V4 - differential gene expression analysis - outliers
V2: batch effects

V3: data imputation

- What is measured by microarrays?
- Microarray normalization
- Differential gene expression (DE) analysis based on microarray data

- Detection of outliers

- RNAseq data (more in Bioinfo Il lecture, V10)
- DE analysis based on RNAseq data
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What is measured by microarrays?

Microarrays are a collection of DNA probes that are bound
in defined positions to a solid surface, such as a glass slide.

The probes are generally oligonucleotides that are ‘ink-jet
printed’ onto slides (Agilent) or synthesised in situ
(Affymetrix).

Labelled single-stranded DNA or antisense RNA fragments
from a sample are hybridised to the DNA microarray.

The amount of hybridisation detected for a specific probe is
proportional to the number of nucleic acid fragments in the
sample.

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Two color array

2-color microarrays

Test Control
In 2-colour microarrays, 2 biological samples samele amele
are labelled with different fluorescent dyes, leNA B miA
usually Cyanine 3 (Cy3) and Cyanine 5 (Cy5). ‘\1 Jfovern

abeling W

Equal amounts of labelled cDNA are then * Mix -
simultaneously hybridised to the same Hybﬂim
microarray chip. )

sesiit-a Scanning
Savessadeanenas Data Acquisition
LA LA L RN I N

Then, the fluorescence measurements are
made separately for each dye and represent
the abundance of each gene in the test sample

Relative value of hybridization is determined

(Cy5) relative to the control sample (Cy3).

HO o HO o
http://www.ebi.ac.uk/training/online/course/ o o
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays L‘q Lﬁﬂ

www.sciencedirect.com
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Analysis of microarray data: workflow

. . Feature extraction
Microarrays can be used in many types of

CEL

experiments including B -
- genotyping, 2
- epigenetics, _Quality Control

- translation profiling and | 3
- gene expression profiling. :
Normalisation
Gene expression profiling is by far the
most common use of microarray

Differential Expression analysis

technology. Biological interpretation
Clustering analysis Geneset Pathway or network
. | enrichment analysis
Both one and two colour microarrays can IIII GO e
be used for this type of experiment. i e

Submit data to a public repository

G0

ArrayExpress

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Extraction of features

Feature extraction is the Common microarray raw data file types.
scanned image of the
microarray into quantifiable Affymetrix |.CEL (binary) Rllpack)ages (affy, limma,
TR oligo...
values and annotating it with
the gene IDs, sample names feature extraction file Spreadsheet software
: : Agilent (tab-delimited text file :
and other useful information per hybridisation) (Excel, OpenOffice, etc.)
- . GenePix .gpr (tab-delimited text file | Spreadsheet software
J— . TXT (scanner) per hybridisation) (Excel, OpenOffice, etc.)
idat (binary) R packages (e.g.
: : illuminaio)
This process is often
: lllumina o
performed using the txt (tab-delimited text Spreadsheet software
matrix for all samples) (Excel, OpenOffice, etc.)

software provided by the
microarray manufacturer.

NimbleScan, .pair
Nimblegen (tab-delimited text matrix
for all samples)

Spreadsheet software
(Excel, OpenOffice, etc.)

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Quality control (QC) is done on the raw data
QC of microarray data begins with the visual inspection of the scanned microarray
images to make sure that there are no obvious splotches, scratches or blank areas.

Data analysis software packages produce different sorts of diagnostic plots, e.g.
of background signal, average intensity values and percentage of genes above
background to help identify problematic arrays, reporters or samples.

Array 1
Array 1 . Array 2
. Arra: 2 :"37 ; : Array 3
rray
Array 3 Array 3 =
L 1] “
| 1] 200 - .
. 100 . al
‘ | — g
- o~ 0 s . o 8 --
- — g
m S
8 - -0
) 200 B a1 =~ —
. 7 ’ 5 10 00 -200 0 200 6 7 i §
expression PC1 expression
Box plot PCA Density plot

http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Normalisation
Normalisation is used to control for technical variation between assays, while
preserving the biological variation.

There are many ways to normalise the data. The methods used depend on:
- the type of array;

- the design of the experiment;

- assumptions made about the data;

- and the package being used to analyse the data.

For the Expression Atlas at EBI, Affymetrix microarray data is normalised using
the 'Robust Multi-Array Average' (RMA) method within the 'oligo' package (which is
based on quantile normalization).

Agilent microarray data is normalised using the 'limma' package:

‘quantile normalisation' for one-colour microarray data;

'Loess normalisation' for two colour microarray data.
http://www.ebi.ac.uk/training/online/course/
functional-genomics-ii-common-technologies-and-data-analysis-methods/microarrays
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Differential expression analysis: Fold change

The simplest method to identify DE genes is to evaluate the log ratio between two
conditions (or the average of ratios when there are replicates)

and consider all genes that differ by more than an arbitrary cut-off value to be
differentially expressed.

E.g. the cut-off value chosen could be chosen as a two-fold difference.

Then, all genes are taken to be differentially expressed if the expression under one
condition is over two-fold greater or less than that under the other condition.

This test, sometimes called *fold' change, is not a statistical test.

- there is no associated value that can indicate the level of confidence in the
designation of genes as differentially expressed or not differentially expressed.

Cui & Churchill, Genome Biol. 2003; 4(4): 210.

V4 Processing of Biological Data



Differential expression analysis: f-test
The t test is a simple, statistical method e.g. for detecting DE genes.

R, : mean log ratio of the expression levels of gene g = “the effect’
SE : standard error by combining data across all genes = “the variation in the data”

Global t-test statistics : t = g—g

Standard error: standard deviation of the sampling distribution of a statistic.

For a value that is sampled - _

with an unbiased normally °

distributed error, the figure en |

depicts the proportion of “

samples that would fall o - o

between 0, 1, 2, and 3
standard deviations above and o -
below the actual value.

Cui & Churchill, Genome Biol. 2003; 4(4): 210;
www.wikipedia.org (M.M. Thoews)

V4 Processing of Biological Data



Differential expression analysis: t-test
SE, : standard error of gene g (from replicate experiments)
Rg

Gene-specific t-test statistics: t = —
SEg

In replicated experiments, SE, can be estimated for each gene from the log ratios,
and a standard ¢ test can be conducted for each gene.

The resulting gene-specific t statistic can be used to determine which genes are
significantly differentially expressed.

This gene-specific t test is not affected by heterogeneity in variance across genes
because it only uses information from one gene at a time.

It may, however, have low power because the sample size - the number of RNA
samples measured for each condition - is typically small.

In addition, the variances estimated from each gene are not stable: e.g. if the
estimated variance for one gene is small, by chance, the t value can be large even

when the corresponding fold change is small.
Cui & Churchill, Genome Biol. 2003; 4(4): 210.

V4 Processing of Biological Data 10



Differential expression analysis: SAM

As noted above, the error variance of the gene-specific t statistic is hard to estimate
and subject to erratic fluctuations when sample sizes are small.

Since the square root of the variance gives the denominator of the t tests,
this affects the reliability of the t-test for gene-specific tests.

In the 'significance analysis of microarrays' (SAM) version of the t test (known
as the S test), a small positive constant c is added to the denominator of the gene-
specific t test.

Rg
c+SEg

Significance analysis of microarrays (SAM): S =

With this modification, genes with small fold changes will not be selected as
significant; this removes the problem of stability mentioned above.

Cui & Churchill, Genome Biol. 2003; 4(4): 210.

V4 Processing of Biological Data 11



Log Odds

40

30

10

Limma Package: Volcano plot

The 'volcano plot' is an easy-to-interpret
graph that summarizes both fold-change and
t-test criteria.

It is a scatter-plot of the negative log,,-
transformed p-values from the gene-specific ¢
test against the log, fold change.

T T T T T T T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Log Fold Change

Genes with statistically significant differential expression according to the gene-
specific t test will lie above a horizontal threshold line.

Genes with large fold-change values will lie outside a pair of vertical threshold
lines. The significant genes identified by the S, B, and regularized t tests will tend
to be located in the upper left or upper right parts of the plot.

Rapaport et al. (2013) Genome Biol. 14: R95
Cui & Churchill, Genome Biol. 2003; 4(4): 210

V4 Processing of Biological Data 12



DE analysis from RNAseq data

Compared to microarrays, RNA-seq has the following advantages for DE analysis:

- RNA-seq has a higher sensitivity for genes expressed either at low or very high
level and higher dynamic range of expression levels over which transcripts can be
detected (> 8000-fold range).

It also has lower technical variation and higher levels of reproducibility.

- RNA-seq is not limited by prior knowledge of the genome of the organism.

- RNA-seq detects transcriptional features, such as novel transcribed regions,
alternative splicing and allele-specific expression at single base resolution.

While Microarrays are subject to cross-hybridisation bias,
RNA-seq may have a guanine-cytosine content bias and
can suffer from mapping ambiguity for paralogous sequences.

Rapaport et al. (2013) Genome Biol. 14: R95
Cui & Churchill, Genome Biol. 2003; 4(4): 210

V4 Processing of Biological Data
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Detection of Outlier Samples/Genes

< RN .
5 \OEEI JO“I n(ll Of Barghash et al., J Proteomics Bioinform 2016, 9:2
‘\\5& - ‘:,g,-' . . e . http:/ /dx.doi.org/10.4172/jpb.1000387
Yo’ Proteomics & Bioinformatics p S

Robust Detection of Outlier Samples and Genes in Expression Datasets

Ahmad Barghash'?, Taner Arslan' and Volkhard Helms™

'Center for Bioinformatics, Saarland University, Saarbruecken, Germany
2Saarbruecken Graduate School of Computer Science, Saarbruecken, Germany

Outlier : an observation that deviates “too much” from other observations.

Detecting outliers might be important either because the outlier observations are of
interest themselves or because they might contaminate the downstream statistical

analysis.

One common reason for outliers is mislabeling, where accidently a sample of one
class might be falsely assigned to another one.

An outlier might also be a gene with abnormal expression values in one or more
samples from the same class. In the case of cancer, this may reflect that this
patient or his/her disease is a special case.

V4 Processing of Biological Data 14



GESD

GESD was developed to detect 21 outliers in a dataset assuming that the body of
its data points comes from a normal distribution.

First, GESD calculates the deviation between every point x; and the mean y,
Max. |x. — u
Rl_ — 1 1 ‘L|
SD
normalized by the standard deviation.

At each iteration, it then removes the point with the maximum deviation.

This process is repeated until all outliers that fulfill the condition R!,>)tf are
identified where A is the critical value calculated for all points using the
percentage points of the t distribution.

L (n— i)tpﬂ”_,-_l

- (n=imte2, ) (=i

V4 Processing of Biological Data 15




GESD

GESD and its predecessor ESD will always mark at least one data point as
outlier even when there are in fact no outliers present.

Therefore, using GESD to detect outliers in microarray data must be
accompanied with a threshold of outlier allowance where a certain amount of
outliers are detected before marking a gene as an outlier.

The GESD method is said to perform best for datasets with more than 25 points.

Additionally, the algorithm requires the suspected amount of outliers as an input.

V4 Processing of Biological Data
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8.4 Detect outliers with MAD

In contrast to GESD, the MAD algorithm (Rousseeuw and Croux 1993) is not
based on the variance or standard deviation and thus makes no particular
assumption on the statistical distribution of the data.

At first, the raw median median(X) is computed over all data points.
From this, MAD obtains the median absolute deviation (MAD) of single data points
X, from the raw median as:
MAD = b - median(|X; — median(X)|)
b is a scaling constant. For normally distributed data, one uses b = 1.4826.
As rejection criterion of outliers, one uses
X; — median(X)
MAD

Suitable thresholds could be 3 (very conservative), 2.5 (moderately conservative)
or 2 (poorly conservative).

> threshold

V4 Processing of Biological Data 17



8.4 Detect outliers with MAD
MAD = b - median(|X; — median(X)|)

Consider the data (1, 3,4, 5,6,6,7, 7, 8, 9, 100).

It has a (raw) median value of ©.

The absolute deviations |X; — median(X)| from 6 are (5, 3,2, 1, 0,0, 1, 1, 2, 3, 94).

Sorting this list into (0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 94) shows that the deviations have a
median value of 2.

When scaled with b = 1.4826, the median absolute deviation (MAD) for this data is
roughly 3.

Possible outliers above a rejection threshold would need to differ from the median
by 6 to 9 or more.

For this example, only the extreme data point (100) deviates that much.

V4 Processing of Biological Data 18



Simulated expression data sets

Different gray levels represent different
classes.

Outlier cases are in black.

SDS1/2 (left) has two known outliers
(black) and 3 known switched samples.

SDS3/4 (right) contain 50 outliers each.

SDS1-3 follow Gaussian distributions
while SDS4 follows a Poisson distribution.

V4 Processing of Biological Data 19



Effect of 2 outliers on auto-correlation of a gene
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Effect of 2 introduced outlier points on co-expression analysis of a gene with itself
(4 datasets from TCGA for COAD; GBM; HCC, OV tumor).

X-axis : magnitude of perturbations applied as multiples of standard deviations (SD).

For the smallest sample (COAD), two 2SD outliers, reduce the auto- correlation to

0.75.
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Height

Clustering dendogram

200

NON—ONMOTO M=o ow
0N MONTN~MOT—M SO

Clustering dendrogram of dataset of simulated expression.

Average Hierarchical Clustering bases on Euclidean distances
(AHC-ED) clustered SDS1 into 3 main classes grouping the
outlier samples (50 and 100) in a separate class.

All switched samples — marked by asterisks - were correctly
clustered into their original classes.

V4 Processing of Biological Data | | 21



Silhouette: validates clustering

n=100
j:n|aveg !
1: 49 | 0.35
Large s(i)
means good
clustering
2: 49| 035
3: 2080
[ T I T I |
0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width s,

Silhouette validation of the AHC-ED clustering of SDS1.
The average distance of 0.36 indicates that AHC-ED succeeded in clustering SDS1.

(i) = b(i) — a(i)

Silhouette coefficient: max{a(z),b(z)}

a(i) : average dissimilarity of / with all other data within the same cluster
b(i) : lowest average dissimilarity of j to any other cluster, of which i is not a member

V4 Processing of Biological Data
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# of detected synthetic outlier data points (out of 50)

GESD
Boxplot
MAD

GESD
46
33
33

Table 2: Detection results of simulated gene outliers.

Boxplot

34
31

MAD

33

Average of commonly detected outliers by GESD, Boxplot, and MAD algorithms in 100 simulated datasets of the SDS3 form. An outlier is considered as correctly detected
if four out of five outlier values are detected from the other 50. DS3/4 has in total 50 outlier genes out of 1000.

Top: In normally distributed data, GESD identified largest number (46/50) of

synthetic outliers.

Approximate Intersection Class' Distributions Qutlier distribution Detection Result
1SD C1: N(0,2%) C1: N(10,2?) GESD: 45
C2: N(5,1%) C2: N(11,1%) Boxplot: 37
MAD: 36
28D C1: N(0,2?) C1: N(8,22) GESD: 30
C2: N(5,1%) C2: N(10,1?) Boxplot: 18
MAD: 17
3sD C1: N(0,2%) C1: N(B,22) GESD: 10
C2: N(5,12) C2: N(9,1%) Boxplot: 4
MAD: 4

Table 3: Distributions of simulation datasets.

Lists of all distributions used in different runs creating matrices of simulated expression.

Bottom: If the two distributions have larger overlap (1 SD - 2 SD -3 SD),
detecting outliers becomes considerably harder.

V4

Processing of Biological Data
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L Clustering real data
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Clusters found in TCGA colon expression dataset
Detected clusters in public colon cancer dataset from TCGA.

All 7 normal samples with barcode 11A were clustered together on the
left side of the dendrogram away from tumor samples with barcode 01A.
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Functionally relevant outliers

70

= GBM
= ov

60

50

30

= COAD

Fraction detected/returned (%)
20 40

10

GSED MAD Boxplot
Detection algorithms

Idea: some outlier
genes have functional
similarity with other
genes that have outliers
in the same samples.
This may be functionally
relevant.

Outlier detection statistics in TCGA methylation datasets

Percentage of detected outliers that are flagged for functional similarity to other
outliers (from GOSemSim package, see V8) in the same samples.

The left column in each group refers to the fraction of detected and the right

column refers to the fraction of flagged outliers.

V4 Processing of Biological Data
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V4

Our workflow

Processing of Biological Data

26



MA quality control

Genomics 95 (2010) 138-142

Contents lists available at ScienceDirect

Genomics

journal homepage: www.elsevier.com/locate/ygeno

Minireview
Microarray data quality control improves the detection of differentially
expressed genes

Audrey Kauffmann *, Wolfgang Huber

EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 15D, UK

These authors compared four strategies of data analysis :

- Strategy 1 No outlier removal

- Strategy 2 Outlier removal guided by arrayQualityMetrics (outliers of boxplot)
- Strategy 3 Removing random arrays (same number of arrays as in strategy 2)

- Strategy 4 Array weights using the function arrayWeights from the limma
Bioconductor package

Kauffman, Huber (2010) Genomics 95, 138

V4 Processing of Biological Data
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Number of DE genes

Data -> rma -> DE genes with moderated Number of differentially expressed
t-test in limma, FDR correction genes identified:
81 =% - on the whole dataset (white bars),
= (m] arrays
-l S - after removing outliers identified by

arrayQualityMetrics (black bars) and

3000
1

- using weights obtained by
arrayWeights from limma (grey bars).

2000
I

- Many more DE genes identified

Number of differentially expressed genes

after removing outlier genes.

1000
I
B

B 1)

2 5 ¢ 2 & < g E-MEXP-170 has additional
3 2 = O o s s :
© o 4 & 9 o i confounding effect of
experiment date! This
Kauffman, Huber (2010) Genomics 95, 138 explains high # of DE genes.
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Effect of Outlier removal on DE genes
a

All arrays Ouitlier(s) removed All arrays  Outlier(s) removed All arrays  Outlier(s) removed

7{\ / 7\/ \ / 7{\ In (c), (d), (e) good
lap of outli
e e

v method.

U
Weights Weights Weights

d e
Aldiige  Oulliesa) o P TE. emem— Venn diagrams representing the number of

DE genes identified by each method: all
arrays, after removing outlier arrays, using
array weights.

(a) E-GEOD-3419,

(b) E-GEOD-7258,

Weights Weights (c) E-GEOD-10211,

(d) E-MEXP-774,

(e) E-MEXP-170.

Kauffman, Huber (2010) Genomics 95, 138
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Number of differentially expressed genes

40

Effect of removing random genes on DE genes
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E-GEOD-3419

Kauffman, Huber (2010) Genomics 95, 138

V4

E-GEOD-7258

E-GEOD-10211

All arrays
® Without aQM outliers
A Using limma arrayWeights

E-MEXP-774

E-MEXP-170

Processing of Biological Data

Boxplots representing the
number of DE genes in each
experiment when removing
arbitrary subsets of size K, the
number of outlier arrays
identified from the N samples.

When N over K < 1000, all possible
subsets were considered, otherwise 1000

subsets were sampled randomly.

If the same number of random
genes is removed, fewer DE
genes are detected.
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KEGG pathway enrichment analysis

Does removal of outliers result gene set enrichment analysis :
in better biological sensitivity?

5 most enriched KEGG pathways

Pathway name Genes p-value when p-value among DE genes for

removing when all

outliers arrays experiments E-GEOD-3419 and
E-GEOD-3419 . .
Pyrimidine metabolism 37 <1073 0.701 E-GEOD-7258’ with and without
Base excision repair 17 0.001 0.542 .
DNA replication 19 0.003 0.451 OUtIIer removal'
Cell cycle 69 0.009 0.387
TGF-beta signaling pathway 48 0.009 0.558
S — - The pathways are related to
Pentose phosphate pathway 13 0.003 0.588 : . :
Fructose and mannose metabolism 28 0.003 0.326 the bIOIOgy studied in the
Biosynthesis of steroids 20 0.003 0.012 :
Oxidative phosphorylation 44 0.003 0.299 experlments.
Starch and sucrose metabolism 16 0.003 0.317

- Their enrichment is more
significant after outlier removal.

Kauffman, Huber (2010) Genomics 95, 138
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Results from other outlier detection methods

ArrayExpress arrayQuality GESD Hampel
ID Metrics

E-GEOD-3419 6, 12 3,6, 12 12
E-GEOD-7258 7,15, 16 7,15,16 7,15, 16
E-GEOD-10211 2,7 2,7 2
E-MEXP-774 4,17 4,17 4,17
E-MEXP-170 6 6 6

Comparison of different outlier detection methods:

- method implemented in arrayQualityMetrics (it is based on boxplots),

- generalized extreme studentized deviate (GESD),

- method of Hampel (it is based on the median absolute deviation (MAD)).

The results of different methods overlap mostly -> robustness

Kauffman, Huber (2010) Genomics 95, 138

V4 Processing of Biological Data
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DE detection in RNAseq data

If sequencing experiments are considered as random samplings of reads from a

fixed pool of genes,
then a natural representation of gene read counts is the Poisson distribution of

the form f(n,2) = (k”e‘k)/n!

where n : number of read counts
A : expected number of reads from transcript fragments.

An important property of the Poisson distribution
Is that variance AND mean are both equal to A.

Rapaport et al. (2013) Genome Biol. 14: R95

V4 Processing of Biological Data
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DE detection in RNAseq data

However, in reality the variance of gene expression across multiple biological
replicates is found to be larger than its mean expression values.

To address this “over-dispersion problem”, methods such as edgeR and DESeq
use the related negative binomial distribution (NB)
where the relation between the variance v and mean u is defined as

V= +op”

where « is the dispersion factor.

Estimation of this factor is one of the fundamental differences
between the edgeR and DESeq packages.

k4r—1\ ,
NB distribution: f(k;r,p) =Pr(X =k) = ( +,: )p‘(l —-p) fork=0,1,2,...

Rapaport et al. (2013) Genome Biol. 14: R95
V4 Processing of Biological Data 34



Reference data: gold standard

Samples from group A : Strategene Universal Human Reference RNA (UHRR):
total RNA from ten human cell lines.

Samples from group B: Ambion’s Human Brain Reference RNA (HBRR).

ERCC spike-in control : mixture of 92 synthetic polyadenylated oligonucleotides,
250 to 2,000 nucleotides long, which resemble human transcripts.

The two ERCC mixtures in groups A and B contain different (known!) concentrations
of 4 subgroups of the synthetic spike-ins.

Then the log expression change is predefined and can be used to benchmark DE
performance.

Rapaport et al. (2013) Genome Biol. 14: R95
V4 Processing of Biological Data 35



DE analysis: comparison against reference data
RMSD between qRT-PCR and RNA- RMSD correlation with TagMan fold changes

o
o

seq log, expression changes
computed by each method.

2.0

Overall, there is good concordance
between log, values derived from the
DE methods and the experimental
values derived from qRT-PCR

1.5

1.0

measures.

RMSD from QRT-PCR log2 expression changes

0.5

Upper quartile normalization
(baySeq) is least correlated (highest ]
RM SD) Wlth qRT_PCR ValueS. DESeq edgeR limmaQN  limmaVoom PoissonSeq  CuffDiff baySeq

0.0

Rapaport et al. (2013) Genome Biol. 14: R95
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Performance for DE detection

Differential expression analysis
using gRT-PCR validated gene set.

ROC analysis was performed using
a qRT-PCR log, expression change
threshold of 0.5.

Sensitivity

The results show a slight advantage
for DESeq and edgeR in detection
accuracy.

Rapaport et al. (2013) Genome Biol. 14: R95

1.0

0.8

0.6

0.4

0.2

0.0

ROC of TagMan data

logFC cutoff= 0.5

DESeq AUC = 0.894
= cdgeR AUC = 0.894
limmaQmM AUC = 0.865
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Performance for different thresholds

Increasing log, expression ratios

TagMan AUCs

represent a more stringent cutoff g 1
for differential expression.

DESeq
- adgeR
limmaCQN
= limmaVioom
PoissonSeq
= CuffDiff
baySeq

— one would expect a better
performance of the DE methods.

Indeed, the performance of
increases, whereas 8 -

that of the Cuffdiff and limma

methods gradually reduce.

AUC, area under the curve. (b)

Rapaport et al. (2013) Genome Biol. 14: R95
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Intra-condition comparisons

Intra-condition comparisons cufdif  ——
L] ] L] eq
using the SEQC technical replicate e SO —
" limmaVoom =——
samples from each condition. PoissonSeq

I
25%

No DE genes are expected in these

_ - SN
comparisons. i Z‘W >

The distribution of P values is 8 - >

expected to be uniform since they 3 /"‘?“’ T N

are derived from the null model.

Density
~l
(8]
32
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Indeed, we found that the P values

for all methods were largely uniform _: 100% ]
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Number of false positives

all genes First count quartile Second count quartile Third count quartile Fourth count quartile

As expected, all
methods had a - o
smaller number of '
FPs with
increasing
number of
replications.

e = ® = X . °O 2 =u =B = x = = = x x x I

(

FP calls among
the lowest 25% of
expressed genes . 1171
increased with

sequencing depth

and number of ;
replicates in D S Y B SO St Y By B A o Y B S Y SO SO A A AT O SR RO W
contrast to the Sequencing depth
higher expression

quartile where the  The total number of FPs is lowest in the bottom 25% expression
FP rate reduces indicating that all methods are conservative when predicting DE

whep more datalis 4oy expression ranges.
provided.
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2rep xep DENSItiVity rates defined as the
fraction of true set genes improve
significantly with the sequencing

Rapaport et al. (2013) Genome Biol. 14: R95 depth and number of replicates.

( b) Replicate
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Comparison of methods

Table 2 Comparison of methods.

Evaluation Cuffdiff DESeq edgeR limmaVoom PoissonSeq baySeq

Normalization and clustering All methods performed equally well

DE detection accuracy measured by AUC at increasing  Decreasing Consistent Consistent Decreasing  Increases up to log Consistent

gRT-PCR cutoff expression change < 20

Null model type | error High Low Low Low Low number of FPs Low
number of number of number of Number of number of
FPs FPs FPs FPs FPs

Signal-to-noise vs P value correlation for genes Poor Poor Poor Good Moderate Good

detected in one condition

Support for multi-factored experiments No Yes Yes Yes No No

Support DE detection without replicated samples Yes Yes Yes No Yes No

Detection of differential isoforms Yes No No No No No

Runtime for experiments with three to five replicates Hours Minutes Minutes Minutes Seconds Hours

on a 12 dual-core 3.33 GHz, 100 G RAM server

AUC, area under curve; DE, differential expression; FP, false positive.

Rapaport et al. (2013) Genome Biol. 14: R95
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Summary

Removing outlier data sets from the input data is essential for the downstream
analysis (unless these outliers are of particular interest -> personalized medicine).

Analysis tools: box-plots, PCA, density plots, clustering
Some outlier methods (GESD) are based on variants of the t-test.
MAD and boxplots are other simple methods.

Robust outlier detection methods for RNA-seq data should yield better performance
expected for higher number of replicates + sequencing depth.
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