular function (FMF), and cellular component FCC) We compute the
combined measures as the functions

m-—n

HI’ MF — \/ HF’ ‘LH-)

2
. Fgp s mpycc = \/ ?(F gp T+ F; mr + Feo)
Weichenberger et al. (2017) )
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Optimal functional similarity score

Top: scatter plot of BP (x-axis) and MF (y-axis) scores
of orthologous gene pairs (circles) and randomly
selected gene pairs (crosses) from human/mouse.

Solid/dashed iso-lines: 2D density function of the
2 distributions for cases and controls.

Bottom: 1D density function of the FEP*MF scores for
cases (solid line) and controls (dashed line).

Their crossing point defines the optimal threshold for
minimizing the error rate.

The simGIC semantic similarity in conjunction with the
FEP*MF function separates cases from controls, with an

error rate of only 1.24%.

Weichenberger et al. (2017)
Scientific Reports 7: 381
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Optimal functional similarity score

a Human/mouse
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Summary
The GO is the gold-standard for computational annotation of gene function.

It is continuously updated and refined.

Hypergeometric test is most often used to compute enrichment of GO terms in
gene sets

Semantic similarity concepts allow measuring the functional similarity of genes.
Selecting an optimal definition for semantic similarity of 2 GO terms and for the
mixing rule depends on what works best in practice.

Functional gene annotation based on GO is affected by a number of biases.
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