V2

V2 — missing values + batch effect correction

BEclear / applies latent factor model to predict missing values and to
remove batch effects

- DNA microarray

- DNA methylation
Functional Normalization
gPCA

Review of Probability Theory Basics

Processing of Biological Data



Process S. aureus microarray data — part li
11 46 10

33
StaphyType Test Report MRSA (mecA) 0 0 0 0
Operator PVL 0 0 0 0
Sample ID 2192119
Experiment ID 2192119 - {4083AD2C-TD42-4FB9%-82D3-ES0CCOFD6206} 235-rRNA 1 1 1 1
Date of Result Thu Apr 14 10:46:01 2011 ga pA 1 1 1 1
Assay Name StaphyType
Assay D 10248 katA 1 1 1 1
Well Position 01 (01-A)
Software Version 2009-07-09 COA 1 @ 1 1
L 0420022 Protein A 1 1 1 1
sbi 1 1 1 1
Internal Controls nuc 1 1 1 1
Data Quality passed fnbA 1 1 1 1
vras 1 1 1 1
Genetic markers for S. aureus / MRSA /PVL sarA 1 1 1 1
Taxonomy Species Marker (S.qureus) positive eno 1 1 1 1
MRSA (mecA) positive saes 1 1 1 1
PVL negative mecA 0 0 0
blaz 0 0 0
Resistance Genotype blal 0 0 0
Hybridisation (Gene)  Result Expected Resistance blaR 0 0 0
mecA positive Methicillin, Oxacillin and all Beta-Lactams, defining MRSA
blaZ negative Beta-Laktamase ermA 0 0 0
ermA positive Macrolide, Lincosamide, Streptogramin ermB 0 0 0 0
ermB negative Macrolide, Lincosamide, Streptogramin
ermC negative Macrolide, Lincosamide, Streptogramin ermC 0 0 0 0
linA negative Lincosamides linA 0 0 0 0

Compute Euclidian distance between samples

la=bll, = | > (a; = b)?
i
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Ambiguous values

In the S. aureus genotyping test report, individual markers can be “positive” or
“negative” and also “ambiguous”’.

Such ambiguous classifications can be caused by:
- poor sample quality, or

- poor signal quality, or
- by the presence of plasmids in low copy numbers.

www.alere-technologies.com

V2 Processing of Biological Data



Re-Assign ambiguous values in DNA microarray

Task — predict ambiguous values.
Simple idea: baseline prediction using average values

total average sample average gene average
1 1 1
(i,))EQ 1,J)EQ i,))EQ

replace small fraction of known

bprediction = 3 (,LL + b + bi) values by (thresholded) baseline
' values -> ~85% correct predictions

But better results are obtained with:

Latent Factor Model (LFM)
~95% correct predictions

V2 Processing of Biological Data 4



Latent Factor Models in image reconstruction
10% of input data Rank-10 truncated SVD

SVD treats missing entries as 0.

10% of input data Rank-10 LFM

“ignore” missing entries.

LFs

DMM course by R. Gemulla and P. Miettinen

Processing of Biological Data



LFM: mathematical background

2
L = Z (D;; — [LR];;) + R
(i,j)EQ R*j
+ ACILIIE + [IRIIF) —
I
L (m X r)and R (r X n) are sought matrices : :
of rank r L ) L
D (m X n)is a given matrix Lis | D

Idea: construct L and R from known data;

use them to reconstruct the missing data.

V2 Processing of Biological Data




LFM: Stochastic Gradient Descent

« Pick a random entry; =7

« Compute approximate gradient; o /,, v
M

« Update parameters L and R | o N

* Repeat N times.

We implemented LFM-completion of
missing values in the

Bioconductor package BEclear.

Akulenko, R., Merl, M., Helms, V. (2016) PLoS
ONE, 11:e0159921

V2 Processing of Biological Data 7



MA assignment to clonal complexes + LFM predictions
confirmed by WGS

154 S. aureus isolates (182 target genes) from Germany-vs-Africa study

Table 1A

Functional Category of genes

Result Category Result caused by Identification Regulation Resistance Virulence Total % Total
Concordant  Positive Microarray and WGS (de novo) 829 990 1.060 8.495 11374 40.6%
n=27.119 Negative Microarray and WGS (de novo) 0 1.159 8.100 6.486 15,745 56.2%
(96.8 %)

Discrepant False Positive  Microarray Mishybridizations 0 78 21 103 202 0.7%
n=909 (3.2 %) LFM Misprediction 0 17 2 Y 0.1%
False Negative Microarray Polymorphisms 0 3 14 140 157 0.6%
LFM Misprediction 0 0 0 5 @ <0.1%
WGS Assembly error 88 42 16 164 310 1.1%
Cropped contig 1 12 15 28 56 0.2%
Not sequenced or 6 9 8 100 123 0.4%
aberrant allele
Unknown 0 0 4 24 28 0.1%
Total number of typing results 024 2.310 0235 15,554 28,028 100%

Strauss et al. J Clin Microbiol (2016)

V2
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Very few errors due to LFM mis-predictions.
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Batch effects

Batch effects are;

Subgroups of measurements that show qualitatively different behavior across
conditions and are unrelated to the biological or scientific variables in a study.

For a microarray experiment, batch effects may occur due to:

»  Chip type/lot/platform
» Different laboratories may have different standard operating procedures

« Sample/preservation protocols (procedures of drawing biological samples may vary from
center to center and over time within center, relevant to retrospective studies)

» Storage/shipment conditions

 RNAisolation (different laboratories may use different extraction procedures or kits, and
different lots of reagents may perform differently)

 CcRNA/cDNA synthesis
«  Amplification/labeling/hybridization protocol (different reagents or lots may be used)
« Wash conditions (temperature, ionic strength, fluidics modules/stations; cleaning schedules)

« Ambient conditions during sample preparation/handling, such as room temperature and
ozone levels

« Scanner (types, settings, calibration drift over prolonged studies; scheduled maintenance)

Luo et al. Pharmacogenomics J. (2010) 10: 278-291.
V2 Processing of Biological Data 9



Global methods to correct batch effects

Mean-centering : after the transformation, the mean of each feature across all the
samples within each batch is set to zero.

Standardization: Beyond mean-centering, this approach normalizes the standard
deviation of all features across samples within each batch to unity.

Ratio-based: All samples are scaled by a reference array.

This can be the average of multiple reference arrays, such as the measurement of
universal human reference RNA samples for clinical data and vehicle control samples
for toxicogenomics data.

Such global normalization methods do not remove batch effects if these affect

specific subsets of genes so that different genes are affected in different ways.

Luo et al. Pharmacogenomics J. (2010) 10: 278-291.
V2 Processing of Biological Data 10
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Score plot of the first two principal
components. Batches (groups) are
indicated by colors.

(a) MD Anderson breast cancer data set.

(b) Hamner lung carcinogen data set
(two batches in training set hybridized
in 2005 and 2006, and two batches in
test set hybridized in 2007 and 2008)

(d) UAMS multiple myeloma data set
(the three batches represent three
generations of Affymetrix chips on Homo
Sapiens).

11
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(e) Cologne neuroblastoma data set (the
two batches represent the two channels
of Agilent arrays).

(f) NIEHS data set (cross-platform: the
two groups represent Affymetrix and
Agilent microarray platforms.
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Example: bladder cancer microarray data
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Sample Sample
Raw data for normal samples taken Same data after processing with RMA, a
from a bladder cancer microarray data widely used preprocessing algorithm for
set (Affymetrix chip). Affymetrix data.
Green and orange represent two RMA applies quantile normalization — a
different processing dates. Box plot of technique that forces the distribution of the

raw gene expression data (log, values) raw signal intensities from the microarray

data to be the same in all samples.
Leek et al. Nature Rev. Genet. 11, 733 (2010)

V2 Processing of Biological Data 13



Quantile normalisation: adjusts multiple distributions

Given: 3 measurements of 4 variables A—D.
Aim: all measurements should get identical distributions of values

Original data

A 3 4 3

B 2 1 4

C 3 4 6

D 4 2 8
Sort columns by magnitude

A 2 3

B 3 2 4

C 4 4 6

D 3 4 8

A 5.67 4.67 2

B 2 2 3

C 3 4.67 4.67
D 467 3 5.67

V2

Determine in each column the rank of each value
A \Y i i
% B i i ii
C i i i
D i i \Y

Compute mean of each row

9 A 2 Rank i

B 3 Rank ii
C 4.67 Rankiii
D 5.67 Rankiv

Replace original values by mean values
according to the rank of the data field.

Now all columns contain the same values
(except of duplicates) so that they can be
easily compared.

Processing of Biological Data



Example: same bladder cancer microarray data

0 Batch1 Batch 2 .
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Sample

Ten particular genes that are Clustering of samples after normalization.

susceptible to batch effects even after
RMA normalization.

The samples perfectly cluster by
processing date.

Hundreds of other genes show similar ~ ~ ¢léar evidence of batch effect

behavior but, for clarity, are not
shown. Processing date is likely a “surrogate” for

other variations (laboratory temperature,

uality of reagents etc.).
Leek et al. Nature Rev. Genet. 11, 733 (2010) 9 y 9 )
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Sample ordered by date

Example: sequencmg data from 1000 Genomes project
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Each row is a different HapMap sample processed in the same facility with the
same platform. The samples are ordered by processing date with horizontal lines
dividing the different dates. Shown is a 3.5 Mb region from chromosome 16.

Various batch effects can be observed. The largest one occurs between days 243
and 251 (the large orange horizontal streak).

Leek et al. Nature Rev. Genet. 11, 733 (2010)
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Workflow to identify batch effects

Exploratory analyses

laboratory and processing time)

Hierarchically cluster the samples and label them with biological variables and batch surrogates (such as

Plot individual features versus biclogical variables and batch surrogates

with batch surrogates

Calculate principal components of the high-throughput data and identify components that correlate

Downstream analyses

potential artefacts in the data?

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only

Yes 1

1Na

Use measured technical variables as surrogates
for batch and other technical artefacts

Estimate artefacts from the high-throughput data
directly using surrogate variable analysis (SVA)

1

|

Perform downstream analyses, such as regressions, t-tests or clustering, and adjust for surrogate or
estimated batch effects. The estimated/surrogate variables should be treated as standard covariates,
such as sex or age, in subsequent analyses or adjusted for use with tools such as ComBat

Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting
models, including processing time and date or surrogate variables estimated with SVA, re-cluster the
data to ensure that the clusters are not still driven by batch effects

Leek et al. Nature Rev. Genet. 11, 733 (2010)

V2
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Detect batch effects

PCA is commonly used as a visual tool to determine whether batch effects exist
after applying a global normalization method.

However, PCA yields linear combinations of the variables that contribute
maximum variance and thus will not necessarily detect batch effects if they are
not the largest source of variability in the data.

— Guided PCA: For detecting batch effects, a more informative version of PCA
is to perform SVD on Y’X, where Y is an n X b indicator indicator matrix for b
batches and n samples.

yi = 1 if sample is in batch k, y; = 0 otherwise

Large singular values imply that the batch is important for the corresponding
principal component.

Reese et al. Bioinformatics (2013) 29: 2877-2883.
V2 Processing of Biological Data 18



Detect batch effects
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The standard use of PCA is to plot PC1 of the data versus PC2.
The GENEMAM data have an obvious batch effect. The PCA plot shows that this batch
effect is due to the plate when colored by plate with three batches consisting of plates

1-4,

and 6-8 that were run at different times. The gPCA plot of the first two principal

components shows greater separation in the batches, especially of plate 3 (+) from
plates 1, 2 and 4, than the unguided principal component plot.

Reese et al. Bioinformatics (2013) 29: 2877-2883.

V2
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(a)

Detect batch effects

(b)

© Plate1 v Plate 6
‘ GENOA data
=4 + Plate 3 * Plate 8 Q
< Plate 4 Plate 9
Plate 5 @ Plate 10 H
5 _, . (a) Unguided
N ‘ «
Xy R
P 5 W K X
i ™ o R PCA of X and
% KT x =) *

o 5?5: m X7 X * .

: Sh< O VT (b) gPCA of Y’X
o b X (] o oY .
o * Hm I R

* kﬁ% ' 2%
=} i * g o
<!' * . s ‘lr
< | © Plate1 v Plate 6
3 2 Plate2 = Plate 7
' i v + Plate 3 * Plate 8
g F < Plate4 < Plate 9
e+ Plate 5 @ Plate 10
o o
® 7 T T T T T T T P T T T T T T T
-60 -40 20 0 20 40 60 80 -60 -40 -20 20 40 60 80
PC, PC,
PCA gPCA

For the GENOA data set, batch is not so easily detected using unguided PCA.

The PCA plot of PC1 and PC2 shows that plates 7 and 8 might be slightly separated
from the rest of the plates. A gPCA with batch defined by plate shows that plates 7 and
8, along with plate 4 (X), separate slightly from the other plates.

It is not obvious from the unguided PCA that plate 4 is separate from the rest of the
plates. However, gPCA shows a separation between plate 4 and the rest of the plates.

Reese et al. Bioinformatics (2013) 29: 2877-2883.
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Correcting batch effects in DNA

Infinium "’
HumanMethylation27,
RevB BeadChip Kits

V2 Processing of Biological Data
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Original DNA methylation data for breast cancer (TCGA)
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Batch effect correction with BEclear

(1) Compare the distribution of every gene in one batch to its distribution in all
other batches using the nonparametric Kolmogorov-Smirnov (KS) test. P-
values are corrected by False Discovery Rate.

(2) To consider only biologically relevant differences in methylation levels, identify
the absolute difference between the median of all B-values within a batch for a
specific gene and the respective median of the same gene in all other
batches.

Those genes that have a FDR-corrected significance p-value below 0.01 (KS-
test) AND a median difference larger than 0.05 are considered as batch effected
(BE) genes in a specific batch.

V2 Processing of Biological Data 23



Batch effect correction with BEclear

(3) Score severeness of batch effect in single batches by a weighting-scheme :

Z.  (Npgge, * W) N : total number of genes in a current batch,
femea mdif,, : category of median differences,

Npegenes i - # BE-genes in mdif category i

w; . weight of mdif category i

Weight categories:
if mdif < 0.05, then weight = 0;
if 0.05 < mdif < 0.1 weight = 1;
ifmXx01<mdif<(m+1) X 0.1, me N*

BEscore =
N

Scoring scheme considers number of BE-genes in the batch + magnitude of
deviation of the medians of BE-genes in one batch compared to all other batches.

Based on the BE-scores of all batches, identify using the Dixon test which batches
have BE-scores that deviate significantly from the BE-scores of the other batches.

All BE-gene entries in these affected batches are replaced by LFM predictions.

V2 Processing of Biological Data
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TCGA data for breast cancer — batch affected entries
predicted by LFM/BEclear
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Batch 136 has still slightly larger values
than other batches,

but the deviation is no longer statistically

significant.
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TCGA
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data for breast cancer — data corrected by FunNorm

A. Per sample boxplot
B. Density plot.

Functional normalization was
able to adjust the batch effect
equally well as BEclear
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Functional Normalization

Functional normalization uses information from 848 control probes on 450k array.

The method extends the idea of quantile normalization by adjusting for known
covariates measuring unwanted variation.

Consider Y,,...,Y, high-dimensional vectors each associated
with a set of scalar covariates Z;; with i = 1,...,n indexing samples
and j=1,...,m indexing covariates.

|deally these known covariates are associated with unwanted variation and
unassociated with biological variation.

Functional normalization attempts to remove their influence.

V2 Processing of Biological Data 27



Functional Normalization

For each high-dimensional observation Y, we form the empirical quantile function
r € [0,1] for its marginal distribution, and denote it by g™ .

m
We assume the following model q; C(r) =a(r) + Zzz‘,jﬁj(i‘) + €i(7)
j=1

a : mean of the quantile functions across all samples,
B; : coefficient functions associated with the covariates and
g; . error functions, which are assumed to be independent and centered around 0.
m
In this model, the term Z Zi,jﬁ}-
j=1

represents variation in the quantile functions explained by the covariates.

Functional normalization removes unwanted variation by regressing out this term.
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V2

Functional Normalization

Bj forj = 1,...,m

are estimated using regression from the values observed for the control probes.

Assuming we have obtained estimates B}- forj=1,...,m, we form the
functional normalized quantiles by

F em
q; """ (r) = g} P (r) — ZZz;ﬁ;(r)
j=1
We then transform Y, into the functional normalized quantity Y,‘ using the
formula -

Yz — 0]} unnorm ((q:’ml})_l (Y;))

This ensures that the marginal distribution of Y:‘ has q}?unngml

as its quantile function.

Processing of Biological Data
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Benchmarking BEclear

Evaluating the performance of Funnorm, ComBat, SVA and BEclear on simulated data
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Funnorm,
ComBat and
SVA scale all
values

-> |arge total
deviation

BEclear

corrects only
affected entries
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Summed absolute deviation from gold standard in 4000 probes

Evaluating the performance of Funnorm, ComBat, SVA and BEclear on simulated data,

Effect on corrected entries only

batch affected probes only
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Even for affected
entries,

BEclear predicts
smallest changes for
batch effects

up to 2 s.dev.
which is a typical

magnitude of batch

effects.
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Accuracy of differential methylation analysis
|dentify differentially methylated CpG probes (tumor vs. normal) in original data

Then introduce synthetic batch effect (n x st.dev.) + noise term

|ldentify differentially methylated CpG probes again + compare to reference

Evaluating the performance of RUVm, Funnorm, SVA, ComBat and BEclear
on simulated data by measuring differential methylation, 4000 affected probes
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Conclusions

Predicting missing values or batch-effected values by Latent Factor Model
(BEClear software):

- Accuracy of MA hybridization prediction confirmed by WGS (97%),
low LFM error

- Superior accuracy of predicting DNA methylation levels by LFM confirmed in
benchmark against SVA, Combat, FunNorm softwares
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Review: Foundations of Probability Theory

,Probability” : degree of confidence that an event of an uncertain nature will occur.

»Events® : we will assume that there is
an agreed upon space Q of possible outcomes (,events®).

E.g. a normal die (dt. Wiirfel) has a space Q = {1,2,3,4,5,6}

Also we assume that there is a set of measurable events S
to which we are willing to assign probabilities.

In the die example, the event {6} is the case where the die shows 6.

The event {1,3,5} represents the case of an odd outcome.

V2 Processing of Biological Data
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Foundations of Probability Theory

Probability theory requires that the event space satisfies 3 basic properties:

- It contains the empty event & and the trivial event Q.

- ltis closed under union — ifa, 3 € S,thensoisa U B € S,

- Itis closed under complementation —» ifa € S,thensoisQ—-a € S
The requirement that the event space is closed under union

and complementation implies that it is also closed under other
Boolean operations, such as intersection and set difference.
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Probability distributions

A probability distribution P over (2, S) is a mapping from events in S
to real values. The mapping must satisfy the following conditions:

(1) P(a) >0 forall ae S Probabilities are not negative

(2) P(Q) =1 — The probability of the trivial event which allows all
possible outcomes has the maximal possible probability of 1.

(3) Ifa, p e Sand o~ B =0 then P(a. U B) = P(a) + P(B)
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Interpretation of probabilities

The frequentist's interpretation:

The probability of an event is the fraction of times

the event occurs if we repeat the experiment indefinitely.

E.g. throwing of dice, coin flips, card games, ...

where frequencies will satisfy the requirements of proper distributions.

For an event such as , It will rain tomorrow afternoon®,

the frequentist approach does not provide a satisfactory interpretation.
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Interpretation of probabilities
An alternative interpretation views probabilities as subjective degrees of belief.
E.g. the statement ,the probability of rain tomorrow afternoon is 50 percent”
tells us that - in the opinion of the speaker - the chances of rain and no rain

tomorrow afternoon are the same.

When we discuss probabilities in the following we usually do not explicitly state

their interpretation since both interpretations lead to the same mathematical rules.
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Conditional probability

The conditional probability of 8 given a is defined as

Pl0) =~

The probability that B is true given that we know a is the relative proportion
of outcomes satisfying f among these that satisfy o.

From this we immediately see that
P(anp) = P(a)P(Bla)

This equality is know as the chain rule of conditional probabilities.

More generally, if a4, o, ... a, are events, we can write

PlaNa,N--Nag) = P(al)P(a2|a1) ...P(ak|a1 NN ag_q)
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Bayes rule

Another immediate consequence of the definition of conditional probability is
Bayes’ rule.

Due to symmetry, we can swap the 2 variables o and 3 in the definition

P(Bla) = P;iz)ﬁ) and get the equivalent expression P(a|f) = Pffig)a)

If we rearrange, we get Bayes' rule P(B|la)P(a) = P(a|B)P(B) or

P(Bla)P(a)
P(B)

P(alp) =

A more general conditional version of Bayes' rule where all probabilities are
conditioned on some background event y also holds:

P(Blany)P(aly)

PelfOn =551
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Example 1 for Bayes rule

Consider a student population.

Let Smart denote smart students and GradeA denote students who got grade A.

Assume we believe that P(Grade2 | Smart) = 0.6, and that we get to know
that a particular student received grade A.

Suppose that P (Smart) =0.3 and P (Gradea) = 0.2

Then we have P(Smart |Graden)=0.6 x0.3/0.2=0.9

In this model, an A grade strongly suggests that the student is smart.

On the other hand, if the test was easier and high grades were more common,
e.g. P (Graden) = 0.4, then we would get

P(Smart|Graden)=0.6 x0.3/0.4=0.45 which is much less conclusive.
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Example 2 for Bayes rule

Suppose that a tuberculosis skin test is 95% percent accurate.

That is, if the patient is TB-infected, then the test will be positive with probability 0.95
and if the patient is not infected, the test will be negative with probability 0.95.

Now suppose that a person gets a positive test result.
What is the probability that the person is infected?

Naive reasoning suggests that if the test result is wrong 5% of the time, then the
probability that the subject is infected is 0.95.

That would mean that 95% of subjects with positive results have TB.
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Example 2 for Bayes rule

If we consider the problem by applying Bayes' rule, we need to consider the prior
probability of TB infection, and the probability of getting a positive test result.

Suppose that 1 in 1000 of the subjects who get tested is infected — P(TB) = 0.001

We see that 0.001 x 0.95 infected subjects get a positive result
and 0.999 x 0.05 uninfected subjects get a positive result.

Thus P(Positive) = 0.001 x 0.95 + 0.999 x 0.05 = 0.0509

Applying Bayes' rule, we get P(TB|Positive) = P(TB) x P(Positive|TB) / P(Positive)
=0.001 x 0.95/0.0509 = 0.0187

Thus, although a subject with a positive test is much more probable to be TB-infected
than is a random subject, fewer than 2% of these subjects are TB-infected.
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Random Variables

A random variable is defined by a function
that associates with each outcome in Q a value.

For students in a class, this could be a function f;,,4. that maps
each student in the class (in Q) to his or her grade (1, ..., 5).

The event grade = A is a shorthand for the event {w € Q: f;q4.(w) = A}.

There exist categorical (or discrete) random values that take on
one of a few values, e.g. intelligence could be ,high” or ,low".

There also exist integer or real random variable that can take on
an infinite number of continuous values, e.g. the height of students.

By Val(X) we denote the set of values that a random variable X can take.
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Random Variables

In the following, we will either consider categorical random variables
or random variables that take real values.

We will use capital letters X, Y, Z to denote random variables.
Lowercase values will refer to the values of random variables.

E.g. P(X =x) = 0forall x € Val(X)

When we discuss categorical random numbers, we will denote the i-th value as x'.

Bold capital letters are used for sets of random variables: X, Y, Z.
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Marginal Distributions

Once we define a random variable X, we can consider the
marginal distribution P(X) over events that can be described using X.

E.g. let us take the two random variables Intelligence and Grade
and their marginal distributions P (Intelligence) and P (Grade)

Let us suppose that

P(Intelligence=high) = 0.3
P (Intelligence=low) = 0.7

P(Grade=A) = 0.25
P(Grade=B) = 0.37
P(Grade=C) = 0.38

These marginal distributions are probability distributions satisfying the 3 properties.
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Joint Distributions

Often we are interested in questions that
involve the values of several random variables.

E.g. we might be interested in the event ,Intelligence = high and Grade = A".

In that case we need to consider the joint distribution P(X;, ..., X,,)
over these two random variables.

The joint distribution of 2 random variables has to be consistent
with the marginal distribution in that P(x) = X, P(x, y).

Intelligence
low high
A 0.07 0.18 0.25
Grade B 0.28 0.09 0.37
C 0.35 0.03 0.38
0.7 0.3 1
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Conditional Probability

The notion of conditional probability extends to
induced distributions over random variables.

P(Intelligence|Grade=A) denotes the conditional distribution over the events
describable by Intelligence given the knowledge that the student's grade is A.

0.18

Note that the conditional probability P(Intelligence=high|Grade=A) = i 0.72

is quite different from the marginal distribution P(Intelligence=high) = 0.3.
We will use the notation P(X|Y) to present a set of conditional probability distributions.

Bayes' rule in terms of conditional probability distributions reads

P(X)P(Y|X)

P(X|Y) = T
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Probability Density Functions

Afunction p:R—-> R
is a probability density function (PDF) for X

if it is a nonnegative integrable function so that fvm(x)p(x)dx =1

The function P(X < a) = f_aoop(x)dx is the cumulative distribution for X.

By using the density function we can evaluate the probability of other events. E.g.

b
Pla<X<bh)= fp(x)dx

a
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Uniform distribution

The simplest PDF is the uniform distribution

Definition: A variable X has a uniform distribution over [a,b] denoted X ~ Unif[a,b]
if it has the PDF

1
p(x) = bh—a
0 otherwise

b>x>a

Thus the probability of any subinterval of [a,b] is proportional
to its size relative to the size of [a,b].

If b—a <1, the density can be greater than 1.

We only have to satisfy the constraint that the total area under the PDF is 1.
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Gaussian distribution

A random variable X has a Gaussian distribution with mean u and variance 2,
denoted X ~ N(u;c?) if it has the PDF

1 _(x=w*
e 202

p(x) = —

A standard Gaussian has mean 0 and variance 1.

DAS + —e —
IE R
0.3 4
R
0254
0.2 4
0184
0.

N4
005

R
[ 5
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Expectation

Let X be a discrete random variable that takes numerical values.

Then, the expectation of X under the distribution P is

Ep[X] = Zx - P(x)

X
If X is a continuous variable,

then we use the density function

Ep[X] = fx-p(x)dx

E.g. if we consider X to be the outcome of rolling a good die with probability 1/6 for
each outcome, then E[X]=1-1/6+2-1/6+...+6-1/6=3.5

V2 Processing of Biological Data
52



Properties of the expectation of a random variable
E[a- X+Db]=aE[X]+Db
Let X and Y be two random variables
E[X + Y] = E[X] + E[Y]
Here, it does not matter whether X and Y are independent or not.
What can be say about the expectation value of a product of two random variables?
In the general case, we can say very little.
Consider 2 variables X and Y that each take on the values +1 and -1 with
probabilities 0.5.

If X and Y are independent, then E[X - Y] = 0.
If they always take on the same value (they are correlated), then E[X - Y] = 1.
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Properties of the expectation of a random variable

If X and Y are independent then
E[X - Y]= E[X] - E[Y]

The conditional expectation of X given y is

EplXIyl = ) x-P(xly)

X
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Variance
The expectation of X tells us the mean value of X. However, it does not indicate how
far X deviates from this value. A measure of this deviation is the variance of X:

Varp[X] = Ep[(X — Ep[X])?]

The variance is the expectation of the squared difference between X and its
expected value. An alternative formulation of the variance is
Var[X] = E[X?] — (E[X])?

If Xand Y are independent, then Var[X + Y] = Var[X] + Var[Y]
Varla-X + b] = a*Var[X]

For this reason, we are often interested in the square root of the variance, which is
called the standard deviation of the random variable. We define

oy =/ Var[X]
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Variance

Let X be a random variable with Gaussian distribution N(u;c2).
Then E[X] = u and Var[X] = ¢2.

Thus, the parameters of the Gaussian distribution specify the expectation and the
variance of the distribution.

The form of the Gaussian distribution implies that the density of values of X drops
exponentially fast in the distance (x - n) / .

Not all distributions show such a rapid decline in the probability of outcomes that are
distant from the expectation.
However, even for arbitrary distributions, one can show that there is a decline.

i 1
or in terms of ¢ P(1X — Ep[X]| = koy) <=
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Variance

Let X be a random variable with Gaussian distribution N(u;c2).
Then E[X] = u and Var[X] = ¢2.

Thus, the parameters of the Gaussian distribution specify the expectation and the
variance of the distribution.

The form of the Gaussian distribution implies that the density of values of X drops
exponentially fast in the distance (x - n) / .

Nice online resources on statistics:
https://www.khanacademy.org/math/statistics-probability

http://tutorials.istudy.psu.edu/basicstatistics/

https://stattrek.com/statistics/problems.aspx

V2 Processing of Biological Data

57



