V6 — Analyzing 3D chromatin conformation

Chromatin conformation has large implications on gene expression, but
Is usually ignored in expression analysis.

Program for today:

- 3D chromatin conformation
- Hi-C method
- Biases in Hi-C data analysis

- integrated analysis of multiple data sources
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Chromosome Conformation Capture Technologies
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3D Chromatin conformation: highest level
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Data from human GM12878 cells (lymphoblastoid cell line). Nucleus

At the highest-level of 3D organization trans-interactions are rare and individual
chromosomes (chrs) occupy distinct territories (denoted by irregular shapes) within
the nucleus (grey circle).

Gene-rich chromosomes are preferentially found inside the nuclear core and gene-
poor chromosomes are localized close to the nuclear membrane.

Bonev & Cavalli, Nature Rev

Genet 17, 661-678 (2016) |
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3D Chromatin conformation: 50 kb resolution

¢ 50kb Resolution
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Different topological domains with similar epigenetic signatures are characterized by
stronger inter-domain interactions.
They are organized into compartments.

Here, blue and grey represent the active compartment, whereas interactions
between green, orange and red topologically associating domains (TADs) form

the inactive compartment.
Bonev & Cavalli, Nature Rev

Genet 17, 661-678 (2016) |
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3D Chromatin conformation: 10kb resolution

(left) ca. 8 Mb region containing several TADs that are manually annotated with solid

lines.
b 10kb Resolution
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(right) 3 different TADs, enriched for either active marks (H3K4me3 and H3K36me3;
grey), Polycomb (H3K27me3; green) or heterochromatin (H3K9me3; orange) are
schematically represented in the 3D space.

CTCF proteins are shown as blue rectangles and loop-extrusion complexes
(potentially cohesin) are depicted as green circles. Bonev & Cavalli, Nature Rev

Genet 17, 661-678 (2016) |
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3D Chromatin conformation: 5kb resolution

(right) Examples of different types of chromatin
loops that can potentially reside within a domain
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(left) : example of an architectural loop as seen in high-
resolution Hi-C data (regions participating in loop
formation are demarcated with dotted lines),

as well as CCCTC-binding factor (CTCF)-binding profile
and CTCF motif orientation.

Bonev & Cavalli, Nature Rev
Genet 17, 661-678 (2016) |
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Data from HiC

n X n contact matrix, where the genome is divided into n equally sized bins.

The value within each cell of the matrix indicates the number of pair-ended reads
spanning between a pair of bins.

Depending on sequencing depths, the commonly used sizes of these bins can
range from 1 kb to 1 Mb.

The bin size of Hi-C interaction matrix is also referred to as 'resolution’,

Owing to high sequencing cost, most available Hi-C datasets have relatively low
resolution such as 25 or 40 kb, as the linear increase of resolution requires a
quadratic increase in the total number of sequencing reads.

Zhang et al. Nature Commun
9, 750 (2018)

Vo6 Processing of Biological Data - WS 2018/19 8



Vo6

Biases in computational analysis of Hi-C data

Procedures including crosslinking, chromatin fragmentation, biotin-labelling and
re-ligation can all introduce biases that complicate the interpretation of observed
contact frequencies.

Efficient and effective removal of multiple systematic biases is critical for the
success of any subsequent analysis of C-data as well as for the proper
interpretation of results.

Schmitt et al. Nature Rev Mol

Cell Biol (2016) 17, 743
Processing of Biological Data - WS 2018/19
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Random collisions affect chromosome capture data

@ Predicted interactions with and without looping

Detection of an interaction between two loci does not

necessarily mean that they are engaged in a functional @

looping interaction. Browe ®

Gene Enhancer

-> |oci along a chromatin fiber will also randomly, and
quite frequently, collide as the result of the inherent
flexibility of chromatin.
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In general, the frequency of random collisions is
inversely related to the genomic distance between
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loci (larger “search space” for larger radius). oo oNowopng  o—0g o 8
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Thus, relatively frequent but nonfunctional interactions Genomic distance between fragments (kb)

should always be observed for loci separated by small
distances.

For sites separated by larger genomic distances, this
'‘background'’ signal decreases rapidly, but remains
detectable for sites separated by as much as 150 kb.

Job Dekker, Nature Methods 3,

17-21 (2006)
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Persistence length of DNA

The persistence length is a basic mechanical property quantifying the stiffness of
a polymer.

The persistence length, P, is defined as the length over which correlations in the
direction of the tangent are lost.

Let us define the angle 6 between a vector that is tangent to the polymer at
position 0 (zero) and a tangent vector at a distance L away from position 0, along
the contour of the chain.

It can be shown that the expectation value of the cosine of the angle falls off

exponentially with distance, |, . (1D
(cos @) = e /P

where P is the persistence length and the angled brackets denote the average
over all starting positions.

Bare double-helical DNA has a persistence length of about 39 nm.

For comparison, a nucleosome has dimensions of 6 x 10 nm.

www.wikipedia.org
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Specific contacts affect neighboring loci
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In this example, only the interaction between the two
centromeres may be specific (-> highest peak) ,
whereas interactions with neighboring loci are likely

the result of random collisions.
Job Dekker, Nature Methods 3,

17-21 (2006)
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Bias 1: restriction enzyme fragment length
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Hi-C ligation products (shown schematically in a) are expected to map near
restriction sites because of size selection.

(b) For each Hi-C paired read, the sum of distances is computed from mapped Hi-C
sequences to the nearest restriction sites. Shown is the distribution of distances.

Two distinct populations of reads are observed, one distributed as expected for
normally ligated and size-selected products and one including reads mapped farther
away from restriction sites.

Solution: discard reads with distance > 500 bp Yaffe, Tanay Nature Genet

(2011) 43, 1059
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Bias 2 : GC content
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(e) Ligation product processing and sequencing may be biased by GC content.

In this example, the GC-rich region produces many more reads.

(f) Plotting the GC content of the 200 bp near the restriction fragment ends for
trans-contacts shows intense and contrasting GC biases for the Hindlll and Ncol
experiments:

Vo6

Ncol “prefers” GC-rich sequences, Hindlll disfavors them.

Processing of Biological Data - WS 2018/19

Yaffe, Tanay Nature Genet
(2011) 43, 1059
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Bias 3 : sequence mappability
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(g) Effect of sequence uniqueness. Different fractions of uniquely mappable short
tags are observed next to restriction sites.

As shown in h, this has a direct empirical linear effect on Hi-C coverage.

Mappability is predicted and confirmed (h) to have a linear effect on the
estimated trans-contact probabilities.

Yaffe & Tanay correct for biases 2 & 3

by a maximum likelihood approach. Yaffe, Tanay Nature Genet
(2011) 43, 1059
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Biases in computational analysis of Hi-C data

In general, there exist two types of approaches to account for biases in C-data.

(1) account for biases in an explicit fashion — by assuming that all sources of
systematic biases are known based on biases determined empirically from the
observed data.

(2) account for biases in an implicit way — by assuming no known source (or
sources) of bias, and assuming that the cumulative effect of the bias is captured
in the sequencing coverage of each locus (or ‘bin’).

As Hi-C is a genome-wide assay, the implicit models assume that each locus
should receive equal sequence coverage after biases are removed.

Implicit models all rely on some implementation of matrix-balancing algorithms.

Schmitt et al. Nature Rev Mol

Cell Biol (2016) 17, 743
Vo6 Processing of Biological Data - WS 2018/19 16



HiCnorm tool

HiCnorm corrects for these 3 biases using Poisson regression.

Poisson regression assumes that the response variable Y has a Poisson
distribution, and assumes that the logarithm of its expected value can be
modeled by a linear combination of unknown parameters.

If x € R" is a vector of independent variables, then the model takes the form
log(E(Y | x)) = a + f'x,

where a € R and 8 € R". Sometimes this is written more compactly as
log(E(Y | x)) = ',

where x is now an (n + 1)-dimensional vector consisting of n independent variables concatenated to a vector

of ones. Here 0 is simply a concatenated to 3.

Hu et al. Bioinformatics 28,
3131-3133 (2012)
www.wikipedia.org
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Matrix balancing

A matrix is unbalanced if the L2 norm of some rows and their corresponding
columns are different by orders of magnitude.

||y == 4/2] + - + 7.

Some computations such as the computation of eigenvalues are numerically
unstable if the matrix is unbalanced.

Given an unbalanced matrix A, the goal of matrix balancing is to find an
invertible diagonal matrix D such that DAD-' is balanced or approximately
balanced in the sense that every row and its corresponding column have the
same norm.

Schmitt et al. Nature Rev Mol
Vo6 Processing of Biological Data - WS 2018/19  Cell Biol (2016) 17, 743 18



Matrix balancing approaches

Implicit, matrix-balancing approaches have been widely used to account for biases in
Hi-C data. They rely on two different assumptions.

(1) the combinatorial-bias effect between two interacting loci can be simplified as the
product of the two locus-specific bias effects.

(2) if there is no bias effect (that is, when all bias has been accounted for), the total
genome-wide contact summation for each locus will be a constant, implying that
each locus has ‘equal visibility’ to the Hi-C assay.

Schmitt et al. Nature Rev Mol
Vo6 Processing of Biological Data - WS 2018/19  Cell Biol (2016) 17, 743 19



Matrix balancing approaches
Two matrix-balancing algorithms are:

Vanilla coverage: To account for bias, the observed contact frequency between
locus A and locus B is divided by the product of the total genome-wide contact
frequency at locus A and the total genome-wide contact frequency at locus B.

This ratio is used as the normalized contact frequency. 8 TR
B ol e T
Raw heatmap
Iterative correction and eigenvector decomposition (ICE): \ 1 1
this process iterates through the vanilla coverage procedure \ | ‘,
(using updated total genome-wide contact frequencies!) until " 3
: : - A
there is convergence of the normalized contact frequency. > o IO—
§ B~
+ reduced coverage variability from locus to locus ST

m

= greatly increased computational cost.

Schmitt et al. Nature Rev Mol
Cell Biol (2016) 17, 743
Imakaev et al. Nature Methods
9, 999-1003 (2012)
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Application of 4 bias removal methods: full chromosome
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High-resolution Hi-C data from IMR90 cells were prbcessed uniformly until the
bias-removal step, at which point either raw contact matrices were generated or
normalization was conducted with one of three methods.

Shown is data for whole human chromosome 7 for a raw Hi-C contact matrix
(part a), an explicit model of bias removal (HICNorm) (part b), and two methods
of matrix-balancing algorithms for bias removal, vanilla coverage (VC) (part ¢)

and iterative correction and eigenvector decomposition (ICE) (part d).

Schmitt et al. Nature Rev Mol
Vo6 Processing of Biological Data - WS 2018/19 Cell Biol (2016) 17, 743 21



Application of 4 bias removal methods: TAD domains
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Pairwise interactions observed at higher frequency are depicted as a darker red
colour along the colour gradient, whereas light red coloration represents very few
observed interactions in the Hi-C data.

Different normalization methods yield slightly differences but very different numbers.

It is currently unclear which method works best.

Schmitt et al. Nature Rev Mol

Cell Biol (2016) 17, 743
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Integration of multiple data sets

The group of Frank Alber/USC has originally constructed a 3D model of the
nuclear pore complex via data integration.

They now work on 3D models of chromatin.

lamina-DamID experiments identify specific chromatin domains with a high
propensity to be located at the nuclear envelope (NE).

Chromosome conformation capture experiments (Hi-C and variants) detect
chromatin interactions at a genome-wide scale.

Li et al. Genome Biology

(2017) 18:145
Processing of Biological Data - WS 2018/19
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lamina-DamlID experiments

(a) Dam-only contro

Schematic illustration of DNA adenine methyltransferase
identification (DamlID) experimental pipeline.

(a) Dam only or Dam fused to a protein of interest (POI)
(blue) is expressed in a suitable cell type or transgenic
organism. Here: POl is lamin B1 that is part of the
nuclear lamina - DAM localizes to nuclear membrane

(b) Genomic DNA is extracted. DNA obtained includes gy
N6-adenine methylation sites (Me) catalyzed by Dam. o
(c) Genomic DNA is digested by the methylation sensitive lﬁa‘;‘;ﬁzﬁe‘faﬁ;
restriction enzyme, Dpnl.

(d) Digested fragments are amplified by polymerase chain
reaction (PCR).

(e) Representative output indicating chromatin binding of o
a protein of interest at an individual locus. Vertical bars
indicate the log, ratio of Dam-fusion/Dam only.

WIREs Dev Biol (2016) 5:25 — 37.
V6 Processing of Biological Data - WS 2018/19 24



Integration of multiple data sets

So far, most population convolution models of genome structures have typically
relied on just one data type, such as Hi-C, even though a single experimental
method cannot capture all aspects of the spatial genome organization.

However, data are available from several technologies with complementary
strengths and limitations.

Integrating all these different data types should increase the accuracy and
coverage of genome structure models.

Moreover, such models would offer a way to cross-validate the consistency of
data obtained from complementary technologies.

Li et al. Genome Biology

(2017) 18:145
Vo6 Processing of Biological Data - WS 2018/19
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Integration of multiple data sets

For example, lamina-DamlID experiments show a chromatin region’s probability to
be close to the lamina at the nuclear envelope,

whereas Hi-C experiments reveal the probability that two chromatin regions are in
spatial proximity.

Large-scale 3D fluorescence in situ hybridization (FISH) experiments show the
distance between loci directly, and can be used to measure the distribution of
distances across a population of cells.

Li et al. Genome Biology

(2017) 18:145
V6 Processing of Biological Data - WS 2018/19 26



Drosophila melanogaster

23Mb (225 TADs) 54Mb 11 Mb  21.1 Mb (213 TADs)
2L HIl H 2R )

245Mb (221 TADs) 82Mb 82Mb 27.9 Mb (307 TADs)

3.1Mb 1.4 Mb (19 TADs) ANT-C  BX-C
C H 4
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i )
white gene

The genome of D. melanogaster (sequenced in 2000, and curated at the FlyBase
database) contains 139.5 million base pairs on four pairs of chromosomes:

an X/Y pair, and three autosomes labeled 2, 3, and 4.

It contains around 15,682 genes.

The euchromatin genome was divided into 1169 physical domains

based on Hi-C interaction profiles.

www.wikipedia.org
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Integration of multiple data sets

Suppose A is a probability matrix derived from Hi-C data.
lts elements describe how frequently a given pair of TADs
are in contact with each other in an ensemble of cells.

E is a probability vector derived from lamina-DamID data.
lts entries describe how frequently a given TAD is in contact
with the nuclear envelope (NE).

The goal is to generate a population of genome structures X, whose TAD-TAD
and TAD-NE contact frequencies are statistically consistent with both A and E.

We formulate the genome structure modeling problem
as a maximization of the likelihood P(A, E|X).

Li et al. Genome Biology

(2017) 18:145
Vo6 Processing of Biological Data - WS 2018/19 28



Consider population of chromatin conformations

The structure population is defined as a set of M diploid genome structures

X={X;, X,, ..., X}, where the m-th structure X_, is a set of 3D vectors
representing the center coordinates of 2 N domain spheres.

The contact probability matrix A = (a,;)yx yfor N TAD domains is derived from the
Hi-C data. Each element a,; is the probability that a direct contact between
domains | and J exists in a structure of the population.

The contact probability vector E = {g||I= 1, 2,..., N} is derived from the lamina-
DamlID data and defines the probability for each TAD to be localized at the NE.

Li et al. Genome Biology

(2017) 18:145
V6 Processing of Biological Data - WS 2018/19 29



Integration of multiple data sets
Thus, the optimization problem is expressed as:

X = arg max  log P(A,E,W,V|X)

4 . . .
spatial constraint I : nuclear volume constraints

, spatial constraint II : excluded volume constraints
subject toq , , -
spatial constraint III : chromosome pairing upper bound

| spatial constraint IV : consecutive domain constraint

The log likelihood can be expanded as

logP(A,E,W,V|X) = logP(A,E|W,V)P(W,V|X)
= logP(A|W)P(E|V)P(W,V|X)

The “contact indicator tensor” W = (w;;)) onx 2n xm IS @ binary, third-order tensor. It
contains the information missing from the Hi-C data A, namely which domain
contacts belong to each of the M structures in the model population and also
which homologous chromosome copies are involved.

V = (vi,,) on x m SPecifies which domain is located near the NE in each structure of
the population and also distinguishes between the two homologous TAD copies

Li et al. Genome Biology
V6 Processing of Biological Data - WS 2018/19 (2017) 18:145 30



Integratlon of multlple data sets
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The initial structures are random configurations. Maximum likelihood optimization is
achieved through an iterative process with two steps, assignment (A) and modeling
(M). We increase the optimization hardness over several stages by including
contacts from the Hi-C matrix A with lower probability thresholds (0). After the
population reproduces the complete Hi-C data, we include the vector E (lamina-
DamlD), again in stages with decreasing contact probability thresholds (A).

: . : Li et al. Genome Biology
Vo6 Processing of Biological Data - WS 2018/19 (2017) 18:145 31



Snapshot of a single structure picked from final population

Heterochromatin Heterochromatin

‘\ Nucleolus
i \

(left) The full diploid chromosomes are shown
in colors: blue, chr2; green, chr3; magenta,
chr4; orange, chrX.

The two homologs of the same chromosome
are distinguished by the color tone, with one
homolog copy with lighter and one with darker
color. The heterochromatin spheres are larger
than the euchromatin domains. The nucleolus
is colored in silver.

V6 Processing of Biological Data - WS 2018/19

Nuclear Envelope Nuclear Envelope

(right) euchromatin domains
are colored to reflect their
epigenetic class:

red, active;

blue, PcG;

green, HP1;

dark purple, null.
Heterochromatin spheres are

shown in grey and the

nucleolus inpink

Li et al. Genome Biology 32
(2017) 18:145



FISH experiment on larval brain cells Independent COﬂthl experiments (FISH)
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The model predicts certain location preferences for pericentromeric heterochromatin
of individual chromosomes. We confirmed these predictions using FISH staining of
heterochromatic repeated sequences (satellites) in Drosophila cells of larval brains.

Li et al. Genome Biology 33
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Summary

Chromosome capture techniques enable to obtain information on contacts
along one chromosome and between chromosomes.

Experimental design introduces various biases that must be corrected
before analysis.

Data integration has great potential.

Considering populations of different structures helps to resolve conflicts
between data.

Vo6 Processing of Biological Data - WS 2018/19 34



