V8 — Genomics data

Program for today:

- Read mapping

- SNP calling

- SNP frequencies in 1000 Genomes data
- Isoforms of genes (alternative splicing)

- Non-canonical translation

- Removing sequence redundancy
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(1) Read mapping: range of usage
The accurate alignment of reads generated by NGS machines to a reference
genome is a crucial part in many application workflows, such as
- genome resequencing (in contrast to de novo assembly),
- DNA methylation,
- RNA-Seq (transcriptomics),
- ChIP sequencing (e.g. histone marks, TFBS occupancies),
-  SNP detection,
- detection of genomic structural variants, and

- metagenomics (sequencing mixtures of organisms).

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Read mapping tools

Numerous tools have been developed for this challenging task:

MAQ, RMAP, GSNAP,

Bowtie, Bowtie2,

BWA, SOAP2, Mosaik, FANGS, SHRIMP, BFAST,
MapReads, SOCS, PASS, mrFAST, mrsFAST, ZOOM,
Slider, Sliderll, RazerS, RazerS3, Novoalign and
GPU-based tools such as SARUMAN and SOAP3.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Read mapping techniques: (1) Hash tables
For most of the existing tools, the mapping process starts by building an index
either for the reference genome or for the reads.
Then, the index is used to find the corresponding genomic positions for each read.

There are two main types of techniques for this: Hash tables + BWT

(1) The hash based methods either hash the reads or the genome.

The main idea for both types is to build a hash table for subsequences of the
reads/genome.

The key of each entry is a subsequence
while the value is a list of positions

where the subsequence can be found.

Key Hashed index

R “GCTAGC”  Key1 Chr1 123412 ... ...
BMC Bioinformatics (2013) 14:184 “TTTAGC” KeyN Chr6 988472
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Read mapping techniques: (2) Burrows Wheeler transform

The BWT of the string T = "abracadabra$" is "ard$rcaaaabb.

It is represented by the matrix M where each row is a rotation of the text, and the
rows have been sorted lexicographically.

The transform corresponds to the last column labeled L.

F

$ abracadabr
a $abracadab
a bra$abraca
a bracadabra
a cadabra$ab
a dabra$abra

b ra$abracad

b racadabra$
c adabra$abr
10 d abra$abrac
11 r a$abracada
12 r acadabra%a

Modern alignments

use an extension of BWT
named FM index

after Ferragina & Manzina

OO0 NOOWTPE,WN -~ —
CTOLOL VDO O O -~~&ALQA =0 I

www.wikipedia.org
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Read mapping techniques: (2) Burrows Wheeler transform

Clc] is a table that, for each character c in the alphabet, contains the number of
occurrences of lexically smaller characters in the text.

Cl[c] of "ard$rcaaaabb"

c $ a b C d r
Clc] 0 1 6 8 9 10

The function Occ(c, k) is the number of occurrences of character c in the prefix
L[1..K].

Occ(c, k) of "ard$rcaaaabb"

a r d $ r Cc a a a a b b

1 2 3 4 ) 6 7 8 9 10 11 12
$ 0 0 0 1 1 1 1 1 1 1 1 1
a 1 1 1 1 1 1 2 3 4 5 5 5
b 0 0 0 0 0 0 0 0 0 0 1 2
C 0 0 0 0 0 1 1 1 1 1 1 1
d 0 0 1 1 1 1 1 1 1 1 1 1
r 0 1 1 1 2 2 2 2 2 2 2 2

www.wikipedia.org
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Read mapping techniques: (2) Burrows Wheeler transform

The FM-index itself is a compression of the string L together with C and Occ in some
form, as well as information that maps a selection of indices in L to positions in the

original string T.
FM index is used e.g. by the tools Bowtie and BWA

Soap uses a different variant of BWT.

www.wikipedia.org
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Read alignment: features

Crucial default options:

- Maximum number of mismatches in the seed (default 2). The seed are “the
first few tens of base pairs of a read.” The seed part of a read is expected to
contain less erroneous characters.

- Maximum number of mismatches in the read (2 to 10)
- Seed length (28 — 32).

- Quality threshold: It is equal to 70 for MAQ and Bowtie while it depends on
the read length and the genome size for Novoalign.

- Splicing: This option is enabled for GSNAP.

- Gapped alignment: It is enabled for Bowtie2, GSNAP, BWA, Novoalign and
MAQ while it is disabled for SOAP2.

- Minimum and maximum insert sizes for paired-end mapping: The insert size
represents the distance between the two ends. (0 to 500)

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Read alignment: evaluation criteria
The sequence in blue is the original genomic position where the simulated read was

extracted from. After applying sequencing errors, the read does not exactly match
to the original location (3 mismatches).

Reference ... ... CCCECCBEBAARAATT cous s s
Read CCGCCGGGAA

3 possible alignment locations for the read with their mapping quality score (MQ).

Alignments (1) CCGCCGGGAA M=40 ®B) CCGCCGGGAA MQ=50
(2) CCGCCGGGAA MQ=35

Reference CCCGCCGGAAATT . veeeennn CCGCCGGGAA
[ O I | [N (R Y N R A A B
[ I | [N I IR N I Y N A AN |
Naive criterion: only consider the alignment (1) as the correct alignment.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Read alignment: evaluation criteria

Reference CCCGCCGGAAATT. ..+ vevenn. CCGCCGGGAA
Il | N T T T T O T O B
Il | N R

Alignments (1) CCGCCGGGAA M@=40 ®B CCGCCGGGAA MQ=50
) CCGCCGGGAA MQ=35
Ruffalo et al. criterion: consider also the mapping quality.

If the used threshold is 30, then (1) is correctly mapped while (2) and (3) are
incorrectly mapped-strict.

If the threshold is 40, then (3) is considered as incorrectly mapped relaxed (no
correct mapping available higher than the threshold).

Holtgrewe et al. criterion: considers all matches with distance k.

Here, it would detect (1) and (2) and consider them correctly mapped while (3)
would be considered as incorrectly mapped.

Hatem et al: “We define a read to be correctly mapped if it is mapped while not
violating the mapping criteria.”

V8 Hatem et al. Processing of Biological Data
BMC Bioinformatics (2013) 14:184
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Read alignment: throughput for simulated data

X

10°

3.5

Task: map 1 million reads of length 125
extracted from the Human genome al
using wgsim with 0.09% SNP mutation
rate, 0.01% indel mutation rate, and
2% uniform sequencing error rate.

o
[2)

N

| X/ mrFAST

Bowtie

Bowtie2 BWA-ND

BWA

BWA-ND
SOAP
GSNAP
i Novoalign 4

MAQ

ﬂ RMAP
mrsFAST

Each tool was used with its own default
options.

1.5F

Throughput bps/s

—_
T

Bowtie only maps 68% of the reads,
but achieves high throughput.

0.5r

RO

Bowtie
BWA —©
& | > . @
50 60 70 80 Ngo

BWA maps 91% of the reads, but 15 x %
lower throughput.

However, when used with the same
options as Bowtie, BWA achieves even
a higher performance.

Mapped Percentage

BWA-ND refers to BWA's results while
using Bowtie’s default options which are 2
mismatches in the seed, 3 mismatches in

the whole read, and no gapped alignment.

V8  Hatem et al. Processing of Biological Data

BMC Bioinformatics (2013) 14:184
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Read alignment: number of allowed mismatches

100 T

5amb
error
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Bowtie Bowtie2 BWA SOAP GSNAP Novoalign MAQ RMAP mrsFAST
Tools

Mapping 1 million reads of length 125 extracted using wgsim from the Human

genome while allowing up to 7 mismatches and a quality threshold of 140.
The erroris 0.6% for SOAP2 and MAQ and 0.45% for GSNAP.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Read alignment: comparison on real data

8 100 - T T | PO | Ee—— T T | BFY T

& [ amb

o 98 [ lerror

= - B2 t-mms

g B 3 t-mms
[ l4t-mms

-g 94 [ 15t-mms

Q 92} J - 6 t-mms

2 B 7 t-mms

P 9 . . .

o Bowtie Bowtie2 BWA SOAP GSNAPNovoalign MAQ RMAP mrsFAST

Tools

Comparing the different tools while changing the maximum allowed mismatches
(T-mms) from 2 to 7.

A real mRNA data set of 1 million reads of length 51 bps extracted from the
Spretus mouse strain and mapped against the mouse genome version mm9 was
used in this experiment.

Hatem et al.
BMC Bioinformatics (2013) 14:184
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Percentage mapped

The effect of changing the read length from 36 to 500. The reads were

Read alignment: effect of read length

100 T T T

I

] | I I I

amb
[ lerror

I 36
B 70
E==3]125
B 200
B 300
I 500

Bowtie Bowtie2 BWA SOAP MAQ RMAP GSNAP FANGS Novoalign mrsFAST

Read length

extracted from the Human genome.

Longer reads tend to have more mismatches. For a fixed number of
mismatches, the read length decreases the percentage of mapped reads.

V8

Hatem et al.
BMC Bioinformatics (2013) 14:184

Processing of Biological Data
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Read alignment: SNP calling with different mappers

Tools Log-odds ratio
5 100 200 300 400 500 600 700 800 900 1000 1000000

Bowtie 89479 24337 5082 2231 1076 648 426 281 0 0 0 1171
Bowtie2 200914 62178 10018 4200 2052 1156 767 537 0 0 0 2035
BWA 192050 52115 9028 4049 1894 1087 737 525 0 0 0 2067
SOAP2 174475 49302 8552 3824 1837 1030 704 508 0 0 0 1941
Novoalign 69798 17586 4061 1875 936 519 363 252 0 0 0 941
GSNAP 207920 69015 11416 4928 2482 1325 971 617 0 0 0 2602

The tools were used to map an mMRNA dataset of 23 million reads extracted from the Spretus mouse
strain. Then Partek is used to detect SNPs against mouse genome version mm9. A quality threshold of
70 was used for Bowtie and Novoalign while the remaining tools were allowed 5 mismatches.

Each column shows the number of SNPs detected with a log-odds ratio, which is a measure of the
accuracy of the detected SNP, centered around the given values. The larger the log-odds ratio is, the
more accurate the detected SNP becomes.

To understand the reason for the low number of SNPs detected by Bowtie and Novoalign, we carried out
the same experiment while using a quality threshold of 100. The number of highly accurate SNPs
increased to 1474 and 1100 for Bowtie and Novoalign, respectively.

V8 Hatem et al. Processing of Biological Data 15
BMC Bioinformatics (2013) 14:184



Read alignment: conclusion

Mapping of short sequences is still subject of active development.
Genome indexing tools performed better than read indexing tools.

In general, there is no the-best tool among all of the tools; each tool was the-best
in certain conditions.

Hatem et al.
BMC Bioinformatics (2013) 14:184

V8 Processing of Biological Data 16



(2) Variant calling benchmark

-> Accurately detecting SNPs is critical e.g. for medical diagnostics.

Genome in a Bottle (GIAB) consortium:

public-private-academic consortium to develop the technical infrastructure
(reference standards, reference methods, and reference data) to enable
translation of whole human genome sequencing to clinical practice.

GIAB generated a set of highly confident variant calls for one individual in the
1000 Genome project:

they integrated 14 variant data sets from 5 NGS technologies, 7 read mappers
and 3 variant calling methods, and manually cleaned up discordant data sets.

This highly accurate set of SNP and indel genotype calls can be used as gold
standard variant genotype data set for systematic comparisons of variant callers.

Hwang et al., Scientific Reports
5, 17875 (2015)

V8 Processing of Biological Data 17



Variant calling: performance

lllumina Platform (HiSeq 2000/2500)

Performance of variant
calling pipelines measured
by APR for

(A) SNP and
(B) indels.

APR: Area under a
precision-recall curve.

Hwang et al., Scientific Reports
5, 17875 (2015)
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Variant calling: consistency

Mean percentage with standard A
deviation of confidence variant

calls with quality = 20 for

lllumina data sets.

llumina

Freebayes

2.0%%x1.7%

-> Generally good agreement
(92% overlap of results).

For low coverage lonProton
data, the overlap is only 15%.

1.1%=*0.4% 2.0%*1.6%

0.4%+0.3%

Samtools GATK-HC

Hwang et al., Scientific Reports
5, 17875 (2015)

V8 Processing of Biological Data
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Variant calling: recommendation
The authors recommend the use of BWA-MEM and Samtools pipeline for SNP

calls and BWA-MEM and GATK-HC pipeline for indel calls.

Low coverage data is not suitable for reliable SNP calling.

Indels are detected at lower accuracy than SNPs.

Hwang et al., Scientific Reports
5, 17875 (2015)

V8 Processing of Biological Data
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(3) SNPs in 1000 Genomes project
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The 1000 Genomes Project ran between 2008 and 2015 and created the largest
public catalogue of human variation and genotype data up to date.

The goal of the 1000 Genomes Project was to find most genetic variants with
frequencies of at least 1% in the populations studied.

http://www.internationalgenome.org/
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Data set

We used only the European super-population with 503 individuals and focused on
autosomes (chromosomes 1 — 22). Genes on sex chromosomes X and Y were ignored.

We kept autosomal SNPs with a minor allele frequency larger than zero - SNP exists
allele : variant form of a given gene
major allele : most common variant

minor allele: second-most common variant

We removed:
- genes starting with "SNO” (small nuclear RNAs) or "MIR" ( microRNAS)
- genes with CDS start equal to the CDS end

Neininger & Helms, submitted
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Problem: there exist many overlapping genes
Shown is overlap between 3 human genes: MUTH, FLJ13949, and TESK2.

Dark boxes : coding sequence.
Light boxes : untranslated regions.

Al 1

MUTYH

1 B0 1 1

TOE1

.

1 1l

Table 1. Frequency of Different Types of Overlaps Between Protein-Coding Genes in Human

and Mouse Genomes

TESK2

Human Mouse
Overlapping Genes with Overlapping Genes with
genes overlapping exons genes overlapping exons
Total 774 542 578 455
Embedded 126 (16.28%) 15 (2.77%) 53 (9.17%) 7 (1.54%)
Tail to tail 414 (53.49%) 360 (66.42%) 314 (54.32%) 280 (61.54%)

Head to head
Involving coding sequence
Coding—coding overlap

234 (30.23%)

167 (30.81%)
299 (55.17%)
57 (10.52%)

211 (36.51%)

168 (36.92%)
232 (50.99%)
31 (96.81%)

Veeramachaneni et al.
Genome Res. (2004) 14: 280-286

V8 Processing of Biological Data
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Overlapping genes

One could speculate that overlapping genes would be more conserved between
species than non-overlapping genes because a mutation in the overlapping
region would cause changes in both genes.

Then, one would expect that evolutionary selection against these mutations is
stronger.

However, Veeramachaneni et al. found that this is not the case.

Overlapping human and mouse genes were similarly conserved as non-
overlapping genes.

Veeramachaneni et al.
Genome Res. (2004) 14: 280-286

V8 Processing of Biological Data
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How to deal with overlapping genes

In the case of overlapping genes, it is problematic to define the genomic regions
because they have a different meaning for the 2 overlapping genes.

Therefore, we distinguished 2 cases:

(1) Overlaps where one gene is located inside another gene.

Such genes inside other genes were excluded from the SNP analysis.
(2) staggered overlaps (genes overlap partially).

We collected all genes with staggered overlap. From each “bundle”, only one
gene was selected randomly to avoid overlapping genes.

In total, about 5% of all genes were removed due to overlaps.

Neininger & Helms, submitted
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Refseq

The Reference Sequence (RefSeq) collection at NCBI provides a
comprehensive, integrated, non-redundant, well-annotated set of sequences,
including genomic DNA, transcripts, and proteins.

RefSeq transcript and protein records are generated in different ways:

- Computation  Eukaryotic Genome Annotation Pipeline
Prokaryotic Genome Annotation Pipeline

- Manual curation

- Propagation from annotated genomes that are submitted to members of the
International Nucleotide Sequence Database Collaboration (INSDC)

Research question:

Are the Single Nucleotide Polymorphism (SNP) frequencies in different
genomic regions similar to eachother or not?

https://www.ncbi.nlm.nih.gov/refseqg/about/

V8 Processing of Biological Data
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Definition of genomic regions
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Every gene is located between two intergenic regions. Our definition for these is:

coding exons
start 9 end

[CSS] [CES]

First intergenic region : interval between the transcription start site (TSS) of the
considered gene and the mid-upstream position between this TSS and the
transcription end site (TES) of the closest upstream gene.

Second intergenic region : defined analogously according to the TSS of the closest
downstream gene.

Intragenic region of a gene : part between its TSS and its TES.
Gene promoter : region from 2000 bp upstream to 1000 bp downstream of the TSS.

Exons : intervals between the exon start positions and exon end positions (taken from
UCSC genome browser).

5' UTRs : exonic segments between the TSS and the CSS
3' UTRs : exonic regions between the CES and the TES.
Introns : regions between the exonic gene parts.
Neininger & Helms, submitted
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SNP density in genomic regions
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Neininger & Helms, submitted
V8
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Number of SNP variants per
kb for different genomic
regions.

- lowest SNP density in
coding exons (green)

- highest SNP density in
CpG islands (red, due to
frequent deamination of
methylated cytosines into
thymines)

Second-highest SNP
density in intergenic regions
(grey, low evolutionary

pressure)
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(4) Isoforms of genes
Gene isoforms are mMRNAs that are produced from the same locus but are
different in their
- transcription start sites (TSSs),
- protein coding DNA sequences (CDSs) and/or
- untranslated regions (UTRSs),
All these processes may potentially alter gene function.

www.wikipedia.org

V8 Processing of Biological Data
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Alternative splicing may affect
PP interactions: STIM2 splice variant

STIM proteins regulate store-operated calcium entry (SOCE) by sensing Ca%* concentration

in the ER and forming oligomers to trigger Ca?* entry through plasma membrane-localized
Orail channels.

Niemeyer and co-workers characterized a STIM2 splice variant which retains an additional 8-
AA exon within the region encoding the channel-activating domain.

C
: : : <
STIM2.1 knockdown increases SOCE in naive CD4" T e
cells, whereas knockdown of STIM2.2 decreases SOCE.
Overexpression of STIM2.1, but not STIM2.2, decreases
SOCE.
STIM2 STIM2.1
b (model 1)
|“’\ e2)f n"\“w = ﬁ ‘:
STIM2.1 interaction with (%5 PIYCEN L
s ,” 5 AL e
Orail is impaired and prevents ' , wug %
Orail activation. STIMA STIM2.2 STIM2.1 |
(model 1)
3® Processing of Biological Data Miederer, ..., Lee, ..., Helms, Niemeyer

Nature Commun 6, 6899 (2015)



Alternative splicing

Alternative splicing (AS) of mMRNA can generate a wide range of mature RNA
transcripts.
It is estimated that AS of pre-mRNA occurs in 95% of multi-exon human genes.

There is abundant evidence for the expression of multiple transcripts in cells.

However, it is less clear whether these transcripts are expressed more or less
equally across tissues or whether it would be biologically relevant to designate one
transcript per gene as dominant and the rest as alternative.

Ezkurdia et al J Proteome Res. (2015) 14: 1880-1887.
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Evidence from mRNA expression

3 contrasting large-scale expression studies came to different conclusions.

(1) An EST-based study with 13 different tissues predicted that primary tissues
generally had a single dominant transcript per gene.

(2) In contrast, a large-scale study using RNAseq found that > 75% of protein-
coding genes had cell-line-specific dominant transcripts.

Those genes with the most splice variants had more dominant transcripts.

(3) A second RNAseq study (lllumina Human BodyMap project) found that ca. 50%
of the genes expressed in the 16 tissues studied had the same major transcript in
all tissues, whereas another third of the genes had major transcripts that were
tissue-dependent.

One curious result in this study was that the major transcript was noncoding in
close to 20% of the protein-coding genes.

Ezkurdia et al J Proteome Res. (2015) 14: 1880-1887.
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Detect isoforms in proteomic data

Ezkurdia et al. performed a re-analysis of 8 HT proteomics MS data sets.

At least 2 peptides were detected for 12 716 (63.9%) of the protein-coding genes but
alternative protein isoforms only for 246 genes (1.2%).

- the vast majority of genes had peptide evidence for just one protein isoform.
The isoform with the highest number of peptides was the main proteomics isoform.

A unique main proteomics isoform was identified for 5011 genes.

Ezkurdia et al J Proteome Res. (2015) 14: 1880-1887.
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Comparison proteomics - RNAseq

CCDS variants are based on genomic evidence and are variants that are mutually
agreed on by teams of manual annotators from NCBI, the Sanger Institute, EBI and
UC Santa Cruz.

A total of 13 297 genes were annotated with a single CCDS variant. This unique
manually curated variant agreed with the main proteomics isoform for 98.6% of the
3331 genes that were compared.

APPRIS annotates principal isoforms on the basis of conservation of structure and
function and selected a main isoform for 15 172 of the coding genes.

Ezkurdia et al. were able to compare the APPRIS principal isoforms and the main
proteomics isoforms over 4186 genes. The main proteomics isoform agreed with
the isoform with the most conserved protein features for 97.8% of these genes.

In contrast, the longest isoform coincided with the main proteomics isoform only
for 89.6% of the genes.

Ezkurdia et al J Proteome Res. (2015) 14: 1880-1887.
V8 Processing of Biological Data
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(5) Alternative translation: example TrpV6 channel protein

human ESWLALPSVTNSQPSPNWLGLLGDSQGTRQEGRRQETGPLQGDGGPALGGADVAPRLSPVRVWPRPQAPKEPALHPMGLSLPKE.
chimpanzee WLALPSVTNSQPSPDWLGLLGDSQGTRQEGRRQETGPLQGEGGPALGGADVAPRLSPVRVWPRPQAPKEPALHPMGLSLPKE.
gibbon WLALPSVTNSQPSPDWLGLLGDSQGTRQKGRRQETGPLQGEGRPALGGADVAPRLSPVRVWPRPQAPKEPALHPMGLPLPKE .
dog LPGGAPEEEPEEGAPALRRVRNS - -GALCKPCPGATRRLRGGPGRQETGPLQGEGRPAL EGADVAPRLSPFGVWPRPQPPKEPALRSMGLPLPKE .
rat RSSDIQAQQISSSAKWNKAGALFGLLRAATGSLTSSTGE -VGGRTQETGPLQREGRPALGDANVAPGSSPGGVWHQPQPPKDSAFHPMGWSLPKE .
mouse GAPETQAQQISSPAKRNKAGALFRLLGAATGSLSSSTGE -VGDRRQETGPLQREDRPALGGANVAPGSSPVGVWHQPQPPKEPAFHPMGWSLPKE .
Chinese hamster ALPSGTTQEPSSDLGVATGSLTSSTGE -VGARSQETGPLQREGRPALGGANVAPRPSPVGVWHQPQPPKEPAFHPMGWSLPKD.
guinea pig SRTHSEPS=- ===~~~ AETAGRKPSQEKQETGPPQAEDRPAF GGAHVAPRPSPVGVWRKPQPPKESTFQSMGLSLSKE.
cow GPSSAQCNELLQGRPLVSGCLHLGETPPG-LEG--PETAPLREEGGLALGAAHVAPRLSPGGVWPWPQPPRELALCSMGLPLPKE.
rabbit LALPSVTESEPSPAPLERPQAVSQG-LARK*EDTGPLQWEGTSALRGTDVAPRLNSVRVWPWPQPPKEPALHSMGLSLPKE.
African clawed frog STAH*TPFSRNAAGGMKPNWTLA.
trout FLKSA*RCMFP*YLTVN*E*RINCILL*KPFQIDSPYER-MAPALARS.
red swamp crawfish VHLFSSVLDIFCSPSTSLVWKTIRDSGILLLPFKVESPGVR-MSPSLARS.
zebrafish GCPPADKQTCYSSVTKITLGLSI*-DFCKSCWSRCPPEI-MPPAISGE.
pufferfish KDISLVCWIFFSPPLLIVMTEDYQG*WSVTFVV*GVNPQASMSPSLARS.

MUSCLE multiple sequence alignment of the Thé mammalian sequences upstream of
translated 5-UTR of TRPV6 the first AUG codon are conserved, but the

one from rabbit contains an in-frame stop
|dentical aa residues (compared with the codon. In contrast, sequences from the
human sequence) are shaded,; other organisms contain several stop
codons upstream of the annotated AUG
and are not conserved. Sequence identity

annotated N termini with the first Met*! are in

red, | is highest among the 40 amino acids
* = stop codon in frame upstream of the first Met residue (position
- :gap +1). This suggests that translation in

Fecher-Trost et al. J. Biol. mammals may Start at a non_AUG
Chem. (2013) 288: 16629

V8 Processing of Biological Data 35



human

mouse
rat

gorilla
gibbon
cow
dog
fish

Alternative translation of human TRPV6

49 +1

EGRRQETGPLOQGDGGPALGGAUDVYA APRLTSPVRVMWPRPQAPIKTETPALHEPHM.
GAAGGCAGGAGACAGGAGACGGGACCUCUACAGGGAGACGGUGEGL CGECCCUUGEGEGGECUGAUGUGGECCCCAAGGLUGAGUCCCGUCAGGEUCUGECOUCGGCCUCAGGCCCCCAAGGAGCCGGCCCUACACCCCANG .
GGAGACAGAAGACAGGAGACGGGACCUCUACAGAGAGAGGACAGGL CGOCUCUUGEGEGUGCCAAUGUGGCCCCAGGOUCGAGCCCAGUUGEGEUCUGGCAVCAGC CUCAGCCCCCCAAGGAACCAGC CUUCCACCCCANG .
GGAGGCAGAACACAGGAGACGGGACCUCUACAGAGAGAGGGUAGGC CGOCUCUUGGGGAUGC CAAUGUGGCCCCAGGGUCGAGCCCAGGUGEGEUCUGGCAUCAGC CUCAGCCCCCCAAGGACUCAGCCUUCCACCCCALG .
chimpanzee GAAGGCAGGAGACAGGAGACGGGACCUCUACAGGGAGAGGGCGGGCCGECCCUVGHGGEGECUGAUGUGGCCCCAAGGCUGAGUCCCGUCAGGGUCUGGCCUCEGCCUCAGGCCCCCAAGGAGCCGGLCCUACACCCCAUG.,
GAAGGCAGGAGACAGGAGACGGGACCUCUACAGGGAGUC GGUGGGL CGOCCCUUGEGEGEECUGAUGUGGCCCCAAGGLUGAGUCCCGUCAGGGUCUGECCUCGGCCUCAGGCCCCCAAGGAGCCGGCCCUACACCCCANG.
AAAGGCAGGAGACAGGAGACGGGACCUCUACAGGGAGAGGGCAGGL CGGCCCUUGEGGGGECUGAUGUGGCCCCAAGGLUGAGUCCCGUCAGGGUCUGGLCCUCGGC CUCAGGCCCCCAAGGAGCCGGCCCUACACCCCANG.
GGCCUGGAAGGCCCUGAGACGGCACCUCUCCGGGAAGAGGGUGGGL TGGCCCUCGHEGGCUGECCAUGUGGCCCCCAGGLUGAGUCCAGGUGGGEUCUGGLCUUGGCCCCAGCCCCCCAGGGAGCUGGCCCUCUGCUCCANG.
GGACCCGGAAGGCAGGAGACGGGACCUCUACAGGGCGAGGGCAGGLCGGCCCUUGAGGGGECUGAUGUGGCCCC TAGGLUGAGUCCGUUUGEGGUCUGGL CUCGGC CUCAGCCCCCCAAGGAGCCGGLCCUGCGCUCUANG .

GGUUGUC CUCCAGCAGACAAACAAACAUGC UAUUCAUCAGUUACUAAAALUUACUUUGGGACUAAGUALUUAGGAULUUUGCAAGUCUUGUUGGUC UCGGUGUC CUCCUGAAAUCAUGC CACCCAUG .

Nucleotide alignment of 5'-UTR TRPV6 sequences including the AUG triplet
encoding the first methionine (red, +1) of the human protein.

Red, putative initiation sites;

underlined, STOP-codon in frame.

Experiments in the Flockerzi group (Medical department, Homburg) showed that
translation starts at Thr40 .

V8

Fecher-Trost et al. J. Biol. Chem. (2013) 288: 16629
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HT discovery of alternative translation: ribosome profiling

Protocol resembles ChIP-Seq. Cell type
of interest\__/
) . . i L Invivo capture of translating ribosomes :
Halt translation by applying ribosome inhibitors. /
a Ribosome profiling
MAAAAAAAAAA
Isolate ribosome-bound mMRNAs by size. a3 C—ammanm
TG —aamaaaaaa
I i1Fi ‘k'/{_s_\-’{_i_\ AAAS
Then treat sample with a nonspecific nuclease. | | AAMAAAAAA
—R_F O3 —ArraaaaaaAaA
1 Nuclease treatment
This results in protected mRNA fragments
: ' -~ -~ ~ . Ribosome
termed 'footprints’. — "~ _"_ footprints
\
Library generation ‘
| , A
These ribosome footprints are isolated and . Deepse:uencmg.
converted to a library for deep sequencing. H [Read m:ppmgj

A ' Coding region A
AUG Stop
Genomic position

Brar, Weissman, Nature Rev Mol Cell Biol
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PreTIS: predict alternative translation initiation sites

1 CGGUGAGGGU UCUCGGGCGG GGCCUGGGAC AGGCAGCUCC GGGGUCCGCG GUUUCACAUC
61 GGAAACAAAA CAGCGGCUGG UCUGGAAGGA ACCUGAGCUA CGAGCCGCGG CGGCAGCGGG
121 GCGGCGGGGA AGCGUAUACC UAAUCUGGGA GCCUGCAAGU GACAACAGCC UUUGCGGUCC
181 UUAGACAGCU UGGCCUGG AGAACAC A A A ACCUC CU Uuuu
241 AAACA GU UCU CAG CUC CA
301
361
421

Suppose that a ribosome profiling experiment detected 2 start sites for this mRNA
sequence: CUG at position -78 and CUG at position -120 (blue colored codons).
These start sites are then considered TP start sites. All near-cognate start sites not
listed in the ribosome profiling dataset and upstream of the most downstream
reported true start site are then considered TN (red colored codons).

Light red colored codons : start sites not considered as false starts in the analyses
since they are located downstream of the most downstream reported true start site.

Grey colored downstream part : annotated CDS sequence

ltalic (purple) upstream part : -99 upstream window needed to calculate some
features.

All marked start sites (TP and TN) exhibit a surrounding window of =99 nucleotides
as well as a downstream in—frame stop codon. In total, this mMRNA sequence would
provide 2 true start sites and 9 false start sites out of 23 putative starts.

Reuter et al Plos Comput Biol 38
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Data sets used for ML classifier

Cell line ‘ Description Genes ‘ Start codons TPs ‘ TNs Used for

HEK293 \ Human embryonic kidney cells 3,566 \ AUG and near-cognate 4,482 ‘ 49,520 Human prediction model
HEK293 | Human embryonic kidney cells | 391 | AUG 332 | 447 Validation set

Mouse ES ‘ Mouse embryonic stem cells 1,632 ‘ AUG and near-cognate 3,009 ‘ 19,864 Mouse prediction model

Three different datasets were used in this study to establish a human and mouse prediction model and to cross-validate the regression models.
numbers indicate the filtered start sites used in the prediction approach.

doi:10.1371/journal.pchi.1005170.t001

We only included curated mRNA sequences with available mMRNA RefSeq
identifier (starting with NM ).

Raw data is very unbalanced (number of TPs and TNs very different)
- need to balance data sets (select random TN data points)

Reuter et al Plos Comput Biol (2016) 12: e10005170
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5’ UTR of
mRNA sequences

Flow-chart

Detected by
ribosome profiling

Not detected by ribosome profiling
Upstream of most downstream true (detected) start

Data balancing was repeated ~

\ 4

True positives

True negatives
(TNs)

Feature set (1252)
1229 k-gram features
20 biologically-motivated features
3 PWM features

Wilcoxon-rank sum test
Bonferroni correction

Significant PWM and

biologically-motivated features

Significant k-mer
features

Prevent over-training
Reduce complexity

50 features with
smallest p-values

y

Uncorrelated (r <|0.7])
and significant features

Training and parameter

\ selection (10-fold-CV)

Regression model

10 times to investigate model <TF|’S> |
robustness. Repeat 10 times @\lggfgggggﬁipnng)
Number positive starts
Significant features were Number negative starts
identified by the Wilcoxon-rank 0% ] 0%
y
Sum teSt Training data
Angcetgccs Appl())/ tsh;ess?olds
sen Sl:ﬁvityy _ for classification h 4 o
Reuter et al. Plos Comput Biol | specifi [* fetdm Ie= =
(2016) 12: €10005170 AUC
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Feature True starts False starts P-value

F e at re s s e d 1. 5’ UTR length 414.41+270.48 675.41+545.35 <1073
u u 2, 5’ UTR conservation 0.420.16 0.33+0.16 8.2x 107"
3. PWM positive 2.75+1.5 -0.14+2.82 55x 107173
4. K-mer: upstream AUG 0.22+0.57 0.59+0.9 5.1x 107
Mean Val ue and Standard 5. 5’ UTR: percentage A 0.18+0.05 0.2+0.05 9.6 x 10710
6. Kozak sequence context 2.67+1.07 2.3+1.11 9.2x107%
. . 7. Translational efficiency of flanking sequence 83.75+20.11 77.12+21.4 1.1 %1078
deVIatIOH Of the 44 featu reS 8. K-mer: position -12is C 0.13+0.34 0.3+0.46 27x10777
9. K-mer: upstream Asparagine 1.25+1.37 1.61+1.61 40x107%
that were used |n the best 10. K-mer: downstream AUG 1.14%1.15 0.92+1.1 9.2 x 10::;
11. K-mer: upstream A 17.24+7.43 18.81+£7.89 4.0x10
12, K-mer: in-frame upstream Alanine 3.69+2.6 3.1622.29 40x107%
h uman m Od e | . 13. K-mer: upstream Alanine 10.27+4.5 9.38+4.6 62x 107
14. 5’ UTR: percentage G 0.32+0.06 0.3120.05 7.1x107%
15. Codon conservation 0.23+0.42 0.12+0.32 32x107%
16. K-mer: position -3 is A 0.3110.46 0.2+0.4 34x107%
17. K-mer: upstream CCG 2.98+2.43 2.56+2.31 7.1x107%
. . 18. K-mer: downstream CCA 2.04+1.54 1.75%1.45 1.1x107%
PWM p ro ba b | I |ty wel g ht 19. K-mer: position -12is A 0.3+0.46 0.19:0.4 4.0x 1072
20. K-mer: in-frame upstream Methionine 0.07+0.29 0.2+0.48 33x107%
. 21. K-mer: upstream Arginine 12,15+4.34 11.33t4.64 1.5x 1072
m atrlx 22, K-mer: upstream Histidine 1.741.52 1.97+1.65 22x107%
23. K-mer: GCC 6.413.87 5.77+3.75 11x1072®°
[) F ;"1. nt i) 24. K-mer: position 4 is G 0.370.48 0.28+0.45 23x107%
P\\.’I\;I - — [0 g ! 25, K-mer: upstream Threonine 3.56£2.08 3.91£2.19 4.9x107%
\nr,ip < l > 26. K-mer: upstream CGG 3.14+2.51 2.77+2.41 3.2x 1072
')._L; nt 27. K-mer: upstream C 30.4+8.98 28.96+9.04 1.0x 1072
28. K-mer: position -2 is G 0.23+0.42 0.32+0.47 12x1072
29. K-mer: upstream Stop 2.3%1.71 2.66£2.0 1.4x 1072
. g 30. K-mer: UAG 1.34+1.2 1.57+1.35 56x107
E ntrl eS Of pOS |t|0 n_ 31. K-mer: upstream CAU 0.58+0.85 0.73%0.95 3.4x10722
32. K-mer: upstream Serine 9.44+3.29 8.93+3.14 57x 10722
freq uen Cy—m atrl X ( P F M ) . 33. K-mer: downstream Glutamine 3.57£2.01 3.26£1.88 24x 10:21
- 34, K-mer: AGG 4.29+2 51 4.7+2.69 21x107%
35. K-mer: AGC 4.4+2.43 4.0242.19 21x107%
sum Of occurrences Of a 36. K-mer: downstream ACC 1.45£1.26 1.27+1.17 20x107"
37. K-mer: UAA 1.22+1.42 1.51£1.76 6.2x107"°
I t d t t H 38. K-mer: downstream Proline 9.3%5.63 8.56+5.47 35x107"8
n u C eo I e a pOSI IO n I 39. K-mer: upstream CAA 0.75+0.92 0.91+1.06 1.3x107"7
40. K-mer: in-frame upstream Histidine 0.540.77 0.67+0.87 1.7x107"7
d |V| d ed by th e total num be r 4. K-mer: upstream GAU 0.63:0.85 0.77+0.96 21x107
42. K-mer: in-frame upstream GCC 1.21+1.4 1.02+1.22 6.7x107"6
43 K-mer: in-frame upstream GCG 1.14+1.42 0.97+1.27 62x107"

of sequences contained in S. ) PWM negative OREY 1502109 16x 108

Mean value and standard deviation of the 44 features that were used in the best human model (biologically-motivated and PWM features are shown in
bold). All 4,482 true and 49,520 false start sites were considered for this analysis. All listed features showed significant differences between true and false

Reuter et al PlOS Com put B|O| (20 1 6) start sites (P—values < 1.6 x 1078). Note that due to numerical reasons, very small p—-values (< 107'°) are represented as 0.0 in python programming

. language (scipy version 0.17.0). The PWM-scores are based on the test data (compare to Fig 4).
12: €10005170 . .
doi:10.1371/journal.pcbi.1005170.t003
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Evaluation

Accuracy Specificity ‘ Sensitivity Precision AUC Threshold
HEK293
Linear SVR 0.80+0.01 0.80+0.01 \ 0.81+0.01 0.80+0.01 0.80+0.01 0.62+0.01
RBF SVR 0.82+0.01 0.81+0.01 ‘ 0.83+0.02 0.82+0.01 0.82+0.01 0.55+0.02
Polynomial SVR 0.80+0.01 0.80+0.01 \ 0.81+0.02 0.80+0.01 0.80+0.01 0.59+0.02
Linear Regression 0.80+0.01 0.80+0.01 \ 0.81+0.01 0.80+0.01 0.80+0.01 0.55+0.01
Mouse ES

Linear SVR 0.75+0.01 0.75+0.01 ‘ 0.76x0.01 0.75+0.01 0.76%0.01 0.65+0.03
RBF SVR 0.76+0.01 0.76+0.01 0.76+0.02 0.76+0.01 0.76x0.01 0.58+0.03
Polynomial SVR 0.75+0.02 0.75+0.01 0.76+0.02 0.75+0.02 0.75%+0.02 0.62+0.03
Linear Regression 0.76+0.01 0.75+0.01 0.76+0.01 0.75%0.01 0.76+0.01 0.55+0.01
The prediction was repeated 10 times to evaluate the model robustness. Shown are the average performance measures.
doi:10.1371/journal.pcbi.1005170.t002

All human models perform very similarly with accuracies of about 80%

while the average performance of the mouse model is lower with average

accuracies of about 76%,

Reuter et al. Plos Comput Biol

(2016) 12: €10005170
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Is model transferable to other species?

Performance of the best
human HEK293 model
applied to the mouse ES
dataset

- model is reasonably
transferable,

suggests universal
translation code

Reuter et al. Plos Comput Biol
(2016) 12: e10005170

V8

Unbalanced datasets

Mouse ES Mouse ES
Threshold t=0.54 t=0.52

TP TN TP TN
Predicted positive 2,161 4,569 2,273 5,072
Predicted negative 848 15,295 736 14,792
Total 3,009 19,864 3,009 19,864
Accuracy 0.76 0.75
Sensitivity 0.72 0.76
Specificity 0.77 0.74
Precision 0.32 0.31

Balanced datasets

Mouse ES Mouse ES
Threshold t=0.54 t=0.52

TP TN TP TN
Predicted positive 2,161 689 2,273 763
Predicted negative 848 2,320 736 2,246
Total 3,009 3,009 3,009 3,009
Accuracy 0.74 0.75
Sensitivity 0.72 0.76
Specificity 0.77 0.75
Precision 0.76 0.75

doi:10.1371/journal.pchi.1005170.t004
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Alternative start codons of human gene GIMAPS

Lttt I AUG at position

T T T T T T T T T T T -203 is a hot
candidate with
50w T a very high
N T -0 0 KR .~ B TN confidence
©  value of 0.92 of
il being a true

il 1 | start site.

-257 -255 -253 -237 -234 -218 -216 -210 -203 -181 -166 -160 -140 -138 -129 -115 -106 -96 -93 -77 -70 -48 -44 -36 -32 -27
AGG GUG GUG AUA AUC UUG GUG CUG AUG AUG CUG CUG CUG GUG AUC ACG AGG CUG CUG CUG AGG GUG CUG CUG AGG AGG CUG

mRNA sequence position

Predicted start sites were subdivided into 4 confidence groups and highlighted
by different colors and dashed lines:

- very high (best candidates with ¢ = 0.9),

- high (0.8 < ¢ < 0.9),

- moderate (0.7 < ¢ < 0.8) and

- low (t = 0.54 < ¢ < 0.7) initiation confidence c.

Reuter et al Plos Comput Biol
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Mutation matrix

showing the impact Virtual SNP analysis of gene GIMAPS
Of the ﬂanking ( ) C1léG'|a4tp10§Itl1og -‘316 79 8 7 6 54 -3 -2-11 2 3 4 5 6 7 8 9 10 11 12 13
Sequen_ceconte)gtof UCAGUGACUGC CTCACCTCUGGAGGATCAGTGG
4 putatlve start sites A 080080 0.80 | 0.83 | 0.82 0.73 | 0.84 | 0.82 | 0.81 | 0.84 0.85 | 0.83 l 0.80 0.82 | 0.86 0.83 0.86 0.89 | 0.85
of gene GIMAPS5 on P C os 0.80 | 0.64 | 0.83 | 0.81 | 0.75 0.80 | 0.82 0.67 0.78 | 0.81 | 0.82 | 0.86 | 0.79 0.80 0.82 0.81 0.83
the predicted C% G 080|079 079 0.77 0.78 | 0.78 | 0.78 0.76 | 0.80 | 0.74 | 0.80 | 0.80 0.73 0.77 | 0.79 | 0.73
initiation confidence. U 0.76 | 0.78 | 0.83 0.81 | 0.82 | 0.80 0.84 | 0.83 | 0.81 | 0.70 | 0.83 0.80 0.74 | 0.77 | 0.86 | 0.86 | 0.81 0.80 0.7 0.85 0.83 0.84
(B) cUG at position -44
In each case, only -15-14-13-12-11-10 9 8 7 6 -5 4 3 2 11 2 3 4 5 6 7 8 9 10 11 12 13
one nucleotide is C CAGAGCC CUCAGUSGACUGT CT CACTCT CUGGA-A
. A 049|049 0.57 049 | 0.55 | 0.49 | 0.49 | 0.51 0.46 | 0.66 | 0.61 0.54 | 0.52 052|050 0.54 | 0.51 | 0.54 | 0.56
1r:2liLaeter2f\g'[tehn::eeSpeCtg_’ C 0.50 | 0.34 | 0.49 | 0.47 0.48 0.50 | 0.52 | 0.50 | 0.58 | 0.48 ﬂ 0.48 048 054 0.52 | 0.47
. (% G 049048 | 0.49 0.42 0.51 | 0.46 | 0.45 | 0.51 | 0.45 0.57 0.46 0.60 | 0.44 | 0.49 | 0.47 | 0.45 | 0.47 | 0.45 0.48
sequence (top line). ™ |
051|049 | 0.48 | 0.52 | 0.47 | 0.48 | 0.56 | 0.49 049 | 051 | 0.49 0.55 0.45{ 0.50 | 0.46 | 0.51 | 0.50 | 0.50 | 0.50 0.56 053 | 0.50
Grey : start was
predicted as true (C) AUA at position -237
translational start -15-14-13-12-11-10 9 8 7 6 5 4 3 -2 11 2 3 4 5 6 7 8 9 10 11 12 13
(prediCtedinitiation UG GGGGACACACUCCAUAAUCUCUATCUWU
. A 048 049 | 050 | 056 0.54 | 0.49 0.48 0.50 0.50 | 0.63 | 0.51 | 0.50 0.53 | 0.48 | 0.48 | 0.49 | 0.50 048 050 | 0.48
>
\?V?’]nfldentce[‘t 054) P C 048|051 050]033]052 046 045 0.46 0.50 0.46 047 048 | 045 047 | 0.46
| I ef Sda V¥a|3 (% G o046 044 | 0.44 | 0.44 | 0.52 | 0.45 | 0.46 | 0.5 | 0.40 | 0.46 049 | 043 0.44 | 045 | 043 | 0.42 | 0.43 | 045
CtaftSI I€d as 1alse U 050 | 0.48 | 0.52 | 0.52 | 0.48 | 0.48 | 0.47 | 0.49 | 0.50 | 0.52 | 0.45 0.46 | 0.45 0.51 0.49 047 | 0.49
start.
Mutations at the (D) CUG at position -160
start sites itself were -15-14-13-12-11-10 9 8 -7 6 5 4 3 -2 1 1 2 3 4 5 6 7 8 9 10 11 12 13
) c cCucCcCCUWUAMACUGCGUT CUGTC CUTCAACTCUTZ«CTOG C
not considered. The A 023024 025 047|0.26|0.26]025 0.20 025 031 046 033 030 029 031|024 0.25 | 0.26 | 0.26 | 0.30 | 0.28
numberS reﬂeCt the PcC 0.25 0.24 | 0.20 | 0.26 | 0.24 0.24 030 0.31 028 0.29 0.24 | 0.24 0.23
predlcted initiation % G 023|023 024|040 021|025 022|021 022|028 020 0.34 026 032023025 020|020|022|021|020|024]0.24
Conﬁdence ValueS U 025|025 0.44 | 0.25 025|027 | 0.26 | 1027 025 030 0.25 0.27 | 0.24 | 0.23 | 0.24 | 0.25 0.27 | 0.27
v8  Reuter et al Plos Comput Biol Processing of Biological Data 45
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(6) Removing sequence redundancy
Let’'s assume we want to know whether the amino acid composition of certain
protein sequences differs in one genomic region from the other regions.

For example, we want to know whether transmembrane (TM) segments of
membrane proteins are more hydrophobic than the rest of the protein sequence

To check this, we could simply analyze all protein sequences from NCBI, predict
the TM segments in them and compare the amino acid compositions.

However, this search would likely be biased by
- what proteins have been sequenced and which ones not, and

- by duplicated sequencing experiments.

- It is very important to remove sequence redundancy before such analyses!
This can be done by software tools such as CDhit or BlastClust
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BlastClust
blastclust -i infile -o outfile-p F -L .9-b T -S 95

The sequences in "infile" will be clustered and the results will be written to "outfile".

The input sequences are identified as nucleotide (-p F); "-p T", or protein.

To register a pairwise match two sequences will need to be 95% identical (-S 95) over
an area covering 90% of the length (-L .9) of each sequence (-b T) .

https://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
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Take home messages

- Usually one removes sequence redundancy when correlating sequence
features with properties of proteins etc.

- Check for overlapping genes

-  Which isoform is relevant?

There are substantial differences between what is expressed at the transcript
level and what is expressed at the protein level.

CCDS and APPRIS appear good resources.

- Which translated variant is relevant? May want to try PreTIS

Reuter et al. Plos Comput Biol
(2016) 12: e10005170
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