V5 — peak detection

Detecting peaks in observed data is a common task in many fields.

Program for today:

- Principles of peak detection

- Peak detection in biomedical 1D-data
- ChlP-seq data
- MS data

- Peak detection in biomedical 2D-data

- breathomics
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Peak detection - basics

Computer scientists

(-> Cormen book)

are mostly interested in devising
methods to determine peaks
most efficiently

-> Divide & Conquer strategy

Noise is often irrelevant to
computer scientists.

Instead, bioinformaticians
must detect peaks in noisy data
most precisely.

This an algorithm from the idealized world
of CS ...

1D Peak Finding

* Given an array A[0..n —1]:

WY 1 2 6 5 37 4K

01 2 3 435 6

« Ali]is a peak ifitis not smaller than its
neighbor(s):
Ali — 1] < Ali] =2 Ali + 1]
where we imagine
Al—1] = A[n] = —

* Goal: Find any peak

https://courses.csail.mit.edu/6.006/
spring11/lectures/lec02.pdf
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peak detection in ChiIP-seq data

Main experimental steps of the ChlP-seq protocol.
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Regulation of gene expression is one of the fundamental Shear DNA
means by which cells adapt to internal and external environ-
ments.

Many regulatory mechanisms rely on modifying the DNA 3&4 amd%
either through covalent modification or by intermolecular O@@L 2§§‘§2§§’ o

interactions. purify

Chromatin immunoprecipitation followed by sequencing )Q@@L

(ChIP-seq) data provide readouts of these modifications,

such as the location and frequency of binding of a P e,
transcription factor (TF) or the distribution of histone sequence DNA,

map to genome
modifications that are used by the cell to establish or maintain

specialized chromatin domains. ATGCCTTAAGC

Park J, Nature Reviews Genetics, 10, 669 (2009)
H3K36me3: Lys36 of histone 3 is tri-methylated Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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peak detection in ChiP-seq data

Data for ChIP-seq peak calling: stacks of aligned reads across a genome.
Some of these stacks correspond to the signal of interest.

Many other stacks are regarded as experimental noise.

Typically, there are 3 — 5 data sets of replicates.

Regions are scored by the number of tags in a window of a given size.
Then they are assessed by enrichment over control.
Different applications of ChlP-seq produce different types of peaks.

Most current tools are designed to detect sharp peaks (TF binding, histone
modifications at regulatory elements)

Alternative tools exist to detect broader peaks (expressed/repressed domains).

Park J, Nature Reviews Genetics, 10, 669 (2009)
Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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MACS: popular for detecting peaks in ChlIP-seq data

(Remove redundancy) (Remove redundancy)

Select 1,000 regions with a 10-
to 30-fold enrichment relative

to the genome background

Bulld model and estimate
DNA fragment size d

(Shlft reads towards 3' end by d)

( Scale two librarles )

( Call candidate peaks relative to genome background )

( Calculate dynamic lambda for candidate peaks )

)

(Calculate p-value and filter candidate peaks)

( Calculate FDR by exchanging treatment and control )

MACS slides a window of 2x sonication size
across the genome to identify regions that are
significantly enriched relative to the genome
background.

MACS models the number of reads from a
genomic region as a Poisson distribution with
dynamic parameter A,

f(n,2) = (A"e*)/n!

Based on A, MACS assigns every candidate
region an enrichment p-value. Those regions
passing a user-defined threshold (default 10-°)
are reported as the final peaks.

Zhang et al. Genome Biol. (2008)
9, R137
Feng et al. Nature Prot 7, 1728 (2012)
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Features of ChIP-seq peak detection methods

Table 1. Features of peak calling methods

GEM BCP (TF) BCP (Histone) MUSIC MACS2 ZINBA ™
Locating the potential peaks
High resolution Yes Yes No Yes Yes No Yes
ChIP and input sample signals combined No No No No No Yes Yes
Multiple alternate window sizes Yes Yes Yes Yes No No No
Use of variability of local signal Yes Yes Yes No Yes Yes No
Ranking of peaks
Binomial test Yes No No Yes No No No
Poisson test No Yes No No Yes No No
Normalized difference score No No No No No No Yes
Use of underlying genome sequence Yes No No No No No No
Posterior probability of enrichment No No Yes No No Yes No

Representative selection from over 30 existing tools.

Park J, Nature Reviews Genetics, 10, 669 (2009)
Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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Generate synthetic ChlP-seq data

Genome / Genomic region

UCSC gaps and repeats definition \ﬂ

Remove gaps and repeats

(=

Randomly place binding sites

Jwround weight distribution ﬂ

Add sampling weights to background

]

] || |

Junter-site weight distribution \ﬂ

—T

Add sampling weights to binding sites

| || | | | |
Intra-site weight profile Lo . . L .
” ..I” ‘|I ...... ﬂ Redistribute sampling weights in binding sites
1 || ] ] 1
ﬂ Place sequence tags
] ] ] ] ] |

V5

The process of the chromosomal
immunoprecipitation and the
subsequent unique mapping and
extension of sequence reads can
be simulated by randomly
placing uniquely mapped
sequence tags onto the
chromosome, according to
certain sampling weight at each
nucleotide position.

Zhang et al. PLoS Comput Biol
4, 10000158 (2008)
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Frequency

Tag count and

Genomic identity its distribution

<
W
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Comparison of actual and synthetic ChlIP-seq data

Actual data

Simulation, uniform bkgd, uniform sites
Simulation, varying bkgd, uniform sites
Simulation, uniform bkgd, varying sites
Simulation, varying bkgd, varying sites

| T I 1
1 5 10 | 50 100 500 1000

— Low —+ Medium + High -———— Ultra-high ———

F————— Power-law - ; Right ‘tail’ ————
FBackground I I Binding sites ———
Background

or binding sites

Figure shows the actual tag
count distribution and the
simulated ones generated under
different background and site
models.

Actual data contains more sites
with ultra-high tag counts (right
trail of distribution).

Zhang et al. PLoS Comput Biol
4, 1000158 (2008)
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Benchmarking of ChiIP-seq peak calling

Abstract the peak calling problem into two sub-problems:

identifying peaks and
testing peaks for significance, respectively.

@ (b) (c)
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3 ' / & A\ . /W perform best.
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0.00 % 0.00

1 4 1

Log10(Nuv;1t)er of Peaks)
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Method T w GEM * == & == « MUSIC = = = e - ZINBA

Sensitivity (a), Precision (b) and F-score (c) as a function of the log,, of the
number of called peaks for 6 peak calling methods on 100 simulated transcription
factor ChlP-seq data sets.

Thomas et al. Brief Bioinform. 18: 441-450 (2017) .

V5 Processing of Biological Data - WS 2018/19 9



Identifcation of the peak position
(a) (b)

100 100

50- 50-

Distance (bp)
)
]
\
Distance (bp)
(

2 3
Log10(Number of Peaks)

BCP =cecrcensn MACS2 | s s TM
GEM * =+ == MUSIC = ZINBA

2 3
Log10(Number of Peaks)

Method

Median distance-binding (a) and Median distance-peak (b) as a function of the
log4, of the number of called peaks for the 6 peak calling methods on 100
simulated data sets.

The peak position is typically identified quite precisely, except for ZINBA.

Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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Performance on real data from Thx5 ChiIP-seq experiment

Motif 1
1.00-
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~
o
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- BCP

-+ GEM

- MACS2
MUSIC
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Fraction within 100 bp of Tbx5 motif
o
o
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0.00- =
1 10 100
Top n peaks

Fraction of top n peaks within 100 bp of the Tbx5 motif 1 for the 6 methods.

BCP and GEM perform particularly well = high fraction with 100 bp.

Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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Performance on real data from Thx5 ChiIP-seq experiment

Motif 1
1.00-

0.75-

0.25-

0.00-

1e+01 1e+03 1e+05
x:Distance(bp)

Empirical distribution of the shortest distance to the Tbx5 motif 1 of the significant
peaks called by the 6 methods.

GEM peaks are closer to a Tbx5 motif than any other method.

Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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Benchmarking of ChiIP-seq peak calling
Histones typically have wider peaks than TFs.

Test how well H3K36me3 peaks overlap genes that are actively transcribed.

(a) (b) (c)
1.00 1,007 conc s O e ) S g 1.00

Sensitivity
Precision

T reeYr e Y rYFrFYIrSTYYT ™

0.0 0.5 10 15 20

1.0 1.5 2.0 10 15 20 0.5
RPKM threshold RPKM threshold

"'RPKM threshold
Method BCP vssssvs MACS2 ==+ MUSIC — — — TM ==—-—- ZINBA

Sensitivity (A), precision (B) and F-score (C) of the overlap of the called significant
peak regions with active gene bodies for H3K36me3 data.

The threshold for defining active genes was varied from 0 to 2 RPKM.
MUSIC and BCP perform best.

Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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Benchmarking o

(a) f=0 (b) f=05 (c)
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BCP and MACS2 give the best performance on
simulated data.

Both use the Poisson test, whereas MUSIC and
GEM use the Binomial test.

The Poisson test is more powerful in detecting
enriched regions!.

V5

Processing of Biological Data - WS 2018/19

Type | error rate and statistical
power comparison between
Poisson and Binomial tests is
given.

fis a parameter that controls the
increase in the proportion of
DNA from a given region in the
input relative to the ChIP sample
for the Type | error evaluations,
(A), (B) and (C), and increase in
this proportion for the ChlP
relative to the input sample for
the power evaluations ((D) and

(E)).

Thomas et al. Brief Bioinform. 18:
441-450 (2017) .
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Benchmarking of ChIP-seq peak calling: key points

Peak calling using Chip-seq data consists of 2 sub-problems: identifying candidate
peaks and testing candidate peaks for statistical significance.

Methods that explicitly combine the signals from ChIP and input samples to define
candidate peaks are less powerful than methods that do not.

Methods that use windows of different sizes to scan the genome for potential peaks
are more powerful than ones that do not.

Methods that use a Poisson test to rank their candidate peaks are more powerful
than those that use a Binomial test.

Thomas et al. Brief Bioinform. 18: 441-450 (2017) .
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Basics of mass spectroscopy
3 key stages of a basic mass spectrometer (no high-end instrument):

1. lonization.

Molecules in a sample may be vaporized by heating. Then, an electron beam
bombards the vapors, which converts the vapors to ions.

Because mass spectroscopy measures the mass of charged particles, only ions will
be detected. Neutral molecules will not be seen.

lons are created by either adding electrons to a molecule (yields negatively charged
ion) or abstracting electrons from a molecule (yields positively charged ion).

2. Acceleration and Deflection.
Next, the ions are sorted according to their mass in 2 stages.

Acceleration is simple Coulombic attraction. The positive ions created in the
ionization stage accelerate towards negative plates at a speed dependent on their
mass. Lighter molecules move quicker than heavier ones.

Deflection: the ions are then deflected by a magnetic field. The extent of deflection is
again dependent on mass.

https://bitesizebio.com/6016/how-does-mass-spec-work/
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Basics of mass spectroscopy

3. Detection.
lons of increasing mass eventually reach the detector one after another. This yields a
spectrum as shown in the figure.
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Simplified mass spectrum of pentane produced by a mass spectrometer.
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https://bitesizebio.com/6016/how-does-mass-spec-work/
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Peak detection in MS data: workflow

S L An example of the peak
Spectrum; . Biseliie o EPeak list .
;7| Bmootling S————_ Peakpicking:; detection process.

---------------------------------------------------------------------- (a) A raw spectrum,

@ (®) (b) the spectrum after
10000 10000 .
smoothing,
8000 8000
> so0 - (c) the spectrum after
2 0 | J _ smoothing and baseline
o L - mLLw correction and
0 0 (d) final peak detection
0 1 2 3 4 5 0 1 2 3 4 5
i x10° = x10' result where peaks are
8000 & 8000 - L marked as circles.
6000 6000
g 4000 g 4000 :
2000 2000 @ |
) [ LL N ﬂ L f\ Yang et al. BMC Bioinformatics
% 1 2 3 4 5 ° 4 5 (2009) 10:4
e x 10° x 10*
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S: smoothing strategy
B: baseline correction strategy Peak detection in MS data
P: peak finding strategy

Table |: Open source software packages for M5 data analysis
¢ Peak Finding Criterion

Program S B P
P1: SNR
Cromwell [12] 57 Bl P1, P4 ) P2: Detection/Intensity threshold
* Smoothing
) 3: Slopes of peaks
LCMS-2D [20) BS Pl P2 S1: Moving average filter
P4: Local maximum
LIMPIC [21] 54 B2 Pl, P3 S2: Savitzky-Colay filter
P5: Shape ratio
LMS [22] 53 B2 Pl. P4 §3: Gaussian filter
' P6: Ridge lines
54: Kaiser window
MapQuant [16]  51,52,53 - F7 P7: Model-based criterion
S5: Continuous Wavelet Transform
[1a] 55 B4 - P6 S6: Discrete Wavelet Transform
msinspect [23] 56 B2 P5 S7: Undecimated Discrete Wavelet Transform
mzMine [24] 51, 52 i Pl, P2, PB * Baseline Correction
B1: Monotone minimum
OpenM5 [15] 55 B4 P7
B2: Linear interpolation
PROcess [13] sl B2, B3 Pl P2, PS5
B3: Loess Yang et al. BMC
Protts [25] >/ el Pl, e B4: Continuous Wavelet Transform Bioinformatics (2009) 10:4

1
XCMS [8] 53 - Pl, P4 B5: Moving average of minima 7




Peak detection in MS data: smoothing

Aim: remove high-frequency (likely unimportant) variations from the data

Approach: replace current value x(n) by an average taken over its neighbor points.
k

1 .
Moving average filter n|=x(n|*wn| = an—l
=l =y
i=—k
2k +1 is the filter width w[n| = 1 h<n<k
2k+1 "’

* stands for “convolution”

400
Gaussian filter y(t) = x(t) * w(t) = J x(T)w(t —7)dr
1t
_ 1 262
LU([) - J2ro ¢

Yang et al. BMC Bioinformatics (2009) 10:4
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Peak detection in MS data: continuous wavelet transform

CWT
0 =30 () == [ e

=T
w(t) Zﬁwtﬁ)

y(t) is a wavelet function,

]ff?.‘

(1

e.g. a Mexican-hat wavelet ‘ I a2
(an inverted parabola, that is squeezed (in the z: =
middle) and flattened (at the sides) by S * ;-f-_-:\ ___________________
multiplication with an exponential function) 4t A HES I
f 2 N RN
l15"(ir)= 2]/4 (l—fz}f I /’2 045 0 5

J3r

Yang et al. BMC Bioinformatics (2009) 10:4
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Peak detection in MS data: peak identification
Signal-to-noise ratio (SNR)
Different methods define noise differently. E.g. noise may be estimated as:

» 95-percentage quantile of absolute continuous wavelet transform (CWT)
coefficients of scale one within a local window.

* the median of the absolute deviation (MAD) of points within a window.

Slopes of peaks
This criterion uses the shape of peaks to remove false peak candidates.

» A peak candidate is discarded if both left slope and right slope are smaller
than a threshold.

« This threshold may e.g. taken as half of the local noise level

Yang et al. BMC Bioinformatics (2009) 10:4
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Peak detection in MS data: peak identification

Local maximum

A peak is a local maximum of N neighboring points.

Shape ratio

A “peak area” is computed as the area under the curve within a small distance
of a peak candidate.

A “shape ratio” is then computed as the peak area divided by the maximum of
all peak areas.

The shape ratio of a peak must be larger than a threshold.

Yang et al. BMC Bioinformatics (2009) 10:4
V5 Processing of Biological Data - WS 2018/19 23



Peak detection in MS data: continuous wavelet transform

(b) False discovery rate around 0.25

i (b) False discovery rate around 0.25
] T | | |
0.8 —
T 0.87
g > _
= = |
5 0.6 E ':'.E' | -
o0 —_— vi] |
@ " -
(m)] i —
© 0.4 2 E 04l ‘ \ | |
= |
“ 02l = - ‘ 2 | —
. | L X .
| 0.2 L L |
e |
R ' V= 0 1
Cromwell CWT PROcess LMS LIMPIC

ﬁrc:r‘rllwell C‘ul'-.fT F'Hﬂlcess LI";"IS LIMPIC
Performance on simulated data that was

generated using a model that incorporates ~ Aurum Dataset is a high resolution

some characteristics of real MALDI-TOF data set, which contains spectra from

mass spectrometers. 246 known, individually purified and
trypsin-digested protein samples taken

CWT performed best in this comparison. with an ABI 4700 MALDI TOF/TOF
mass spectrometer.

The reason is likely that its shape matches

best the shape of experimental MS peaks. Yang et al. BMC Bioinformatics (2009) 10:4
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V5

Case study: peak detection in breathomics

2D Peak Finding

e Given n X n matrix
of numbers

 Want an entry not
smaller than its (up to)
4 neighbors:

https://courses.csail.mit.edu/6.006/
spring11/lectures/lec02.pdf
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breathomics

MCC/IMS: lon mobility spectrometry (IMS), coupled with multi-capillary columns
(MCCs) is gaining importance for biotechnological and medical applications.

With MCC/IMS, one can e.g. measure the presence and concentration of volatile
organic compounds in the air or in exhaled breath with high sensitivity.

1000 2000
1 1

1
volume / L
Retention Time (s)

flow / mL/s
000 -2000 0

Kopczynski, Rahmann,

Algorithms for Molecular Biology
(2015) 10:17

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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MCC/IMS experiments: output

In an MCC/IMS experiment, a mixture of several unknown volatile organic

compounds is separated in two dimensions:

(1) By the retention time r in the capillary column (the time required for a
particular compound to pass through the column). The retention time is
proportional to the substance's affinity for the stationary phase.

(2) By the drift time d through the ion mobility spectrometer.

Instead of the drift time itself, one uses a quantity that is normalized for pressure
and temperature called the inverse reduced mobility (IRM) t.

This allows comparing spectra taken under different or changing conditions.

Kopczynski, Rahmann,
Algorithms for Molecular Biology
V5 Processing of Biological Data - WS 2018/19 (2015) 10:17 27



MCC/IMS experiments: inversed reduced mobility

the reduced mobility of an ion drifting
through a buffer gas in an electric field is given by

K = (3q/16N)(2r /ukT)'/*(1/Qp) (1)

where g is the charge of the ion and m its mass, /V is the density
of the neutral molecules and M their mass, u is the reduced mass

u=mM/(m+ M), k is the Boltzmann constant, 7 is the effective
temperature, and Qp is the collision cross section.

From K, one derives the
reduced (normalized) ion mobility:

Ko = K(273/T)(P/760)
and the inversed reduced ion mobility (after some rearrangement)
Ko™ = 1.697 X 107%(uT)/*Qp

Karpas et al. JACS 111, 6015 (1989)
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IM spectrum-chromatogram

r . set of (equidistant) retention time points
t . set of (equidistant) IRMs where a measurement is made,
e.g. 12500 time points taken every 4 x 106 s -> 50 ms in total)

Then the data is an |r| X |{| matrix of measured ion intensities,
which we call an IM spectrum-chromatogram (IMSC).

The matrix can be visualized as a heat map.
An IM spectrometer uses

an ionized carrier gas.
These ions are present
in every spectrum in
addition to the analyte
ions, and they create the
reactant ion peak (RIP).

0.4 0.5 0.6 0.7 0.8 0.9 1
reduced inverse mobility / Vsfcm?

The reduced inverse ion mobility (x-axis) is proportional to the drift time.
The colors reflect the signal height:
[white (low) < blue < purple < red < yellow (high signal)].
Kopczynski, Rahmann,

Algorithms for Molecular Biology
V5 Processing of Biological Data - WS 2018/19 (2015) 10:17 29



breathomics
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Example of a processing strategy of MCC/IMS data involving

(Step 1) RIP-detailing (removal of RIP peak)

(Step 2) denoising and baseline correction

(Step 3) peak picking.

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Breathomics Work flow

Preprocessing Peak Detectionand Postprocessing Machine Leamingand Evaluation

[

MCC/MS

measurements

Homogenizing:
Cxift gas flow
Sample gas flow
Carrier gas flow
Retention time
Polarity
Namowed RIP

Savitzky-Golay-Filter

Preprocessing:

RIP Compensate
Low-pass filter
Gaussian blur

nccme

Preprocessed
measurements

V5

Peak Detection:
Manual Peak Detection
VisualMow

IPHEx

Local Maxima Search
Peak Model Estimaion

{ Potential Peak Lists ] ( Prediction J
Merging: Evaluation:
Per List ROC-curve
Tolerance for t Accuracy
Tolerance for r Sensitivity
Specificity
PPV & NPV

Machine Learning:
Linear SVM
Random Forest

Clustering: Robustness
Over all Lists Evaluation:
Tolerance for t Data Robustness
Tolerance for r Tuning

W

PeakAn Files J

(PeakCluster) [ mobustostesets |

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Manual Peak detection

The easiest and most intuitive way of peak detection is manual evaluation of a
visualization of the measurement.
The human eye and visual cortex is optimized for pattern recognition in 3D.

Therefore one can immediately spot most of the peaks in the measurement.

There are several drawbacks of the manual approach:
- it is time consuming and therefore inappropriate in a high-throughput context,

- the results depend on a subjective assessment, and are therefore hardly
reproducible.

Nevertheless, manual evaluation is still the state of the art for the evaluation of
smaller MCC/IMS data sets.

Manually created peak lists are used as “gold standard" in MCC/IMS studies.

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Local maxima search

According to this criterion, a point is a local maximum if all 8 neighbors in the
matrix have a lower intensity than the intensity at the central point.

We call the neighborhood of a point “significant” if
- its own intensity,

- the intensity of its 8 neighbors, and

- that of A additional adjacent points (e.g. A = 2),
lie above a given intensity threshold I.

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Merged peak cluster localization (MPCL)
The MPCL consists of two phases: (1) clustering and (2) merging.

(1) each data point in the chromatogram is assigned to one of 2 classes,
either peak or non-peak.

For this, one uses a clustering method that is based e.g. on the Euclidean
distance metric of the intensity values.

(2) neighboring data points that are both labeled as peak can be assumed to
belong to the same peak and are merged together.

(3) each peak of the analyzed measurement is characterized by its centroid
point, i.e. the data point, which has the smallest mean distance to all other points
in this peak region.

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Watershed algorithm

Here, the IMS chromatogram is treated like a landscape including hills and valleys.

The algorithm starts with a water level above the highest intensity followed by a

continuous lowering of the level while uncovering more and more of the local
maxima.

In each step, the new uncovered data points are annotated by the label of adjacent
labeled neighbors. Those data points that remain unlabeled are identified as a new
peak and receive a new label.

The highest data point among a set of new labeled positions denotes the peak
coordinate.

The algorithm stops if all data points are labeled or the level drops below a given

threshold.
PhD thesis Ann-Christin Hauschild,

Saarland University (2016)
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Watershed algorithm: implementation

The watershed algorithm can be implemented as a priority queue to sort all data
points.

(1) The largest data point is extracted and labeled first.
(2 - n) This is followed by the next largest point in the queue and so on.
- Each point drawn out of the queue is compared with its neighbors.

- If the neighbors are of equal or larger value, the extracted point is given the
same label as its largest neighbor.

(comment: if of equal value, neighbor has not necessarily been labeled ...)
- In contrast, if the data point is larger than its neighbors (i.e. the neighbors have

not been labelled sofar), the data point is given a new label to indicate that it is
part of another peak.

(n + 1) This procedure is repeated until the queue is empty.

Latha et al. Journal of
Chromatography A, 1218 (2011)
V5 Processing of Biological Data - WS 2018/19 6792— 6798 36



Peak model estimation

In the PME method, the expectation maximization (EM) algorithm is used to
optimize the parameters of a mixture model from a given set of starting values.

The algorithm requires a given set of “seed" coordinates for each peak to be
modeled.

In general, any peak detection method is suitable to provide these initial " seeds".
However, the quality of the results strongly depends on the chosen seed-ing
approach.

Utilizing the EM algorithm, each peak is described by a model function consisting
of two shifted Gaussian distributions and an additional peak volume parameter.

Finally, the set of model functions plus a noise component describe the whole
MCC/IMS measurement.

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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breathomics

Linear SVM Random Forest

100
100

Boxplots of 100
. —— runs of the ten-
- ~— o I e B fold CV for the

I — L , : linear SVM and
the random

forest method.

AUC
80 90
AUC
70 80 90

70

60
60

50
50

T T T T T T T T T T
Manual LMS MPCL WST PME Manual Lms MPCL WST PME

LMS : Automated local maxima search

WST : Automated peak detection via water shed transformation implemented
in IPHEX,

MPCL : Automated peak detection via merged peak cluster localization
supported by VisualNow

PME : Peak model estimation approach by the PeaX tool.

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Automated metabolite detection

Aim: annotate peaks to chemicals (not only detecting peaks)

AJLMMJL MS Data

Step 2

Peak List IMS Layer

f

NIST/EPA/NIH
Mass Spectral
Library

MCC/IMS
Substance
Database

Collect reference IMS data for compound library

Run IMS experiment on sample of interest - compare against reference data

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Proof of principle

MOS0 st -10000 1 gl ® Table 7.1: Automatically identified signals
1 | Basete conecion No. | CAS compound

gl [Aedton 1 112-44-7 | undecanal

] 2 104-46-1 anethol (trans-anethol)
e 3 6485-40-1 | carvon (monomer)

H 2 4 6485-40-1 | carvon (dimer)

1] - 5 112-31-2 | decanal

6 2216-51-5 | (-)menthol (monomer)
g i

(
2216-51-5 | (-)menthol (trimer)
821-55-6 2-nonanon (monomer)
821-55-6 | 2-nonanon (dimer)

i(ﬁ,
=N
o
;
[l =LY =

Retention time [s]

Decanal Decana 0 5989-27-5 | D-limonen (monomer)
11 5980-27-5 | D-limonen (dimer)

¢ 7 ‘:"""‘""'““‘”"’“""“" 12 110-43-0 | 2-heptanon (monomer)
] 13 110-43-0 | 2-heptanon (dimer)
14 111-584-2 n-nonan (monomer)
o 15 111-84-2 | n-nonan (dimer)
1 16 111-71-7 | heptanal (monomer)
,_- 17 | 111-71-7 | heptanal (dimer)

Lo b
08 008

Reduced inverse idon mobility [Vs/cth]

Test on a mixture of 7 reference compounds
17 signals in the measurement could be matched
12 of the 17 signals originate from the reference compounds

(InC|Ud|ng dimers and trlmers) PhD thesis Ann-Christin Hauschild,

Saarland University (2016)
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Application: can one detect COPD in exhaled breath?

Chronic obstructive pulmonary disease (COPD) is an umbrella term used to
describe chronic lung diseases that cause a permanent blockage of airflow from
the lungs, which is not fully reversible (WHO).

The most prominent symptoms are
- breathlessness,

- a chronic cough, and

- excessive sputum production.

Airways and lungs react to noxious particles or gases, like smoke from cigarettes
or fuel, with an increased inflammatory response.

The World Health Organization (WHO) reported COPD as one of the four most
frequent causes of death.
PhD thesis Ann-Christin Hauschild,

Saarland University (2016)
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Application: can one detect COPD in exhaled breath?

Westhoff et al. (2011) took MCC/IMS breath probes of 42 COPD patients and of
35 healthy volunteers (HC).

.

COPD Patients

-

BioScout

DATA Preprocessing:
— - Denoising

- Smoothing

[l

SpiroScout(®

; ) - Peak detection
& MCC/IMS

Healthy Control Grouping Information
B W
Machine Learning: ( COPD vs. Healthy
Robust - Naive Bayes
) <@—— | - Neural Networks H Healthy
Evaluation - SVM vs. COPD-BC
- Random Forest L vs. COPD+BC

PhD thesis Ann-Christin Hauschild,

Saarland University (2016)
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Application: can one detect COPD in exhaled breath?

Table 5.1: Results of the two-class-classification problem, evaluating the differences be-

tween COPD and the HC.

100

rl I_J

Method AUC  Accuracy Sensitivity  Specificity

Decision Tree 81 85 01 71 =7

Linear SVM 83 87 92 74

Naive Bayes 79 82 87 71 : |

Neural Net 86 89 93 80 < f

Radial SVM 87 89 92 83 i

Random Forest 92 94 98 86 “g-
Distinguishing COPD patients from healthy N
controls based on IMS spectra of exhaled oty
air Works rea”y We”! e | | | - R:?:om Forést.ATD‘C=9'3.3.ATJC=-IQS

Distinguishing COPD patients from

patients that also have breast cancer did

not work equally well.

V5

Specificity (%)

PhD thesis Ann-Christin Hauschild,
Saarland University (2016)
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Summary

Peak detection is a frequent task in diverse areas of biology.

The challenge is posed by the noisy nature of biological data and the
irregular shape of peaks.

Testing and benchmarking of methods is typically done with synthetic
(artificially generated) data.

Peak detection and judging their significance are equally important tasks.
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