V9 - Functional annotation

Program for today:

- Have all genes been studied with the same intensity?

- Functional annotation of genes/gene products: Gene Ontology (GO)

- significance of annotations: hypergeometric test

- (mathematical) semantic similarity of GO-terms
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High imbalance in intensity of research on individual genes

Frequency of the number of research
publications associated with individual
human protein-coding genes in MEDLINE.

1509 The observed disparity could in principle
2 reflect a lack of importance of many genes.
750
O More likely it reflects
0 - existing social structures of research,

100 10" 102 102 10¢ - scientific and economic reward systems,
- medical and societal relevance,

- preceding discoveries,

- the availability of technologies and
reagents, etc.

No. Publications

Stoeger et al. (2018)
PLoS Biol 16(9): e2006643.
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What determines the number of publications per gene?

Using information on 430 physical, chemical, and biological features of genes,
one can predict the number of publications for single genes with 0.64 Spearman

correlation.
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Stoeger et al. (2018)
PLoS Biol 16(9): e2006643.
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What determines the number of publications per gene?

Individual genes grouped by the embedding technique “t-SNE visualization”
using the 15 most informative features that determine #publications / gene.

Neighboring genes are most similar in these features.
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Earlier studied genes continue to be studied

The number of publications per gene is
highly correlated between the current
decade and preceding time periods of
research (Spearman: 0.84).

- > Predict the number of research publications

No. of publications

using the 430 features of the previous model
AND the year of the first publication on the

specific human gene.

Correlation improves from 0.64 to 0.75.

Stoeger et al. (2018)

PLoS Biol 16(9): €2006643.
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Studies on model organisms affect studies on human genes

Check whether publications reporting the

discovery of new human genes also cite studies

on (other) human or non-human genes.

(1) One group of papers preferentially cited

studies on genes from Mus musculus, Rattus
norvegicus, Bos taurus, and Gallus gallus AND

studies on (other) human genes.

(2) The second group preferentially cited genes
from Drosophila melanogaster, S. cerevisiae, E.
coli, Xenopus laevis, C. elegans, and S. pombe.
but DID NOT cite publications on (other) human
genes,

-> initial reports on human genes have been

particularly influenced by research in model
organisms.

V9

Stoeger et al. (2018)
PLoS Biol 16(9): €2006643.
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Enrichment over cited publications
with at least one human gene

Fraction of nonhuman organisms cited by
initial publications of human genes.
Enrichment represents log2 ratio of the
fraction of nonhuman organisms among all
initial publications on human genes over the
fraction of nonhuman organisms among initial
publications on human genes, which also cite
publications on human genes.

The 10 most cited organisms are shown
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Including the years of the initial reports on homologous
genes improved prediction accuracy of the number of

Human genes <—> homologous genes

publications to 0.87.

' ' ' ' &
31 p=0.87 gl

This is higher than when the year of the initial report on
the human genes themselves is used (0.75).

2

|

- The number of publications on homologous genes 0 , , ,
yielded almost perfect predictions of the number of ogseweh |og102pub|icltions
publications for individual human genes (Spearman:

0.87).

Predicted log, , publications

- Human-specific genes without homologous genes
remain significantly less studied (p-value < 10732),

- The homologous genes of unstudied human genes are
likewise unstudied in model organisms.

Stoeger et al. (2018)

PLoS Biol 16(9): e2006643.
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Attention of genes

Attention = fractional counting of publications;

o N
L\

rather than counting every publication as 1
towards every gene, the value of a publication
towards a given gene is 1/(number of genes

—4 -= NO enrichment

® LoF intolerance

Relative attention

Any GWAS
. . L i’y
considered in the publication). ® Frequent GWAS
-199 ‘ Attentionpublications
Then, sum all the values of publications citing a e ——————
pal’tICU|ar gene Attentionpublications

Genes that have received the most attention in publications are around 3 - 5
times more likely to be sensitive to loss-of-function (LoF) mutations or to have

been identified in genome-wide association studies (GWAS).
If you visit many doctors, one of them will likely find something. If you study a gene in many ways, the
effect of mutations will emerge more likely.

-> A disproportionally high amount of research effort concentrates on already
well-studied genes.

Stoeger et al. (2018)

PLoS Biol 16(9): €2006643. 8

V9 Processing of Biological Data



Scientists working only on model organisms declining

-> Fraction of scientists who—within 100
the indicated year—publish exclusively
on nonhuman genes (or gene
products) or exclusively on human
genes (or gene products), or both.

o
o

Genes

@ only non-human

® only human

@ human and non-human

A O
o O

N
o

Publishing scientists [%]

O =)
1970 1980 1990 2000 2010
Year

The fraction of scientists who exclusively published on human genes had been
stable in the 1980s and 1990s, while

the fraction of scientists working only on nonhuman genes has been steadily
decreasing at the expense of scientists publishing exclusively on nonhuman genes.

Around 2000, the fraction of scientists working on human and nonhuman genes
started to plateau, while the fraction of scientists working exclusively on human
genes increased by approximately 10 percent points and has since been steadily
increasing.

Stoeger et al. (2018)

PLoS Biol 16(9): €2006643.
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What do we know about genes
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Summary

Using machine learning, we can predict the number of publications on individual
genes, the year of the first publication about them, the extent of funding by the
National Institutes of Health, and the existence of related medical drugs.

We find that biomedical research is primarily guided by a handful of generic
chemical and biological characteristics of genes, which facilitated
experimentation during the 1980s and 1990s, rather than the physiological
importance of individual genes or their relevance to human disease.

# of human-curated GO - o o+ %%
. T 2 SL '
annotations for individual genes, % S T -
binned by number of publications § T 1 i L
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Stoeger et al. (2018) log., publications
PLoS Biol 16(9): €2006643.
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Primer on the Gene Ontology

The key motivation behind the Gene Ontology (GO) was the observation that
similar genes often have conserved functions in different organisms.

A common vocabulary was needed to be able to compare the roles of
orthologous (- evolutionarily related) genes and their products

across different species.
A GO annotation is the association of a gene product with a GO term

GO allows capturing isoform-specific data when appropriate. For example,
UniProtKB accession numbers P00519-1 and P0O0519-2 are the isoform
identifiers for isoform 1 and 2 of P00519.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876

V9 Processing of Biological Data
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The Gene Ontology (GO)

Ontologies are structured vocabularies. toic

/ N\
The Gene Ontology consists of celltar mesabolic
3 non-redundant areas: /7 / \
- Biological process (BP) e gty compoun e
- molecular function (MF) = V\ \” \/
- cellular component (localisation). —
Shown here is a part of the BP - =
vocabulary. V

At the top: most general term (root)

RNA metabolic
process

Red: tree leafs (very specific GO terms)
Green: common ancestor

Blue: other nodes.

Arcs: relations between parent and child nodes

PhD Dissertation Andreas Schlicker (UdS, 2010)

V9 Processing of Biological Data
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Simple tree vs. cyclic graphs

a
Parent

Increasing / \
specificity

and/or

granularity

Child

a | Asimple tree, in which each
child has only one parent and the
edges are directed, that is, there
is a source (parent) and a
destination (child) for each edge.

Rhee et al. (2008) Nature
Rev. Genet. 9: 509
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H B
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b | A directed acyclic
graph (DAG), in which each
child can have either one or
more parents.

The node with multiple
parents is colored red and
the additional edge is
colored grey.

V9 Processing of Biological Data
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Parent

Increasing
specificity
and/or

granularity

\/

Child

Gene Ontology is a directed acyclic graph

C

Biological
process (root)

r
I
|4

]
1
Y

Transport

Membrane organization
and biogenesis

|

J s

Vesicle-mediated

trans po rt

Membrane fusion

part_of \

/s

Vesicle fusion

An example of the node
vesicle fusion

in the BP ontology with
multiple parentage.

Dashed edges : there are other nodes not shown between the nodes and the root

node.

Root : node with no incoming edges, and at least one leaf.
Leaf node : a terminal node with no children (vesicle fusion).
Similar to a simple tree, a DAG has directed edges and does not have cycles.

Depth of a node : length of the longest path from the root to that node.
Height of a node: length of the longest path from that node to a leaf.

V9 Rhee et al. (2008) Nature

Rev. Genet. 9: 509

Processing of Biological Data
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relationships in GO

G0:0044699
single-organism
process

G0:0044763
single-organism
cellular process

e

V9
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organization

A

G0:0044085
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Gene

G0O:0065007
biological regulation

is all
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GO:0050789
regulation of
biological process

¢

G0:0050794
regulation of
cellular process

™~

G0:0030031
cell projection
assembly

/

G0:0051128
regulation of
cellular component
organization

¢

GO:0031344
regulation of cell
projection
organization

N

GO:0060491
regulation of cell
projection assembly

Processing of Biological Data

GO0:0044087
regulation of
cellular component
biogenesis

Gaudet, Skunca, Hu, Dessimoz

Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876



Full GO vs. special subsets of GO

GO slims are cut-down versions of the GO ontologies
containing a subset of the terms in the whole GO.

They give a broad overview of the ontology content
without the detail of the specific fine grained terms.

GO slims are created by users according to their needs, and may be
specific to species or to particular areas of the ontologies.

GO-fat . GO subset constructed by DAVID @ NIH
GO FAT filters out very broad GO terms

www.geneontology.org

V9 Processing of Biological Data
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Significance of GO annotations

Very general GO terms such as “cellular metabolic process”

are annotated to many genes in the genome.

Very specific terms belong to a few genes only.

- One needs to compare how significant the occurrence of a
GO term is in a given set of genes

compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

PhD Dissertation Andreas Schlicker (UdS, 2010)
V9 Processing of Biological Data
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Hypergeometric test
min(n,K) (KW) (N—KW)

7 n—1

p-value = Z
e ()

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation 11 is statistically
significant enriched in a given test set of genes compared to the full genome.

N : number of genes in the genome
n : number of genes in the test set
K. : number of genes in the genome with annotation Tr.

k. : number of genes in test set with annotation .

The hypergeometric test provides the likelihood that k.. or more genes

that were randomly selected from the genome also have annotation T.

V9 Processing of Biological Data http://great.stanford.edu/
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Hypergeometric test

Select i 2 k,, genes with

annotation 1 from the genome.

There are K., such genes.

'

min(n,K) (Kw) (

The other n —j genes in the test
set do NOT have annotation .

There are N — K. such genes in
the genome.

p-value = Z

— (

The sum runs from kK
elements to the maximal
possible number of elements.

This is either the number of
genes with annotation 1 in the
genome (K,,) or the number of
genes in the test set (n).

V9

corrects for the number of
possibilities for selecting

n elements from a set of

N elements.

This correction is applied if the
sequence of drawing the
elements is not important.

Processing of Biological Data http://great.stanford.edu/
http://www.schule-bw.de/
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Example
min(n,K ) (KW) (N—KW)

o-Wert = Z 1 n—1i

— ()

r Gene transcription start site

+—==— Curated/inferred gene regulatory domain
n  Ontology annotation (e.g. “actin cytoskeleton”)

Y Genomic region (e.g. ChiP-seq peak)

|8 T T
P9 r9 v® v vyy v v[lyvy
f—— —— :
Hypergeometric test over genes
N = 6 total genes
. . e . Kn = 3 genes annotated with
Is annotation 1T significantly enriched n - 3 genes with an assaciated genomic region
. Kn = 3 genes annotated and with a genomic reqion
in the test set of 3 genes? Pvalue = 0.05 oA genomie rEg

Yes! p = 0.05 is (just) significant.

V9 Processing of Biological Data
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Multiple testing problem

In hypothesis-generating studies it is a priori not clear,
which GO terms should be tested.

Therefore, one typically performs not only one hypothesis with a single term
but many tests with many, often all terms that the Gene Ontology provides
and to which at least one gene is annotated.

Result of the analysis: a list of terms that were found to be significant.

Given the large number of tests performed,
this list will contain a large number of false-positive terms.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)

V9 Processing of Biological Data

http://great.stanford.edu/
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Multiple testing problem

If one statistical test is performed at the 5% level

and the corresponding null hypothesis is true, there is only
a 5% chance of incorrectly rejecting the null hypothesis

- one expects 0.05 incorrect rejections.

However, if 100 tests are conducted and all corresponding
null hypotheses are true, the expected number of incorrect rejections

(also known as false positives) is 5.

If the tests are statistically independent from each other,
the probability of at least one incorrect rejection is 99.4%.

www.wikipedia.org

V9 Processing of Biological Data http://great.stanford.edu/
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Bonferroni correction

Therefore, the result of a term enrichment analysis must be subjected
to a multiple testing correction.

The most simple one is the Bonferroni correction. Here, each p-value is simply
multiplied by the number of tests. This method saturates at a value of 1.0.

Bonferroni controls the so-called family-wise error rate, which is the probability of
making one or more false discoveries.

It is a very conservative approach because it handles all p-values as independent.

Note that this is not a typical case of gene-category analysis.
So this approach often leads to a reduced statistical power.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
V9 Processing of Biological Data http://great.stanford.edu/
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Benjamini Hochberg: expected false discovery rate

The Benjamini—-Hochberg approach controls the expected false discovery rate
(FDR), which is the proportion of false discoveries among all rejected null
hypotheses.

This has a positive effect on the statistical power at the expense of having less
strict control over false discoveries.

Controlling the FDR is considered by the American Physiological Society as
“the best practical solution to the problem of multiple comparisons”.

Note that less conservative corrections usually yield a higher amount of significant
terms, which may be not desirable after all.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
V9 Processing of Biological Data http://great.stanford.edu/
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Comparing GO terms

The hierarchical structure of the GO allows to compare proteins
annotated to different terms in the ontology, as long as the terms
have relationships to each other.

Terms located close together in the ontology graph
(i.e., with a few intermediate terms between them)

tend to be semantically more similar than those further apart.

One could simply count the number of edges between 2 nodes
as a measure of their similarity.

However, this is problematic because not all regions of the GO
have the same term resolution.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876

V9 Processing of Biological Data
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Information content of GO terms

The likelihood of a node t is typically defined in the following way:

How many genes have annotation ¢ | occur(t)
I)anno(f) —

relative to the root node? occur(root )

The likelihood takes values between 0 and 1 and

increases monotonic from the leaf nodes to the root.

Define information content of a node from its likelihood:

IC(t) = —logp(t)
A rare node has high information content.

PhD Dissertation Andreas Schlicker (UdS, 2010)

V9 Processing of Biological Data
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Common ancestors of GO terms

biological_process molecular_function
Common ancestors of | ¢ ) )
two nodes t1 and t2 . (| metabolic process | (  binding
all nodes that are located ( cellular metabolic process | [ nucleic acid binding |
on a path from t, to root AND d p’
cellular macromolecule TR nucleic acid binding
metabolic process [ inding | transcription factor activity

on a path from ¢, to root. ﬁ‘ /n)\n\

[ RNA metabolic process | [regulatory region DNA binding |  [sequence-specific DNA binding |

The most informative "’Il\ ‘B\
common ancestor (MICA) of ("RNA biosynthetic process | [Ua"scriptg’a;egi‘:\'git:;y il ]

terms t, und t, is their ‘h\ x&

common anCGStor W|th = transcription regulatory region
highest information content — RDNMependem ) e

regulation of transcription,
DNA-dependent e ue

Typically, this is the closest -
common anceStO r. [sequence-specific DNA binding

transcription factor activity

Nucl. Acids Res. (2012) 40 (D1):

V9 Processing of Biological Data D559-D564
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Measure functional similarity of GO terms

Lin et al. defined the similarity of two GO terms ¢, und £,
based on the information content of the most informative common ancestor (MICA)

2.IC(MICA)
]C(Il) +IC(12)

SimRel(t1,12) =

MICAs that are close to their GO terms receive a higher score than those that are
higher up in the GO graph

PhD Dissertation Andreas Schlicker (UdS, 2010)

V9 Processing of Biological Data
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GO is inherently incomplete

The Gene Ontology is a representation of the current state of knowledge;
thus, it is very dynamic.

The ontology itself is constantly being improved to more accurately
represent biology across all organisms.

The ontology is augmented as new discoveries are made.

At the same time, the creation of new annotations occurs at
a rapid pace, aiming to keep up with published work.

Despite these efforts, the information contained in the GO database
IS necessarily incomplete.

Thus, absence of evidence of function does not imply absence of function.

This is referred to as the Open World Assumption

Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies
https://arxiv.org/abs/1602.01876 30
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GO annotations are dynamic in time

Example: strong and sudden variation

in the number of annotations with the o Attomatic /f
” PR . <% Computational
GO term "ATPase activity” over time. 1000 = Curatorial

-% Experimental

Such changes can heavily affect the _
estimation of the background :

distribution in enrichment analyses.

To minimize this problem, one should
use an up-to-date version of the
ontology/annotations and

ensure that conclusions drawn hold T
across recent (earlier) releases. Date

Gaudet, Dessimoz,
Gene Ontology: Pitfalls, Biases, Remedies
https://arxiv.org/abs/1602.01876

V9 Processing of Biological Data
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140,000 1

120,000 4

100,000 4

80,000 <

60,000 +

40,000 9

20,000 o

Number of GO-annotated human genes
Between 01/2003 and 12/2003 the
o T e o estimated number of known genes in
—hharier cf Anmctated the human genome was adjusted.

Genes (non-IEA)

Current Number of
68,320 Known Genes

" the Human Genome Between 12/2004 and 12/2005, and

== | between 10/2008 and 11/2009
28.0m87 annotation practices were modified.

9,851

11,890

0

1/1/03 111/04 111105 1/1/06 1y 1/1/08 171709

One can argue that, although the number of annotated genes decreased, the
quality of annotations improved, see the steady increase in the number of genes

with

non-lIEA annotations.

However, this increase in the number of genes with non-IEA annotations is very
slow. Between 11/2003 and 11/2009, only 2,039 new genes received non-IEA
annotations. At the same time, the number of non-IEA annotations increased from
35,925 to 65,741, indicating a strong research bias for a small number of genes.

V9

Khatri et al. (2012) PLoS Processing of Biological Data
Comput Biol 8: €1002375
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Changes to GO terms are recorded

GO:0006915 apoptotic process

) Search' @ w o
Click for example search — S— ——

Web Services Dataset Term Basket: 0

Term Information Ancestor Chart

All changes erm Definition/synonyms
Timestamp Action Category Detail
2013-08-06 SECONDARY | GO:0006917 (induction of apoptosis)
2013-09-06 SYNONYM | apoplosis signaling
2013-09-06 SYNONYM commitment to apoptosis

SYNONYM induction of apoptosis

SYNONYM activation of apoplosis

SYNONYM apoptosis activator activity

SYNONYM induction of apoptosis by p53

A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g.
an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathways) which typically lead
to rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation,
nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. The
process ends when the cell has died. The process is divided into a signaling pathway phase, and an execution phase, which
is triggered by the former.

A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g.
an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathways) which typically lead
to rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation,

:
R

DEFINITION

2012:12:06 | Deleted | DEFINITION | o 00/ fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. The
process ends when the cell has died. The process is divided into a signaling pathway phase and into an execution phase.
which is triggered by the former.

2011-11-24 | Added | SYNONYM apoptosis

Added

2011-11-24 SYNONYM cell suicide

Figure 1 Changes to the “apoptotic process” term. The most recent changes to the GO term “apoptotic process” as displayed in QuickGO [20].
In total there have been 54 changes over the lifetime of the term.

\ A

Huntley et al. GigaScience 2014, 3:4

V9 Processing of Biological Data

33



Gene functional identity changes over GO editions

100

Shading : fraction of genes that retain a
functional identity between GO editions.

®
o

(o2}
o

Semantic similarity is calculated and genes
are matched between GO editions.

N
o

Gene Ontology edition

If a gene is most similar to itself between
editions, it is said to retain its identity.

20 40 60 80 100
Gene Ontology edition

The average fraction of identity maintained in successive editions of GO is 0.971.

This means that, each month, the annotations of about 3% of the genes have
changed so substantially that they are not functionally ‘the same genes’ anymore.

Gillis, Pavlidis, Bioinformatics
(2013) 29: 476-482.

V9 Processing of Biological Data
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Annotation bias persists in the GO

Annotation bias: defined as area under ROC curve for ranking the genes by the
number of GO terms.

If all genes had the same number of GO terms, the annotation bias would be 0.5.
At the other extreme, if there are only a few GO terms used and they are all
applied to the same set of genes, then the bias is 1.0.

A 0.86 B 0.76

S o g™ gomy

5 a S 074 °% 08

< 0.82 . < -0.81

§ - g 0.73} - ! e

§ o8 § o072 ° .\a\m

E 0.78 ,-"”“ g 071 ;7 ‘:.';.

< » < 07} om ’ ‘hf’mhﬂ“ |

0.76
0.69
0 50 100 0 20 40 60 80 100
Human Gene Ontology edition Yeast Gene Ontology edition

(A) Annotation bias has risen among (B) For yeast, annotation bias has
human genes over time. Genes with generally fallen over time.

many annotations have become more
dominant within GO over time.

Vo Gillis, Pavlidis, Bioinformatics Processing of Biological Data
(2013) 29: 476-482. 3



Evidence Evidence code description

code
IDA
IEP
IGI
IMP
IPI
ISS
RCA
IGC
IEA
IC

TAS

NAS
ND
NR

Inferred from direct assay

Inferred from expression pattern

Inferred from genetic interaction

Inferred from mutant phenotype

Inferred from physical interaction

Inferred from sequence or structural similarity
Inferred from reviewed computational analysis
Inferred from genomic context

Inferred from electronic annotation

Inferred by curator
Traceable author statement

Non-traceable author statement
No biclogical data available
Not recorded

*October 2007 release

V9

Source of evidence

Experimental
Experimental
Experimental
Experimental
Experimental
Computational
Computational
Computational

Computational

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Indirectly derived from experimental or computational  Yes
evidence made by a curator

Indirectly derived from experimental or computational ~ Yes
evidence made by the author of the published article

No ‘source of evidence' statement given Yes
No information available Yes
Unknown Yes

Where do the Gene Ontology annotations come from?

Manually Current number
checked

of annotations*
71,050
4,598
8,311
61,549
17,043
196,643
103,792

4
15,687,382
5,167

44,564

25,656
132,192
1,185

Rhee et al. Nature Reviews Genetics 9, 509-515 (2008)
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IEA: Inferred from Electronic Annotation

The evidence code IEA is used for all inferences made

without human supervision, regardless of the method used.

The IEA evidence code is by far the most abundantly used evidence code.

Guiding idea behind computational function annotation:
genes with similar sequences or structures are likely

to be evolutionarily related.

Thus, assuming that they largely kept their ancestral function,
they might still have similar functional roles today.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876.

Published in : Methods in Molecular Biology
Vol1446 (2017) — open access!
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Effect of high-throughput experiments

High-throughput experiments are another source for annotation bias.

They contribute disproportionally large amounts of annotations
by only few published studies.

This information is further propagated by automated methods.

The huge body of electronic annotations (evidence code IEA) has
therefore a strong influence on semantic similarity scores.

Weichenberger et al. (2017)
V9 Scientific Reports 7: 381 Processing of Biological Data
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Influence of electronic annotations (IEA): BP scores

Average simLin/fsAvg score distributions for a_

BP ontology for human/mouse protein pairs. n
Shown are mean BP scores for different human proteins o —
and in each case 1000 randomly selected mouse proteins.
- the IEA(+) dataset (black solid lines, density computed 5
from 93806 annotated proteins) and J
- the IEA(-) dataset (grey lines, 21212 annotated proteins). 0 -

Density

I I I I I

0.0 0.1 02 0.3 0.4
Mean functional similarity BP score

No random pair has SS > 0.4 - good threshold to distinguish random / non-random

Manually annotated protein pairs (grey) show a clear peak at a score of 0.15.

Including IEA evidence generates a second peak close to 0.0. A large portion of this
peak can be attributed to the roughly 70000 human gene products, which are
exclusively annotated with IEA evidence codes

Weichenberger et al. (2017)

V9 Scientific Reports 7: 381 Processing of Biological Data
39



Influence of electronic annotations on MF + CC scores

(b) MF based score distribution.
Unlike BP, this ontology is
characterized by a more uniform
distribution of scores, with a notable
peak near 0.27, generated by ca.
1600 proteins.

GO enrichment analysis of these
proteins shows that they are
significantly enriched in “protein
binding” (GO:0005155, p < 107100),

This suggests that gene products
annotated to this term generally
yield much higher than average
simLin/fsAvg MF scores.

Weichenberger et al. (2017)
Scientific Reports 7: 381

b C

15 = 15 “

10 — 10

5 - 5 -

| 1 I I I ! I I | I

0.0 0.1 0.2 03 0.4 0.0 0.1 0.2 0.3 0.4
Mean functional similarity MF score Mean functional similarity CC score

(c) CC score distribution. Here, both manual
and electronic annotation peaks are closer to
each other than in the other 2 ontologies.
Electronic annotations have higher densities in
the upper score range (>0.3), where the
manual annotation scores have already tailed
off.

V9 Processing of Biological Data
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Compare methods to measure functional similarity

s and t : two GO terms that will be compared semantically
S(s, 1) : set of all common ancestors of s and t.

Resnik (simRes) simRes(s, t) = m:{dx }I (c)
cES(s, 1
Lin (simLin) simLin(s, t) = max 2 - 1(c)
ces(s,t) I(s) + I(t)
. : _ 2 - I(c)
Schlicker (simRel) simRel(s, ) = max (1 — P(c))
ceS(s,t)\ I(s) + I(t)
2 - max I(¢) (
information coefficient (sim/C) simlIC(s, t) = cES(s,1) | 1
’ I(s) + I(t) 1 — max I(c)
\ ceS(s,t)
Jiang and Conrath (simJC), simJCs, t) = L
1 + I(s) + I(t) — 2 - max I(c)
ceS(s,1)

graph information content (simGIC). sSimGIC(s, 1) = 2

€1{S(s,s) m:;(r,n}f(f)

Weichenberger et al. (2017) Zi'EiS(:«',ﬂ US(HHI(E)

V9 Scientific Reports 7: 381 Processing of Biological Data
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Mixing rules
Given:

protein P that is annotated with m GO terms t,, ¢,,.., t,, and
protein R that is annotated with n GO terms r, r», .., I;,.

Then the matrix M is given by all possible pairwise semantic similarity (SS) values
s;j = sim(t;, r;) with sim being one of the SS measures introduced above,
i=1,2,...,mandj=1,2, .., n.

Functional similarity is computed from the SS entries of M according to a specific
mixing strategy (MS).

Several mixing strategies have been suggested:

fsMax uses the maximum value of the matrix, fsMax = max;; s;,

1

mxn

fsAvg takes the average over all entries, fsA vg =

Zs,.;“q{r"

Weichenberger et al. (2017)
V9 Scientific Reports 7: 381 Processing of Biological Data
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Mixing rules
Using the maximum of averaged row and column best matches

has been suggested for incomplete annotations, |
fsBMM = max( > max:s, —Z max s.

m Joi 1
Instead of taking the maximum, averaging gives the so-called best match average

faBMA = —( Z maxs; + z max s. )

2 \m EiJ

Conversely, the averaged best match is defined as

fsABM = (Z}.lrr1u.:»~:_f:~;Eij + Z,.max!.sﬁ)

m-n

A combined functional similarity F is computed by combining any of the semantic
similarities for the different ontologies: biological process (Fgp), molecular function
(Fye), and cellular component (F¢c):

Bf’-— MF — J P + FU:L)
Fypymrycc = \/ F(F gp T Fyr + Feo)

Weichenberger et al. (2017)
V9 Scientific Reports 7: 381 Processing of Biological Data

)

43



Optimal functional similarity score

a Human/mouse

Test: see whether functional similarity score can 1.00~ - = L

distinguish true homologues from random gene pairs. e e - grif\

s 0.755:::,: e i, (s
Top: scatter plot of BP (x-axis) and MF (y-axis) scores g ;:;;; I n e el
(IEA* dataset) of orthologous gene pairs (circles) “_é 05055 "‘j;l ., . L %l |
and randomly selected gene pairs (crosses) from § : "“*"'5‘-;’;
human/mouse. 2025 L ri
Solid/dashed iso-lines: 2D density function of the _ 025‘@050 T 075 o
2 distributions for cases and controls. . Biological process

A 7

Bottom: 1D density function of the FBP*MF scores for T ——
cases (solid line) and controls (dashed line). °'C°§P+hﬁéiimg,g",fsB&fscoﬂe'“c

Their crossing point defines the optimal threshold for
minimizing the error rate.

Weichenberger et al. (2017)
Scientific Reports 7: 381
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Optimal functional similarity score
Comment:

The human/mouse comparison is based on a cyclic argument:
- Orthologues are defined on the basis of sequence similarity

- Then we test whether their GO-annotations are more similar than for random
protein pairs. BUT many GO annotations are made based on sequence
similarity.

Thus, this is more a test for consistency rather than a real proof.

Weichenberger et al. (2017)
Scientific Reports 7: 381
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Optimal functional similarity score

(b) Human/fly

orthologues and controls with
their associated sim/C/fsBMA
scores.

-> Slightly larger overlap than for
human/mouse.

Weichenberger et al. (2017)

Scientific Reports 7: 381
V9

) Human /fly
1.00

0.75

20 By
A e

0. ..ﬂ:'-'.’ ciensl g “'_'1.') co ®
Too 025 o050 075  1.00
Biological process

2

1

ob0 025 050 075  1.00
BP+MF simIC/fsBMA score
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Summary

The GO is the gold-standard for computational annotation of gene function.
It is continuously updated and refined.

Issues in GO-analysis

protein annotation is biased and is influenced by different research interests:
- model organisms of human disease are better annotated

- promising gene products (e.g. disease associated genes) or specific
gene families have a higher number of annotations

- gene with early gene-bank entries have on average more annotations

Hypergeometric test is most often used to compute enrichment of GO terms in
gene sets

Semantic similarity concepts allow measuring the functional similarity of
genes. Selecting an optimal definition for semantic similarity of 2 GO terms and
for the mixing rule depends on what works best in practice.
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