V3

V3 — MS proteomics — data imputation

How does MS proteomics work?
What is the role of bioinformatics in MS proteomics ?
- Peptide mass fingerprinting
- Significance analysis
- GO annotations
Applications of MS:
- TAP-MS

- Phosphoproteome

Data imputation for MS data

Noble prize in chemistry 2002

- ldentify TRAP clients John B. Fenn Koichi Tanaka
“for their development of soft
desorption ionisation methods for
mass spectrometric analyses of
biological macromolecules”

www.nobelprize.org
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Proteomics workflow: (1) protein isolation

SDS-
PAGE

-rf—vlqr

(1) Sample
fractionation

Aebersold, Mann

Nature 422, 198-207(2003)
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The typical proteomics experiment consists of 5 stages.

In stage 1, the proteins to be analyzed are isolated from
cell lysate or tissues by biochemical fractionation or
affinity selection.

This often includes a final step of one-dimensional gel
electrophoresis, and defines the 'sub-proteome’ to be
analysed.

MS of whole proteins is less sensitive than peptide MS.

The mass of the intact protein by itself is insufficient for
identification.
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Proteomics workflow: (2) trypsin digestion

(1) Sample SDS- Excised (2) Trypsin Peptide
fractionation PAGE proteins digestion mixture

3574 = 9 € M\
[\, =8 7~~~
g§ EE

Table 1. Distrubution of peptide fragment length from 20,639

Therefore, in stage 2, proteins are proteins
. . Residues Total Avg. fragment
degraded enzymatlca"y to peptldes’ Enzyme/reagent cleaved fragments length
usually by trypsin. Trypsin K/R 662,981 8
Lys-C K 359,140 16
This yields peptides with C-terminally =~ Asp-N D 321,655 18
CNBr M 150,605 38
protonated amino acids (K/R) which is  Hydroxylamine N-G 36,643 152
o _ Dilute acid D-P 35,574 166
beneficial in subsequent peptide
sequencing.
Aebersold, Mann Henzel et al. J Am Soc Mass Spectrom
Nature 422, 198-207(2003) 14, 931-942 (2003)

V3 WS 2018/19 Processing of Biological Data 3



Proteomics workflow: (3) peptide chromatography

(3) Peptide ql @2
chromatography
and ESI

[E

In stage 3, the peptides are separated by one or more steps of high-pressure

liquid chromatography in very fine capillaries.

Then, they are eluted e.g. into an electrospray ion source where they are
nebulized in small, highly charged droplets.

After evaporation, multiply protonated peptides enter the mass spectrometer.

Aebersold, Mann

Nature 422, 198-207(2003)
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Mass spectrometer

A mass spectrometer consists of an ion source, a mass analyser that measures
the mass-to-charge ratio (m/z) of the ionized analytes, and a detector that
registers the number of ions at each m/z value.

Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization
(MALDI) are the two techniques most commonly used to volatize and ionize the
proteins or peptides for mass MS analysis.

ESI ionizes the analytes out of a solution and is therefore readily coupled to liquid-
based (e.g. chromatographic and electrophoretic) separation tools.

MALDI sublimates and ionizes the samples out of a dry, crystalline matrix via
laser pulses.

MALDI-MS is normally used to analyse relatively simple peptide mixtures, whereas
integrated liquid-chromatography ESI-MS systems (LC-MS) are preferred for the

analysis of complex samples
Aebersold, Mann
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In stage 4, a mass spectrum of Proteomics workflow: (4) MS

the peptides eluting at this time @) MS (5) MS/MS
L = 200
point is taken. 2 LLEAAAQSTK
S 400 516.27 (2+)

Mass peak = sequence > v7 |ve
composition of a peptide. 5 100{22 sqaalElL L
S 2004 516.27 (2+)

The computer then generatesa = x y5Y6
1) | 4
oy : : c . b2  y4
prioritized list of the peptides L d l l v3 d | y9
: 1 TSI I T N—— 0 bublensillilbilskllcull |
for a second fragmentation. 400 600 800 200 600 1000
m/z m/z

In stage 5, a series of tandem mass spectrometric or 'MS/MS' experiments is
performed to determine the sequence of a peptide (here, the peak m = 516.27 Da).

The MS and MS/MS spectra are matched against protein sequence databases
(“peptide mass fingerprinting”).
The outcome of the experiment is the identity of the peptides and therefore the

proteins making up the purified protein population.

Aebersold, Mann

Nature 422, 198-207(2003)
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Peptide mass fingerprinting

Tryptic peptides

Protein sequence database

s

l digest

Peptide masses

Theoretical peptide masses

\ /

FRAGFIT
'

Protein match

The masses of peptides from a
database are compared with
experimentally determined masses
using a software.

Henzel et al. J Am Soc Mass Spectrom
14, 931-942 (2003);
www.matrixscience.com
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Amino acid

Ala
Arg
Asn
Asp
Cys
Glu
GIn
Gly
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val

Mpeptide =

S

i Eamino acids 1..n

Mono-
Isotopic mass [Da]
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71.037114
156.101111
114.042927
115.026943
103.009185
129.042593
128.058578

57.021464
137.058912
113.084064
113.084064
128.094963
131.040485
147.068414

97.052764

87.032028
101.047679
186.079313

163.06332

99.068414

Average mass [Da]

71.0779
156.1857
114.1026
115.0874
103.1429

129.114
128.1292

57.0513
137.1393
113.1576
113.1576
128.1723
131.1961
147.1739

97.1152

87.0773
101.1039
186.2099
163.1733

99.1311



Peptide mass fingerprinting
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(b) enzyme: Asp-N {N-side of Asp)
Mass of MH+: 1317.400 1449.600 2161.900 (tel: 1.000)

LZCH Lysozyme ¢ (EC 3.2.1.17) precurscr - Chicken

2162.444 84: DGRTPGSRNLCNIPCSALLSS
1449 .706 105: DITASVNCAKIVS
1317.552 137: DVQAWIRGCRL

Mass [Da]

Starting

position
Peptide
fragment

Henzel et al. J Am Soc Mass Spectrom

14, 931-942 (2003)
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(a) FAB (“fast atom bombardment”,
an old technique) spectrum of a
250 pmol tryptic digest of Asp-N
digest of lysozyme.

3 characteristic peaks are labeled.

(b) FRAGFIT output page showing
a match with chicken egg white
lysozyme obtained using the
masses from the MS spectrum.

Processing of Biological Data 8



Peptide mass fingerprinting

(a)
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m/z
(b) enzyme: CNBr (C-side of Met)
Mass of MH+: 1763.500 2780.800 (tol: 0.600)
CCHO Cytochrome C - Horse
1764 .031 66: EYLENPEKKYIPGTEM
2781.268 8l: IFAGIKKKTEREDLIAYLKKATNE
CCHOD Cytochrome C - Donkey and common zebra
(tentative seguences)
1764.031 66: EYLENPKEYIPGTEM
2781.268 81: IFAGIKKKTEREDLIAYLKKATNE

(a) FAB spectrum of a 500 pmol
CNBr cleavage of horse heart
cytochrome c.

(b) FRAGFIT output page
showing a match with cytochrome
¢ obtained using the masses from
the FAB spectrum.

The output includes all proteins
that match the mass list.

The 2 masses observed were sufficient to identify the protein as cytochrome c and

permitted the identification of the species.

At the time this search was performed, the database contained nearly 100

different species of cytochrome c

Henzel et al. J Am Soc Mass Spectrom

14, 931-942 (2003)
V3 WS 2018/19
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Application: Detect protein-protein interactions:
Tandem affinity purification (also ,,pull-down®)

In affinity purification, a protein of interest (bait) is tagged

with a molecular label (dark route in the middle of the figure) to

allow easy purification.

The tagged protein is then co-purified together with its

interacting partners (W-2).

This strategy can be applied on a genome scale (as Y2H).

|dentify proteins

by mass spectro-
metry (MALDI-
TOF).

W3 WS 2018/19

¢ Strategy
PCR product ite COTOBREA: \ PCR of the TAP cassette
Gene Homogogous /
i recombination
tageng Transformation of yeast cells
\ o .
Chromosome (homologous recombination)
Fusion ~ - ion of positive cl
protein NH2 Spacer @BB TEV site-EHIBAD Selection of positive clones
Y -
& |
b &
Large-scale cultivation
& l
Cell lysis
Tandem affinity purification
bt One-dimensional SDS-PAGE
S MALDI-TOF protein identification
Bioinformatic data interpretation
§
(%)

’l.',.. ---'\
| Z [: }
| | |
{ Y{ Bait '—Q>—
\_\---_ __]' i et
— X —ll'
Failed  Success
rate
ORFs
processed: 1,739
Positive
homologous 1,548 191 89%
recombinations: R
Expressing
clones: 1,167 381 75%
{membrane protein 293)
TAP o
purifications: 589 285 62%

Identified complexes: 232

Processing of Biological Dat45avin et al. Nature 415, 141 (2002)
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TAP analysis of yeast PP complexes

|dentify proteins by (d) lists the number of

scanning yeast protein  , proteins per complex
Membrane Mitochondria

database for protein -> half of all PP complexes

ER/Golgi/vesicles

composed of fragments  Nucleus have -5 members, the

of suitable mass. other half is larger

* Cytoplasm .
(e) Complexes are involved

Subcellular localization of

(2) lists the identified identified proteins in practically all cellular

proteins according to processes
d e

Transcription/DNA
maintenance/
chromatin structure

their localization Cell cycle

. Cell polarity and structure
-> no aPParent bIaS fOI" Intermediate and

energy metabolism
one compartment, but Signalling
Membrane biogenesis/

turnover

very few membrane RNA metabolism

*Protein synthesis/

. Protein/RNA t rt
proteins (should be roTeinrTA Transo tumover
o Number of proteins Distribution of complexes
ca. 25 A) per complex according to function

Gavin et al. Nature 415, 141 (2002)
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Application of MS: Protein phosphorylation during cell cycle

Protein phosphorylation and dephosphorylation are highly controlled
biochemical processes that respond to various intracellular and extracellular
stimuli.

Phosphorylation status modulates protein activity by:

- influencing the tertiary and quaternary structure of a protein,
- controlling subcellular distribution, and

- regulating its interactions with other proteins.

Regulatory protein phosphorylation is a transient modification
that is often of low occupancy or “stoichiometry”

This means that only a fraction of a particular protein may be phosphorylated
on a given site at any particular time, and that occurs on regulatory proteins
of low abundance, such as protein kinases and transcription factors.

Olsen Science
Signaling 3 (2010)

V3 WS 2018/19 Processing of Biological Data
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Cell Cycle and the Phosphoproteome

CELLCYCLE

Quantitative Phosphoproteomics Reveals Widespread
Full Phosphorylation Site Occupancy During Mitosis

Jesper V. Olsen,'?* Michiel Vermeulen,'* Anna Santamaria,** Chanchal Kumar,'5*
Martin L. Miller,?® Lars J. Jensen,? Florian Gnad,' Jiirgen Cox,' Thomas S. Jensen,’
Erich A. Nigg,* Saren Brunak,2? Matthias Mann'21

(Published 12 January 2010; Veolume 3 Issue 104 ra3}

wyaw. SCIENCESIGNALING.org 12 January 2010 Vol 3 lssue 104 ra3

Aim: Analyze all proteins that are modified by phosphorylation during different
stages of the cell cycle of human HelLa cells.

lon-exchange chromatography + HPLC + MS + sequencing led to the
identification of 6695 proteins.
From this 6027 quantitative cell cycle profiles were obtained.

A total of 24,714 phosphorylation events were identified.
20,443 of them were assigned to a specific residue with high confidence.

Finding: about 70% of all human proteins get phosphorylated.

V3 WS 2018/19 Processing of Biological Data
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Review: protein quantification by SILAC
ARTICLE

doi:10.1038/nature10098

@ SILAC light
Global quantification of mammalian gene |
expression control > 5w
Bjorn Schwanhiusser!, Dorothea Busse!, Na l,i], Gunnar Dillmar‘, Johannes Schuchhardl", Jana Wolf!, Wei Chen' (t1 ’tz’ta)
& Matthias Selbach! l
. . . 00@0

SILAC: ,stable isotope labelling by :%3:95

amino acids in cell culture” means that

cells are cultivated in a medium i l Syriheatzed

. H/Lratio Proteins

L
© H
(0]

m/z

containing heavy stable-isotope
versions of essential amino acids.

Intensity

When non-labelled (i.e. light) cells are
transferred to heavy SILAC growth Quantification protein turnover and levels.
Mouse fibroblasts are transferred to medium with

medium, newly synthesized proteins _ )
heavy amino acids (SILAC).

incorporate the heavy label while pre-

existing proteins remain in the light Protein turnover is quantified by mass spectrometry
form. and next-generation sequencing, respectively.

Schwanhauser et al. Nature 473, 337 (2011)

V3 WS 2018/19 Processing of Biological Data
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Rates of protein translation

Mass spectra of peptides for

two proteins. S t,(1.5h) - t, (4.5 h) o 100. 1a(135Hh) °
190 Rrm2 Rrm2 Rrm2
% 80 (APTNPSVEDEPLLR) 80 L (APTNPSVEDEPLLR) 80 (APTNPSVEDEPLLR)
. . § N H/L ratio = 0.24 60 © H/Lratio=1.26 60 H/L ratio = 12.8
Top: high-turnover proteln. H 4 © 40
Bottom: low-turnover protein. = 20 20] &
0 3 - l l I‘ N L - l' | RES Ll I Il . A . l' 04, I T by - l‘
770 772 774 776 770 772 774 776 770 772 774 776
. . /. /. /.
Over time, the heavy to light ) " ] m Laash
Hist1h1

(H/L) ratios increase. ooy T 600 100y 7 Llon 1003 (SEAAPAAPAAAPPAEK)

2 80 A 80 Hist1hic 80 H/L ratio = 0.63 H

@ (SEAAPAAPAAAPPAEK) (SEAAPAAPAAAPPAEK) @

g 60 H/L ratio = 0.05 60 H/L ratio = 0.19 60
H-concentration of high-turnover = < 40 H 40

. e 20 20 20
protein saturates. “ , 5 l | | | | | ] .
0 et - " 0 3= 4 - 0 4 - st -

That Of |OW-turnoveI’ proteln Stl” 746 74172_3'/2 750 746 748m/z 750 752 746 748 . 750 752

increases.
This example was introduced to illustrate the
principles of SILAC and mass spectroscopy
signals (peaks).
In the Olson et al. study, the authors used H and

L forms to label different stages of the cell cycle.
Schwanhauser et al. Nature 473, 337 (2011)

V3 WS 2018/19 Processing of Biological Data
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Quantitative proteomic analysis

- HelLa S3 cells were SILAC-labeled with

3 different isotopic forms (light — medium —heavy)
of arginine and lysine.

3 individual populations of heavy and light SILAC
cells were synchronized with a thymidine block
(analog of thymine, blocks entry into S phase).
Cells were then collected at 6 different time points
across the cell cycle after release from the
thymidine arrest.

2 samples were collected after a cell cycle arrest
with nocodazole and release. (Nocodazole
interferes with polymerization of microtubules.)

Cells were lysed and mixed in equal amounts using an asynchronously growing cell
population as the internal standard to allow normalization between experiments.
3 independent experiments were performed to cover six cell cycle stages.

V3 WS 2018/19
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Relative abundance

Monitoring of protein abundance by MS

Exp.1 S ohace Bxp. 3 Early S
3.5 T}:‘.‘;;‘r‘ll R f' ah Thym R: 2% h
100 X 528.2751 28,2759
904 £25
0] 32 Noco 30"
- 5242689
70 g : y
501 Zos ENELSACLS =
50 2
Gy Gy/S EarlyS S S/G; M § Async
:Z Cell cycle stage 5';:2?2(801 598.7767 % 524.7709 526.2814 528.7774
20 Gl phase 526.7822 5267832
Noco R:3h 527.241
12 J AL 52:1.227'2?4{70i ll l | 521245?‘ | 529.2??‘9 ‘ 1 | | 512‘5.'273? | | | | 7‘ | | I529.25201
523 524 525 526 o4 527 528 529 530 523 524 525 526 527 528 529 530
miz
Representative MS data showing how the abundance of
— the proteins was monitored in three experiments (Exp. 1,
Xp. 5/G. . . .
Thym87% h Exp. 2, Exp. 3) to obtain information from the 6 stages of
528.2754
the cell cycle.
y ' The data show the MS analysis of a tryptic SILAC peptide
i triplet derived from the cell cycle marker protein Geminin.
§ 5247736 Asvnc
3 702800 i Relative peptide abundance changes were normalized to
c2e 1752 | the medium SILAC peptide derived from the asynchro-
5267825 nously grown cells in all three experiments.
| L IIL Ll wd 1l y ey . L . i L
523 524 525 s sz 528 529 20 Inset: combined six-time point profile of Geminin over the
miz
cell cycle.
V3 WS 2018/19 Processing of Biological Data Olsen Science
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Example: Dynamic phosphorylation of CDK1

CDK1 phosphaorylation site kinetics Dynamic profile of two CDK1
phosphopeptides during the cell

100 [——— — cycle.
age pTRYGWYK pT14 & pY 15 (inhibitory sites)
- VWYpTHEWTLWYR pT161 @ctivation loop)
=
€10 | The activating site T161 (red)
E peaks in mitosis, whereas
g phosphorylation of the inhibitory
5 \ sites T14 and Y15 (blue) is
' decreased in mitosis
0.1
G, G,/S Early S LlatesS G, il
Celleycle stage

Olsen Science
Signaling 3 (2010)
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Total phosphosite occupancy in different stages of cell cycle

100

30 —-= Async
%: 20 : Péﬂ;tosis
j e G115
GE) 19 —= Barly3 Mitasis
S 60 — late
S - 5/G2
S 50
240
£ 30
&
2 20
o

10

0

0 10 20 30 40 50 60 70 a0 30 100
Cumulative phosphosite fraction (%6)

Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more.

Olsen Science
Signaling 3 (2010)
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Data imputation

What is the role of data imputation in MS data?

If no signal is detected, this can have various reasons:

- The peptide is not detected or falsely identified

- The peptide is really not at all present in the sample

- The peptide concentration is below the detection threshold ...
The reason for missing data is generally not known.

Simply setting all missing data to zero would generate false positive signals
= proteins appear to be significantly deregulated, but are in fact not.

V3 WS 2018/19 Processing of Biological Data
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Imputation methods: KNNimpute

Lets assume that gene g, lacks data point / and the total number of genes is m.

The KNNimpute method (Troyanskaya et al., 2001) finds k (k < m) other genes with
expressions most similar to that of g, and that do have a measured value in
position /.

The missing value of g, is estimated by the weighted average of the values in
position / of these k closest genes.

*

EE']lg.‘fl _|_ “}:gﬁ_‘ + e + l‘:”ff g.'ﬁ
W] + -+ @y 1

Here, the contribution of each gene is weighted by the similarity of its expression to
that of g,.

Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: SVDimpute

SVDimpute method (Troyanskaya et al., 2001):

- Given: matrix G where some data is missing.

- Generate initial matrix G* from G by substituting all missing values of the G by
Zero or row averages.

- Compute SVD of G'.

- Determine the t most significant eigengenes of G’ (with largest eigenvalues).

- Regress every gene with missing values against the t most significant eigengenes
(by ignoring position i)

Using the coefficients of the regression, the missing value in G is estimated as a
linear combination of the values in the respective position / of the t eigengenes.

This procedure is repeated until the total change of the matrix G’ becomes
insignificant.

Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: Local Least squares

(1) select k genes that have similar properties (e.g. expression profiles) to the gene
where position / is missing.

Similarity can be based on the L2-norm or Pearson correlation coefficients of
the expression profiles.

(2) regression and estimation

Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: Local Least squares

Based on the k neighboring gene vectors, form the matrix A € R* (1) and the two
vectors b € Rk*Tand w € R(M-1)*1,

The k rows of the matrix A consist of the k-nearest neighbor genes g™, € R'*",
1 < i<k, with position i/ deleted.

The elements of the vector b consists of position i of the k vectors g, .
The elements of the vector w are the n — 1 elements of the
gene vector g, whose missing position i is deleted.

After the matrix A, and the vectors b and w are formed, the least squares problem

is formulated as : T
mm ||A' X — w||»
X

Then, the missing value a is estimated as a linear combination of the respective
values of the neighboring genes

a=bx=blaAl)Tw
Kim et al., Bioinformatics 21, 187 (2005)
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Imputation methods: Local Least squares

Spellman data set: yeast cell cycle
5% of data were missing

-> LLSimpute outperforms KNNimpute

Lower Root Mean Square Error (RMSE)

Kim et al., Bioinformatics 21, 187 (2005)

0.8}

0.7F

06}

NRMSE

0.5}

04t

0.3F

SP.ELU

@ = KNNimpute
-0 LLSimpute/PC
-4~ LLSimpute/L2 ]

0 50

V3 WS 2018/19 Processing of Biological Data

100 150 200 250 300 350 400
The number of similar genes used (k)
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Models for missing values

Missing Completely At Random (MCAR): in a proteomics data set, this
corresponds to the combination of a propagation of multiple minor errors or
stochastic fluctuations. e.g. by a misidentified peptide

Missing At Random (MAR): this is a more general class than MCAR, where
conditional dependencies are accounted for. In a proteomics data set, it is
classically assumed that all MAR values are also MCAR.

Missing Not At Random (MNAR) assumes a targeted effect. E.g. in MS-based
analysis, chemical species whose abundances are close enough to the limit of
detection of the instrument record a higher rate of missing values.

Imputation methods for MCAR and MAR are general.
For MNAR, they are methods-specific.

Lazar et al., J Proteome Res 15, 1116 (2016)
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Simulation benchmark

Use real data (Super-SILAC and label-free quantification) on human primary tumor-
derived xenograph proteomes for the two major histological subtypes of nonsmall
cell lung cancer : adenocarcinoma and squamous cell carcinoma.

MNAR values: one randomly generates a threshold matrix T from a Gaussian
distribution with parameters (u; = q, o, = 0.01), where q is the a-th quantile of the
abundance distribution in the complete quantitative data set.

Then, each cell (i,j) of the complete quantitative data set is compared with T; .

If (i,j) 2 T;;, the abundance is not censored.

If (i,j) < T;;, a Bernoulli draw with probability of success Ba - 100 determines if the
abundance value is censored (success) or not (failure).

a and 3 are the rate of missing values and the MNAR ratio, respectively.

MCAR values are incorporated by replacing with a missing value the abundance
value of n m ((100 - ) a /100) randomly chosen cells in the table of the quantitative
data set.

Lazar et al., J Proteome Res 15, 1116 (2016)
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Imputation methods: benchmark

MLE: maximum likelihood
estimator

80 100

60

Percentage of MNAR
40

MinDet: simply replace
missing values by the
minimum value that is
observed in the data set.

MinProb: stochastic version
of MinDet. Replace missing
values with random draws
from a Gaussian distribution
centered on the value used
with MinDet and with a
variance tuned to the
median of the peptide-wise
estimated variances

V3 WS 2018/19
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2 7 12 17 22 27 32 37 42 47 B2 2 T 12 1T 22 27 32 37 42 47 82
Percentage of total MVs Percentage of total MV's

(d) MinDet (e) MinProb

RSR = RMSE / std.dev. = MV: missing value
Blue: low RSR
Red: high RSR

Lazar et al., J Proteome Res 15, 1116 (2016)
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Conclusion on data imputation
Algorithms SVDimpute, kNN, and MLE perform better under a small MNAR ratio.

Algorithms MinDet and MinProb better under a larger MNAR ratio.

Algorithms of the first group generally seem to give better predictions.

Kim et al., Bioinformatics 21, 187 (2005)
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Case study: identify clients of TRAP complex

In mammalian cells, one-third of all polypeptides are transported into or across the

ER membrane via the Sec61 channel. a2
- protein |
Loy &
The Sec61 complex facilitates \7, .
- rnbosome

translocation of all polypeptides with ~ 4
signal peptides (SP) or transmembrane
helices.

The Sec61-auxiliary translocon-associated protein (TRAP) complex supports
translocation of only a subset of precursors.

To characterize determinants of TRAP substrate specificity, we here systematically
identify TRAP-dependent precursors by analyzing cellular protein abundance
changes upon siRNA-induced TRAP depletion by proteome MS.

Lang et al. Front Physiol. (2017) 8: 887
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Ribosome : Sec61 : TRAP : OST supracomplex

a e Cartoon of clipped 80S ribosome together with
Bl Sec61-complex (blue), TRAP-complex (green),
and Oligo Saccharly Transferase.

) RS ARG Structure determined by cryo-EM

TRAP o/

Duy et al., Nature Commun 9, 3765 (2018)

V3 WS 2018/19 Processing of Biological Data



Experimental strategy

Gene MS analysis Validation of
knock down & quantification TRAP clients
’ Ll .y H > ‘ .
Control siRNA { 1 I . o
JS [l ‘ \ | iy Gene knock down
ee @
& ! !
Target siRNA
‘ . Differential = Real time PCR
' abundance
analysis = Western blot

Target-UTR siRNA

Duy et al., Nature Commun 9, 3765 (2018)

V3 WS 2018/19 Processing of Biological Data

siRNA-mediated gene silencing
using two different siRNAs for
each target and one non-targeting
(control) siRNA, respectively.

6/9 replicates for each siRNA in
2/3 independent experiments.

Label-free quantitative proteomic
analysis and differential protein
abundance analysis identify
negatively affected proteins (i.e.,
clients) and positively affected
proteins (i.e. compensatory
mechanisms).

32



Validation of knock-down

Knock-down of SEC61-alpha TRAP-beta
C SEC61A- e TRAPB-
Control SEC61A UTR siRNA Control UTR TRAPB siRNA
1 2 3 1 2 3 1 2 3 Sample 1 2 3 1 2 3 1 2 3 Sample
Sec61a P i o 35 kDa TRAPS [ e we - - - 25 kDa
100 2 5 12 12 7 6 _Protein (%) 100 4 7 7 18 18 12 Protein (%)
B'actin e e R p——— e 40 kDa B-actin —— ~ 40 kDa

Knock-down efficiencies were evaluated by western blot.

Results are presented as % of residual protein levels (normalized to 3-actin)
relative to control, which was set to 100%.

Q: why do the levels of SEC61 and TRAP do not go to zero after siRNA
silencing (for 72 — 96 hours)?
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Experimental strategy

Each MS experiment provided proteome-wide abundance data as LFQ intensities
(Cox et al. Mol Cell Proteomics. (2014)13: 2513-2526 — how to combine peptide
intensities into aggregated protein abundances?)

for 3 sample groups :
one control (non-targeting siRNA treated) and
two stimuli (down-regulation by two different targeting siRNAs directed
against the same gene)

each having 3 data points.
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Number of proteins in MS experiments

M analysed M invalid control contaminant M missing from other exp.

Number of proteins detected in the 2 Sec61
depletion experiments (two left most
columns) and in the 3 TRAP depletion

8 ! - B experiments (three rightmost columns).

9000

- Blue bars : proteins analyzed here.
Green : proteins that do not have sufficient
4500 control data points, i.e. more than 2/3 of the

control samples have missing data points.
Yellow : “contaminants” from MaxQuant
analysis.

Red : proteins that cannot be found (or
contain “invalid control”) in other
corresponding experiments.

Number of proteins

2250

1st Sec61 2nd Sec61 1st TRAP 2nd TRAP 3rd TRAP

The number of proteins detected in Sec61 and TRAP silencing experiments was 7212
+ 356 and 7670 £+ 332, respectively (mean values with standard deviation, n=2 and
n=3, respectively). The observed difference of about 460 was just a bit outside of the

standard deviation and is, hence, not statistically significant.
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Review comment

Reviewer #2

1. I do not understand figure 1. If only 5200/5900 proteins identified in all three
experiments, why is the CV only about 300. | have the feeling that one third of the
data is not reproducible. Are all requlated proteins detected in all experiments? Or
do they also differ in between the experiments.

Our reply:

It is correct that a part of the data (proteins) is only detected in a fraction of the
experiments.

However, our study does not claim to detect all TRAP candidates. This is not
possible on the basis of the available data. Instead, we apply a conservative
statistical testing scheme where only those proteins are considered as putative
TRAP clients that are significantly affected by both siRNAs.

There may be further TRAP clients which either have long life times in the cell, so
that they cannot be sufficiently affected by 3-4 days of siRNA silencing, or for
which one siRNA was not efficient, or for other reasons.
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Experimental strategy

Missing data points were generated by imputation. We distinguished 2 cases.

For completely missing proteins lacking any valid data points after sSiRNA
knock-down, imputed data points were randomly generated in the bottom tail of

the whole proteomics distribution. b |

5 diowibuion
This is based on the assumption that . R ft W e da
they come from proteins which have | MmOt percenik

limited number of copies that cannot vl
be detected by the mass spectrometry
instrument.

100 =

Protein counts

25 30 35
Protein intensities (log2)
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Experimental strategy

For proteins having at least one valid MS data point for knock-down samples,
missing data points were generated from the valid data points based on the local
least squares (LLS) imputation method (see slide 23-25 of V3).

Subsequent to data imputation, we log2-transformed the ratio between siRNA
and control siRNA samples,

and applied protein-based quantile normalization to homogenize the
abundance distributions of each protein with respect to statistical properties.
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intensity

log2 intensity

Protein-based quantile normalization

Ist trap exp
2nd trap exp

3rd trap exp

| 1 1 |

Intensity profiles for SSR2 protein across the 3
experiments before (top) and after (bottom)
{ protein-based quantile normalisation.

Horizontal axis : sample IDs.
1 to 3 - control,
. 4 to 6 — SSR2 silencing by 1st siRNA,

6 7 b

sample indices

7 to 9 — SSR2 silencing by 2nd siRNA.

T T
Ist trap exp

2nd trap exp

3rd trap exp

| Aim of protein-based quantile normalization:
remove the systematic variation among 3
iterations of TRAP silencing experiment.

QN ranks the raw data, computes the averages,
and replaces the original values by the ranked

V3 WS 2018/19

sample indices

averages.
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Protein-based quantile normalization

, The variation left after normalisation reflects
Ist trap exp | . . . .
20d trap exp the biological variation between samples.

3rd trap exp

In (@), SSR2 levels of the controls (indices 1-3)
are higher than both siRNAs in experiment 2
(red) and higher than the first siRNA in

0} | experiment 1 (blue).
, . . . 5 + ., Inthe third experiment (green), the second
sample indices siRNA (indices 7-9) induces lower levels than
w0 ::Jfff[ff:[ffﬁ — | in the controls and the first siRNA.
. 3rd trap exp
: T \\\ - | The same conclusions can be drawn from (b).
= orr M —1 The benefit of the normalized values in (b) is

that the blue, red, and green distributions
contain identical values.

Thus, one can now apply standard statistical

tests to identify the significant differences.
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Detection of differential abundance

Abundance in 1 siRNA knock-down was compared against control.

Proteins with an FDR-adjusted p-value (i.e. g-value) of below 5% were considered
significantly affected by the siRNA knock-down.

Then, we intersected the results from the two unpaired t-tests for the 2 siRNAs.

This means that the abundance of all reported candidates had to be statistically
significantly affected in both siRNA silencing experiments.
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Review comment

6. Statistical analysis of the data:
On page 29 you describe imputation of data points.

Did you do a statistical analysis if the number of data points is sufficient that this
imputation will not change results?
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Validation of imputation method

Our reply: We assumed that ... missing values ... stem from “the bottom” of the
distribution and belong to low abundance proteins that were not detected by the
mass spectrometry instrument.

We tested to what extent the data imputation may affect the differential
abundance analysis. ... The first Sec61 silencing experiment was selected for the
validation... We selected only those proteins that have a “complete” dataset, i.e.
none of out of nine entries was missing... This was the case for 5715 out of 6960
proteins....

To generate a synthetic dataset for missing data, we randomly removed 10% of
the (known) data points from the lower tail of the distribution ...

For two different thresholds (5th and 10th percentile of the overall distribution), we

repeated the removal 100 times. Therefore, in total, we generated 200 new
datasets with artificially generated “missing” data.
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Validation of imputation method

Subsequently, these “missing” data points were imputed.

Then, a differential protein abundance analysis was carried out on the imputed
and the original data.

Finally, we compared the results of the differential analysis of the imputed and
original data to validate the reliability of the imputation method.

For this, using the results of the previous steps, the significantly affected proteins
were either labelled as 1 (positively affected) or as -1 (negatively affected) while
the unaffected proteins were labelled 0.

Afterwards, we computed the Pearson correlation coefficient between the results
of the original data and of the imputed data.

The overall correlation coefficients for the 5th and 10th percentile thresholds are
0.975 = 0.018 and 0.927 = 0.020, respectively.
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Volcano plot: differential protein abundance

J(nock-down of SEC61-alpha

15 -
SEC61AT +4% +
S w5
= o RPRB
S 10 - \ S
Q SEC61B "
©
()]
fe)
5
SRPRA
SEC61G
Oa
1 1

log2 fold change

Differentially affected proteins were characterized by the mean difference of their
intensities plotted against the respective permutation false discovery rate-adjusted

p-values in volcano plots.

The results for a single siRNA are shown in each case (SEC671A7-UTR siRNA,

TRAPB siRNA).
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Up- / down-regulation

Heat maps visualize clusters of proteins that were
- significantly upregulated following treatment with both siRNAs directed against

either SEC61A1 (left) or TRAPB (right) mRNA or with non-targeting (control) siRNA,
or that were

- significantly downregulated, or that

- represent variations between siRNAs.

Red : positively affected proteins
Green : negatively affected proteins.
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Annotation of differentially abundant proteins after
Secb61 silencing

Sec610 depletion

Total quantified proteome

25.71%
N 39.08%
60.92%
74.29%

11.859

VUUVELLIL

Negatively affected proteome

40.87% 44.61% 36.10%

O Nucleus

[ Mitochondrion
[ Cytosol

@ Ribosome

@ Cytoskeleton
[ Peroxisome
[ Plasma membrane
O ER

@3 Golgi

@ Extracellular
[ Lysosome

@ Endosome

I Vacuole

@ Signal peptide
@ N-glycosylated protein
0 Membrane protein

Validation of Sec61 clients based on Gene Ontology enrichment factors.

Protein annotations of signal peptides, membrane location, and N-glycosylation in
humans were extracted from UniProtKB, and used to determine the enrichment of

Gene Ontology annotations among the secondarily affected proteins.
Summary of two Sec61 depletion experiments performed in triplicate.
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Annotation of differentially abundant proteins after
TRAP silencing

TRAPp depletion
Total quantified proteome Negatively affected proteome O Nucleus
O Mitochondrion
O Cytosol
O Ribosome

@ Cytoskeleton

B Peroxisome

O Plasma membrane
O ER

O Golgi

3 Extracellular

B Lysosome

B Endosome

B Vacuole

6.50% 8.48% 12.65% 21.67% 22.78% 26.11%

@ Signal peptide
@ N-glycosylated protein
O Membrane protein

Validation of TRAP clients based on Gene Ontology enrichment factors.

Summary of three TRAP depletion experiments performed in triplicate.

— clear enrichment of green fraction (ER targeted organelles)
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Relative count

Physicochemical properties of TRAP clients

b
Signal peptide Signal peptide The signal peptides
6 .
. — uman — wman . Of TRAP clients are
o Secé 5 secst | less hydrophobic
—— TRAP .
0.6 £ 4 | and have a higher
o]
° 3 Gly/Pro content than
0.4 - 2 _
§ , Sec61 clients and the
0.2 full proteome.
1
00{ | = | 0 |
-1 0 1 2 3 4 0.0 0.1 0.2 0.3 0.4
Hydrophobicity Fraction of GP content

Physicochemical properties of TRAP clients with SP.

Hydrophobicity score (a) and glycine/proline (GP) content (b) of SP sequences.
Hydrophobicity score was calculated as the averaged hydrophobicity of its amino
acids according to the Kyte-Doolittle propensity scale. GP content was calculated
as the total fraction of glycine and proline in the respective sequence.
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