V10 Multi-omics data integration

Program for today:
- Data integration methods
- multi-staged approaches
- meta-dimensional analysis
- Multiomics factor analysis (MOFA) + example
- Similarity network fusion (SNF) + example

- Outlook: rethink data analysis
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Today, we will consider the issue of analyzing multiple types of omics-data
and correlating this with e.g. clinical data.

We will first classify the existing approaches on how the analysis is done, step-
wise or simultaneously.

Then we will discuss 2 methods in more detail, SNF and MOFA.
You will implement and apply the SNF method in assignment #5.



Benefits of multi-omics data from a biological viewpoint

Main motivation behind combining different data sources:
Identify genomic factors and their interactions
that explain or predict disease risk.

(1) Additional data dimensions may compensate for missing or unreliable
information in any single data type

(2) If multiple sources of evidence point to the same gene or pathway, one can
expect that the likelihood of false positives is reduced.

(3) Itis likely that one can uncover the complete biological model only by
considering different levels of genetic, genomic and proteomic regulation.

Ritchie et al.

Nature Rev Genet 16, 85 (2015)
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Link to this review paper: https://www.nature.com/articles/nrg3868
Regulation and deregulation take place on different layers.

By including multiple data types, we hope to capture more aspects e.g. why
and how deregulation may lead to disease processes.

The first point — circumvent missing data in one data dimension — may sound a
bit childish. As if the available methods work so poorly that we need ,,tricks*
to overcome this.

This may be partly true. But there are many reasons why data points are
missing, not only imperfect omics methods. Some points simply cannot be
measured.

The second point is always true. If one has independent evidence from
multiple directions, the confidence about a finding increases.

The third point is also true. Eventually we like to understand basically every
aspect about cell biology. However, we are still far away from this stage.



Multi-omics: genotype -> phenotype mapping
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Shown here are different levels of molecular omics data: genome, epigenome,
transcriptome, proteome and metabolome

Within each level and also between different levels, there exist heterogeneous
data.

Arrows indicate the flow of genetic information from the genome level to the
metabolome level and, ultimately, to the phenome level. The red crosses
indicate inactivation of transcription or translation.

Abbreviations:

LOH stands for ,,loss of heterozygosity* = one parental copy of a gene is lost
due to a chromosomal (mutational) event.

CNV stands for ,,copy number variation* = a type of duplication or deletion
event that affects a considerable number of base pairs (kb up to Mb).

CSF, cerebrospinal fluid;
Me, methylation;

TFBS, transcription factor-binding site.



Example how multiple data types may interact
a (Dcveis ) o -."vPlRl\,',zI:' b Zs\l 'ﬁk
Example e 1P cestradiol (E,) — I\/)\Rf C;‘ EE(F\C{IS\/
involving 3 well- i
. Y y
studied pathways SO cout ;.,.,,,;.4..,?27t'('='l'T om,
for breast cancer: [l T Oaeiblion € (200
oestrogen
metabollsm, DNA Oxidation Oxidation NK CDK inhibitors
damage repair | . l
Cyclin D=CNX4 and
£ 25 E. 3,45¢ Cyelin D-CDK6
and the cell cycle 7100 miquinon T
KIP/CIP CDK
Flimination Flimination mhihin
Cyelin F=CDK?
E-230 GSls  Inactivated by ﬁ G5l g 340
quinone ™" conjugation with = olirone
glutathione
e DNA damage 4—}
Ritchie et al. L )
Nature Rev Genet
YCNV 7 Comman variant Rarevariant £ Methylation Gene un Frotein
16, 85 (2015) © ¢ ® A < ; Q- ‘
V10 Processing of Biological Data WS 2021/22
4

In this purely hypothetical example taken from Ritchie et al., we illustrate
that an analysis that assesses variation of only a single omic data type can
miss complex models that require variation across multiple levels of
biological regulation.

It is now established that oestrogen can cause DNA damage if it is not properly
metabolized. Two genes, cytochrome P450 1A1 (CYPIAI) and CYPIBI,
participate in the first step of oestrogen breakdown. The metabolite created by
CYP1B1 (4-OHE, catechol oestrogen) creates a more carcinogenic form of
oestrogen by-product than that metabolized by CYP1AL.

In this hypothetical scenario, a copy number variation (CNV) in CYPIAI
(label 1 in the left figure) reduces activity, and single-nucleotide
polymorphisms (SNPs) in CYP1BI (label 2) increase activity, resulting in
higher levels of carcinogenic by-products. Additionally, multiple rare variants
in the gene coding for the enzymes caffeic acid 3-O-methyltransferase
(COMT; label 3), glutathione S-transferase wl (GSTM1) and glutathione S-
transferase 01 (GSTT1I; label 4) reduce the metabolism (i.e. degradation) of
carcinogenic by-products, resulting in a higher level of DNA damage. Even so,
these variations may not increase the risk of cancer if the DNA damage repair
pathway can offset the increase in carcinogenic metabolites. However,
hypermethylation of X-ray repair cross-complementing 1 (XRCCI; label 5)
and variation in the gene expression of XRCC3 (label 6) result in reduced



transcription levels, and this repair pathway may no longer be able to adequately keep
DNA repair at necessary levels (see right figure). Finally, dysregulated protein
expression of genes in the cell cycle pathway — for example, in cyclin-dependent
kinase 1 (CDK1; label 7) — may result in a rate of cell replication that is higher than
average and therefore DNA damage (right figure). The end result can lead to an
abundance of damaged cells (that is, breast cancer cells). In this hypothetical model,
all of the variation mentioned above is required to pass the threshold into cancer
development. Therefore, only an analytical approach that integrates data from the
genome, transcriptome and proteome would identify the full model.



Methods for data integration

Ritchie et al. classify multi-omics data integration methods into
these 2 classes:

(1) Multi-staged approaches consider different data types in a
stepwise / linear / hierarchical manner.

(2) Meta-dimensional approaches consider different data types
simultaneously.

Ritchie et al.

Nature Rev Genet 16, 85 (2015)
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Multi-staged analysis is conceptually much simpler than meta-dimensional
analysis.



Multi-staged analysis: eQTL analysis
Steps: (1) associate SNPs with phenotype; filter by significance threshold

(2) Test the SNPs that are associated with phenotype with other omic data.
E.g. check for the association with gene expression data -> eQTL (expression
quantitative trait loci). Also: methylation QTLs, metabolite QTLs, protein QTLs ...

(3) Test omic data used in step 2 for correlation with phenotype of interest.
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The idea of this stepwise approach is to not only identify a biomarker-SNP, but
also understand how the SNP leads to the phenotypic change.

For example, analysis of expression quantitative trait loci (eQTLs) tries to
identify elements of genetic variation associated with measures of quantitative
gene expression.



Multi-staged analysis: allele specific expression (ASE)

b Allele-specific expression In diploid organisms, some genes show
(PoliD) differential expression of the two alleles.

— Similar to the analysis of eQTL SNPs,
/ \ ASE analysis tries to correlate single alleles

with phenotypes.

ASE analysis tests whether the maternal or

I | paternal allele is preferentially expressed.
" o° A Then, one associates this allele with cis-
A "henotype L. . . . .
/A element variations and epigenetic modifications.
A
Ritchie et al.
Nature Rev Genet 16, 85 (2015)
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This is another example of a multi-staged analysis.

In the top figure, the black and orange lines symbolize the two copies of the
chromosome inherited from father and mother.

In the example, the RNA polymerase would preferentially bind to the promoter
of the paternal copy of a gene (yellow) and hence produce more mRNA
transcripts from it (short black lines, middle) than from the orange allele.

In the first step of this multi-stage analysis, one checks for allele specific
expression.

In the second step, one tries to link the obtained results (which genes show
allele specific expression?) to variations in promoter/enhancer elements or to
epigenetic variations.



Meta-dimensional analysis: concatenation-based integration

Concatenation-based integration SNP matrix Gene expression matrix miRNA matrix

a 3 O g R

bq Meta-dimensional analysis can be divided into 3 categories.

a | Concatenation-based integration involves combining data
sets from different data types at the raw or processed data level
into one matrix before modelling and analysis.

L 4
° ® /A Challenges:
OAA - - what is the best approach to combine multiple matrices that
include data from different scales in a meaningful way?
- the high-dimensionality of the data is inflated further (number

of samples < number of measurements per sample)

Ritchie et al.

Nature Rev Genet 16, 85 (2015)
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Now, we turn to the case when multiple data types are analyzed at once. This
is called meta-dimensional analysis.

In this area, we can distinguish 3 types of approaches: concatenation-based
integration, transformation-based integration, and model-based integration.

We will start with data concatenation where multiple data types are available
in individual data matrices.

This is illustrated in the top line. The blue square contains SNP data — what
nucleotide does each patient have at each SNP position?

The red square contains transcriptomics data — what are the expression levels
of all genes for each patient?

The purple square contains miRNA data — e.g. what is the expression level of
all miRNAs for each patient?

If one concatentates all this data into one matrix, this matrix may become
pretty large. Also, the solution space may become severly underdetermined
because there are typically many more variables than samples (patients).



Meta-dimensional analysis: transformation-based integration
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The second type of approaches involves independent mapping or data
transformation of the separate data types prior to integrating them.



Meta-dimensional analysis: transformation-based integration
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transformation-based integration miRNA-seq data, and DNA methylation data
are deep learning studies. for HCC patients from TCGA.
RNA-Seq Methylation MIRNA-Seq .
Semien - msskies - ssees All data were preprocessed appropriately.
moutlayer Q. QG P P A
TCGA cohort
o (log-rank P value 0.00000713)
" o
Hidden layer — S1(105)
' \\"”/‘ - -y — 52(255)
WiS9% : -
DL S
Bottleneck layer \(‘»// ‘5 o
Pl 2z,
70N i
Hidden layer g, ‘% 3 g ~
] S
=N
° Al
Reconstructed ’ 0 2 4 6 8 10
e ‘ Years
Chaudhary et al. Clin Cancer Res.
V10 24:1248-1259 (2018) Processing of Biological Data WS 2021/22

Link to the Chaudhary paper: https://pubmed.ncbi.nlm.nih.gov/28982688/

From the TCGA HCC project, the authors obtained 360 tumor samples with
coupled RNA-seq (15,629 genes after preprocessing), miRNA-seq (365
miRNAs ) and DNA methylation data (19,883 genes ).

From the DNA methylation data, they considered CpG islands within 1500 bp
ahead of transcription start sites (TSS) of genes and averaged their methylation
values.

Missing values were processed in the following way: First, the biological
features (e.g. genes/miRNAs) were removed if having zero value in more than
20% of patients. The samples were removed if missing across more than 20%
features. The other missing values were imputed with the impute function from
R impute package. Lastly, input features with zero values across all samples
were removed. (Comment: such features contain no information -> are not
useful for the deep learning approach.)

The 3 types of omics features (contained in 3 matrices that are unit-norm
scaled by sample) were then stacked into a unique matrix

Then, an autoencoder, a deep learning framework, was trained. Its topology is
shown in the top figure. The authors used the activity of the 100 nodes from
the bottleneck hidden layer as new features. They then conducted univariate
Cox-PH regression on each of the 100 features, and identified 37 features
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significantly (log-rank p-value <0.05) associated with survival. These 37 features
were subjected to K-means clustering, with cluster number K ranging from 2 to 6.
Using silhouette index and the Calinski-Harabasz criterion, they found that K=2 was
the optimum with the best scores for both metrics.

Survival analysis on the full TCGA HCC data showed that the survivals in the two
sub-clusters are drastically different (log-rank p-value =7.13e-6, right figure).

In association with clinical characteristics, the more aggressive subtype (S1) has
consistent trends of association with higher TP53 inactivation mutation frequencies.
Association of stemness markers (KRT19, EPCAM) with S1 subtype is also in
congruence with the literature. Moreover, S1 subtype is enriched with activated Wnt
signaling pathway.

10



Meta-dimensional analysis: model-based integration

¢ Model-based integration ¢ | Model-based integration is the process of
a C1 [ | performing analysis on each data type
l l l independently.
This is followed by integration of the resultant
. 00 A +° 00‘ Y ;‘:?A .r:tc;c::z to generate knowledge about the trait of
i .
° A ® 14 ¢ AA

A A

A
°0°A
OAA
A

Ritchie et al.

Nature Rev Genet 16, 85 (2015)
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This is the third type of meta-dimensional analysis.

11



Example of model-based integration: icluster

The main idea behind iCluster is that tumor subtypes can be modeled as unobserved
(latent) variables that can be simultaneously estimated from copy number data, mRNA
expression data and other available data types.

Let's assume we have one only data type (expression data) available and the input data
is already correctly clustered into K clusters (or appropriately labeled e.g. by tumor

subtype)..
Then, we can formulate a Gaussian latent variable model:
X=WZ+e¢

where X is the mean-centered expression matrix of dimension p x n (no intercept),
Z = (z4,..., Zx-1)" is the cluster indicator matrix of dimension (K-1)xn ,

W is the coefficient matrix of dimension p x (K-1), and

€ = (g4,..., &p)’ is a set of independent error terms with zero mean.

Shen et al. Bioinformatics 25: 2906 (2009)
V10 Processing of Biological Data WS 2021/22

The icluster method is presented in this paper:
https://academic.oup.com/bioinformatics/article/25/22/2906/180866



Example of model-based integration: icluster2

The basic concept of iCluster is to jointly estimate Z = (z,,..., Zk-1)', the latent tumor
subtypes, from, say, DNA copy number data (denoted by X, a matrix of dimension p4
x n), DNA methylation data (denoted by X,, a matrix of dimension p, x n), mMRNA
expression data (denoted by X3, a matrix of dimension p; % n) and so forth.

iCluster model

Mmatlxolnmm s onA 06;. [G'"“n;“ ] Mkvol;l;ADan
p3 X3 X4
T T T T T

The mathematical form ;:‘:2:
of the integrative model is z

X1 = W1 Z+ €1

X2 = Wg Z+ €2

Xnm=WnZ+ep

where m is the number of genomic data types available for the same set of samples.

V10 Processing of Biological Data WS 2021/22

Shen et al. Bioinformatics 25: 2906 (2009) "

Actually, the matrix Z (cluster indicator e.g. for the latent tumor subtypes) is
not known. This is what we want to derive.

Here, we set up separate latent models for each data type. Each of them
contains the same Z matrix.

W and Z are then obtained by an expectation maximization (EM) approach.



Example of model-based integration: icluster2
Application of icluster2 to data from iCluster Naive Integration
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Shen et al. Bioinformatics 25: 2906 (2009) "

This application is presented in:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035236

This example shows that iCluster yielded better separated clusters than
standard PCA (termed ,,naive integration* here).

14



Comparison of MOFA, GFA and iCluster on simulated data
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(a) Estimated number of factors. The solid horizontal line denotes the true number of
simulated factors (K =10). and the dashed horizontal line indicates the initial number
of factors (K =20). Each bar represents a different model realization of the simulated
data. (b) Pearson correlation coefficient between pairs of inferred latent factors for
individual trials. For each factor, shown is the maximum correlation coefficient with any
of the remaining factors. Factors were simulated to be uncorrelated. (c) Pearson
correlation coefficient between true and inferred factors (for the top ten factors in each
fit). For each factor, shown is the maximum correlation coefficient with any of the true
factors.
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vio  Argelaguet et al Mol Syst Biol.  Processing of Biclogical Data WS 2021/22
14, 8124 (2018) 15

There exist different tools to identify latent factor models.
They use different methods to identify the factors.

The authors of the lastest methed termed MOFA compared their tool to the
earlier tools GFA and iCluster using simulated data.

Presumably, the simulation of data is done in the reverse way from how these
methods work.

In the left plot, the authors showed that MOFA identified the correct number of
factors.

In the middle plot, MOFA gave the smallest correlation between the factors
(which were constructed to be uncorrelated).

In the right plot, both iCluster and MOFA factors were well correlated to the
correct factors.

15



Method 1: Multiomics Factor Analysis (concatenation-based)
A Model overview: MOFA takes M

Samples Factors
g\ §| HHE data matrices as input (Y',..., YM),
g F=222E one or more from each data
# 2Es: = modality, with co-occurrent samples
T

but features that are not necessarily
related and that can differ in
numbers.

L

im’zgr‘cg MOFA decomposes these matrices
into a matrix of factors (Z) for each
sample and M weight matrices, one
for each data modality (W?,.., WM).

White cells in the weight matrices
correspond to zeros, i.e. inactive
features. Cross symbol in the data
matrices denotes missing values.

Q: What are the underlying factors that
drive the observed variation across
samples?

vio  Argelaguet et al Mol Syst Biol.  Processing of Biclogical Data WS 2021/22
14, 8124 (2018) 16

Link to this paper: https://www.embopress.org/doi/10.15252/msb.20178124

16
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vio  Argelaguet et al Mol Syst Biol.  Processing of Biclogical Data WS 2021/22

Multiomics Factor Analysis

MOFA can be viewed as a generalization
of principal component analysis (PCA) to
multi-omics data.

The fitted MOFA model can be queried for
different downstream analyses, including
(i) variance decomposition, assessing the
proportion of variance explained by each
factor in each data modality,

(ii) semi-automated factor annotation
based on the inspection of loadings
(coeffs in the weight matrices) and gene
set enrichment analysis,

(iii) visualization of the samples in the
factor space and

(iv) imputation of missing values, including
missing assays.

No comments

17



Multiomics Factor Analysis
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Application of MOFA to a study of chronic lymphocytic leukaemia
A. Study overview and data types. 4 data modalities are shown in different rows
and N samples in columns. Missing samples are shown using grey bars.

MOFA identified 10 factors.

(B) Proportion of total variance explained (R2) by individual factors for each assay.

vio  Argelaguet et al Mol Syst Biol.  Processing of Biclogical Data WS 2021/22
14, 8124 (2018) 18

We applied MOFA to a study of chronic lymphocytic leukaemia (CLL), which
combined ex vivo drug response measurements with somatic mutation status,
transcriptome profiling and DNA methylation assays.

Nearly 40% of the 200 samples were profiled with some but not all omics
types; such a missing value scenario is not uncommon in large cohort studies,
and MOFA is designed to cope with it

Among the 10 identified factors, factors 1 and 2 were active in most assays,
indicating broad roles in multiple molecular layers (B). In contrast, other
factors such as Factor 3 or Factor 5 were specific to two data modalities, and
Factor 4 was active in a single data modality only. Cumulatively, the 10 factors
explained 41% of variation in the drug response data, 38% in the mRNA data,
24% in the DNA methylation data and 24% in the mutation data

18



Multiomics Factor Analysis
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D. Absolute loadings of the top features of Factors 1 and 2 in the Mutations data.
E. Visualization of samples using Factors 1 and 2. The colors denote the IGHV
status of the tumors; symbol shape and color tone indicate chromosome 12
trisomy status.

F. Number of enriched Reactome gene sets per factor based on the gene
expression data (FDR < 1%). The colors denote categories of related pathways.

vio  Argelaguet et al Mol Syst Biol.  Processing of Biclogical Data WS 2021/22
14, e8124 (2018) 19

The loadings describe the contributions of the features to each factor. For
example, based on the top weights in the mutation data, Factor 1 was aligned
with the somatic mutation status of the immunoglobulin heavy-chain variable
region gene (IGHV), while Factor 2 aligned with trisomy of chromosome 12.
Thus, MOFA correctly identified two major axes of molecular disease
heterogeneity and aligned them with two of the most important clinical
markers in CLL.
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Multiomics Factor Analysis

The latent factors can be used for several purposes, such as:

(1) Non-linear dimensionality reduction: the latent factors can be fed into non-
linear dimensionality reduction techniques such as UMAP or t-SNE. This is very
powerful because you can detect variability or stratifications beyond the RNA
expression!

(2) Imputation: factors can be used to predict missing values, including entire
missing assays.

(3) Predicting clinical response: factors can be fed into Cox models to predict
patient survival.

(4) Regressing out technical variability: if a factor is capturing an undesired
technical effect, its effect can be regressed out from your original data matrix.
(5) Clustering: clustering in the latent space is much more robust than in the
high-dimensional space.

(6) factor-QTL mapping: factors are a compressed and denoised representation
of your samples. This is a much better proxy for the phenotype than the
expression of individual genes. Hence, a very promising area is to do eQTL's
with the factors themselves!

vio  Argelaguet et al Mol Syst Biol.  Processing of Biclogical Data WS 2021/22
14, e8124 (2018) 20

UMAP and t-SNE are modern tools to visualize e.g. the results of single cell
transcriptomics. Here, the authors argue that the identified latent factors
contain additional information over the transcriptomics alone.

If one is able to parametrize perfect latent factors, these factors contain
basically ,,every information* that can be of interest.



Application of MOFA

Cell Systems

Genomic Rewiring of SOX2 Chromatin Interaction
Network during Differentiation of ESCs to
Postmitotic Neurons
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In Brief

In this work, Bunina et al. profiled
transcriptome, proteome, and chromatin
accessibility dynamics during
differentiation of mouse embryonic stem
cells to postmitotic neurons, They
revealed extensive associations between
molecular layers within and across
differentiation time points and uncovered

an unexpected interaction of two
. chromatin-bound proteins, SOX2 and
el o ATRX, in neurons. Their role in regulating

vio  Bunina et al. Cell Systems 10, Processing of Biclogical Data WS 2021/22
480-494.e8 (2020) 2

Application of MOFA:
https://www.sciencedirect.com/science/article/pii/S2405471220301885

Cellular differentiation requires dramatic changes in chromatin organization,
transcriptional regulation, and protein production. To understand the regulatory
connections between these processes, Bunina et al. generated proteomic,
transcriptomic, and chromatin accessibility data during differentiation of
mouse embryonic stem cells (ESCs) into postmitotic neurons

21



Input to MOFA
MOFA R package version 1.2.0 was used for the analysis (Argelaguet et al., 2018).

ATAC-seq peak counts (4 replicates, 4 time points), RNA gene counts (4 replicates,
4 time points) and protein counts (2 replicates, 4 time points), all variance-
normalized, were used as input to the model with default parameters and 3% factor
drop threshold.

The downstream analysis of the model output was performed with ranked lists of
top factor loadings (genes or proteins or ATAC-seq peaks) in each data modality
(converted to ensembl gene IDs) as input for gene set enrichment analysis (GSEA
(Subramanian et al., 2005)), using mouse gene ontology annotations as a
reference list.

Each ATAC-seq peak was linked to the nearest gene and these nearest gene lists
were used for GSEA.

vio  Bunina et al. Cell Systems 10, Processing of Biclogical Data WS 2021/22

480-494.e8 (2020) 22

ATAC-seq measures chromatin accessibility.
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Application of MOFA
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Changes in Proteome, Transcriptome, and Chromatin during Neuronal Differentiation
(Left) Scheme of neuronal differentiation protocol and experimental set-up (LiF,
leukemia inhibitory factor; RA, retinoic acid).

(Right) Overview of ATAC-seq, RNA-seq, and proteomics data. All except distal ATAC-
peaks are aligned by genes. Distal ATAC-peaks are only partially shown due to the
high number.

N : number of ATAC-seq peaks (or genes if no ATAC-peak is present).

vio  Bunina et al. Cell Systems 10, Processing of Biclogical Data WS 2021/22
480-494.e8 (2020) 2

(Left) The differentiation protocol transforms mouse ESCs into glutamatergic
neurons.

Briefly, ESCs were cultured on feeder-free gelatin-coated plates for 2 passages
in ESC medium containing 20 ng/ml LIF protein (leukemia inhibitory factor).

Differentiation starts upon transfer of the cells and removal of LIF from the
medium, leading to the formation of embryoid bodies.

On days 4 and 6, retinoic acid (RA) at a final concentration of 5 uM was added
to the medium.
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Application of MOFA
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MOFA identified three latent factors (LFs) that explained a major part of the
variance in at least one dataset (Top figure).

(Bottom) The common factor (LF1) separated early (days O and 4) from late
(days 8 and 10/12) differentiation, suggesting that drastic changes in cellular
processes after neural induction strongly involve all three regulatory layers.
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Method 2: Similarity Network Fusion (transformation-based)

Q@  Original data b patient milartty mat C  Patient smilarty networks . .
b T e Aim of SNF: discover
e e»o @ patient subgroup clusters
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Patients

Huang et al. Front Genet. 8: 84 (2017)
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O Patents Patent simidarty: m

Anna Goldenberg

(a) Example representation of mMRNA expression and
DNA methylation data sets for the same cohort of patients.

(b) Patient-by-patient similarity matrices for each data type.

(c) Patient-by-patient similarity networks, equivalent to the patient-by-patient data.
Patients are represented by nodes and patients' pairwise similarities are represented
by edges.

vio  Wang et al. Nature Methods Processing of Biological Data WS 2021/22
11, 333 (2014) 25

The method ,,similarity network fusion* was developed by the group of Anna
Goldenberg at Toronto.

This is the paper that presented SNF:
https://www.nature.com/articles/nmeth.2810

SNF follows a very intuitive principle. Shown here are only the first steps of
the algorithm.

(a) Ilustrates the raw data.

(b) Based on the data of (a) one computes the similarity between all pairs of
samples (here: patients), e.g. by the measure of cosine similarity or any
other suitable definition.

(c) The pairwise similarities are converted into edge weigts of a patient-vertex
graph. In the upper row, the strongest similarities are found for the 3
bottom right node pairs. In the right figure, this is represented by ,,thick*
edges. In the lower row, the highest similarities are observed in the top left
corder of the similarity matrix (middle figure). This then leads to thicker
lines between the top nodes

You will implement SNF in assignment #5.
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Similarity Network Fusion
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(d) Network fusion by SNF iteratively updates each of the networks with similarity
information from the other networks, making them more similar with each step.

(e) The iterative network fusion results in convergence to the final fused network.
Edge color indicates which data type has contributed to the given similarity.

vio  Wang et al. Nature Methods Processing of Biological Data WS 2021/22
11, 333 (2014)

L Qb%pdo <%p> O@ 8>9

O Patients  Patient simiarity: ——— mRNA-based ——— DNA based by all data

In step (d), an iterative exchange takes place between the networks
representing different data types.

In (e), only one converged network remains that represents the consensus or

average of the different networks.
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Similarity Network Fusion
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This example was presented by the Goldenberg group in their SNF paper. In
the literature, there are differing opinions whether there exist 2, 3, or 4
subgroups of GBM patients.

The figures on the left represent 3 different data types for a group of 215
glioblastoma patients: DNA methylation (1,491 genes), mRNA expression
(12,042 genes) and miRNA expression (534 miRNAs)

As expected, networks built using a single data type yielded very different
patterns supports of patient similarity. For example, DNA methylation strongly
supports connectivity in the smallest patient cluster (a), whereas mRNA
expression supports similarity in the medium-sized cluster (b). It is difficult to
discern patterns in the patient-similarity network based on miRNA data alone
(c). The fused network gives a much clearer picture of clustering in this set
of patients with GBM, illustrated by the tightness of connectivity within
clusters and relatively few edges between clusters (d).

The smallest cluster (subtype 3) corresponds to the previously identified IDH
subtype consisting of younger patients with a substantially more favorable
prognosis. All patients with an /DH mutation for whom the information was
available (n = 14 patients) belong to this cluster. Subtype 1 patients had a
favorable response to temozolomide (TMZ), a drug commonly used to treat
GBM.
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The network analysis goes beyond subtyping. Each edge in the fused network is
colored by the data type(s) that contributed to the given similarity. A multicolor cluster
means that no single data type or combination support patient similarity across GBM.
Most edges were supported by at least two data types: 49.5% of all patient similarities
(edges) were due to two data types, 17.2% were supported by all three data types and
the remaining 33.3% of the edges were supported by only one data type, with strong
enough similarity that those edges remained prominent in the fused network.

The GBM analysis highlights 3 important features of the network-based integrative
approach:

(i) the ability to detect common as well as complementary signals;
(i1) the ability to reduce noise by aggregating across multiple types of data; and

(iii) insight into the relative importance of each data source for determining patient
similarity, thus refining our understanding of the heterogeneity within each subtype.
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Application of SNF: pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that typically
presents at an advanced stage and is refractory to most treatment modalities.

A whole-exome sequencing study of pancreatic cancer identified a large number of
mutations and somatic copy number alterations (SCNAs) that alter the function
of many key oncogenes and tumor suppressor genes, including KRAS, TP53,
SMAD4, and CDKN2A.

Germline alterations in DNA damage repair genes such as BRCA1, BRCA2,
PALB2, or ATM give rise to genomic instability in a subset of PDACs.

The majority of PDACs harbor complex chromosomal rearrangement patterns.

TCGA, Cancer Cell 32, 185-203.e13 (2017)

V10 Processing of Biological Data WS 2021/22
28

Link to this paper:
https://www.sciencedirect.com/science/article/pii/S1535610817302994

This is an example where a different group (here, the TCGA consortium)
applied the SNF tool.
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Genomic alterations in PDAC
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Whole-exome sequencing identified somatic DNA alterations, including single
nucleotide variants (SNVs), small insertions and deletions (indels), and
SCNAs.

Significant recurrent mutations were identified in the genes KRAS, TP53,
CDKN2A, SMAD4,RNF43, ARID1A, TGFR2, GNAS, RREBI1, and
PBRM1.

The authors also observed recurrent mutations in several genes at false
discovery rates (FDRs) above a threshold of q = 0.1, including mutations in
other known oncogenes, DNA damage repair genes, and chromatin
modification genes.

About definition of ,,margin®, see
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/margin

The edge or border of the tissue removed in cancer surgery. The margin is
described as negative or clean when the pathologist finds no cancer cells at the
edge of the tissue, suggesting that all of the cancer has been removed. The
margin is described as positive or involved when the pathologist finds cancer
cells at the edge of the tissue, suggesting that all of the cancer has not been
removed.
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TCGA, Cancer Cell 32, 185-203.e13 (2017)
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RRPA profiles: protein concentrations

(A) Unsupervised
consensus clustering of
RPPA protein expression
data for 45 of the 76 high-
purity samples.

(B) Cox survival analysis
between clusters
(p = 0.045).

Unsupervised consensus clustering of protein expression measured on a 192-

antibody array for 45 of the 76 high-purity samples identified four clusters
(panel A) that exhibited significant differences in survival (panel B).

,,RPPA* stands for ,,reverse phase protein array and measures protein

concentrations.

KRAS is a member of the RAS-signaling cascade that transmits external
growth signals to the cell. 93% of the samples carry KRAS mutations.

30



Genomic alterations in PDAC
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Differences in proteomic pathway activity scores across RPPA cluster/class

TCGA, Cancer Cell 32, 185-203.e13 (2017)

V10 Processing of Biological Data WS 2021/22
3

Analysis of pathway activity between clusters identified significantly different
scores for epithelial-to-mesenchymal transition (EMT), apoptosis,
TSC/mTOR, cell_cycle, and receptor tyrosine kinase (RTK) pathways.

Tumors from cluster 3 (light blue), which had better survival (see panel B),
were characterized by low EMT and apoptosis pathway activity, but high
TSC/mTOR and RTK activity.



PDAC: integrated analysis with SNF
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Link to this paper:
https://www.sciencedirect.com/science/article/pii/S1535610817302994

To integrate information from multiple platforms, the authors performed
Similarity Network Fusion (SNF), which has been shown to produce
homogeneous, clinically relevant subtypes in multiple TCGA studies.

They applied SNF to the high-purity cohort using sample-to-sample
similarities derived from mRNA, miRNA, and DNA methylation. They found
a two-cluster solution that was independent (p = 0.79) of tumor purity and a
three-cluster (plus one outlier) solution that was associated (p = 0.025) with
tumor purity.

The clusters defined by SNF were highly concordant with results obtained
from miRNA, IncRNA, or mRNA alone.



Rethink: why do we do analysis of omics-data?

(1) Analysis of general phenomena
- Which genes/proteins/miRNAs control certain cellular behavior?
- Which ones are responsible for diseases?

- Which ones are the best targets for a therapy?

(2) We want to help an individual patient
- Why did he/she get sick?

- What is the best therapy for this patient?

V10 Processing of Biological Data WS 2021/22
33

This is a short reflection on the whole course ,,processing of biological data®.

In principle, this review should come at the end of the last lecture next week,
but that lecture will probably end with some recommendations how to prepare
for the final oral exam. Therefore I have moved these slides to the end of this
lecture.

In the course, we have covered a number of techniques for preprocessing of
data. Often, we need to decide before the analysis which samples to include
and which samples to eliminate because e.g. too many data points are lacking.

The criteria for our decisions will — on the one hand — depend on how much
data is available. We will address this on the next slide.

Also, the criteria will depend on the research question we ask.

Do we want to analyze a general phenomenon? Or do we want to help an
individual patient?
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Rethink: how should we treat omics-data?

(1) Analysis of general phenomena
- We typically have ,enough“ data + we are interested in very robust results

- ->we can be generous in removing problematic data (low coverage, close
to significance threshold, large deviations between replicates ...)

- We can/should also remove outliers and special cases from the data
because we are interested in the general case.

V10 Processing of Biological Data WS 2021/22

The recommendation formulated here only apply in the case when we have
,enough* data.

E.g. in machine learning, a role of thumb is that we should have at least 5 data
points for every feature that we use in a regression model/ML model. If we use
n features, we should have > 5n data points.



Rethink: how should we treat omics-data?

(2) We want to help an individual patient
- Usually we only have 1-3 data sets for this patient (technical replicates)
we cannot remove any of this data

if there exist technical problems with the data, we need to find a
practical solution for this because the patient needs to be treated

- If there are problems in the data, we have to report this together with our
results -> low confidence in the result or in parts of the result

V10 Processing of Biological Data WS 2021/22
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For a single patient, we will typically only get 1-3 technical replicates. This is

it. We have to live with this data and do ,,the best we can‘‘.
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Outlook

Insights gained from omics approaches to disease are mostly comparative.

We compare omics data from healthy and diseased individuals and assume that
this difference is directly related to disease.

However, in complex phenotypes both “healthy” and “disease” groups are
heterogeneous with respect to many confounding factors such as population
structure, cell type composition bias in sample ascertainment, batch effects, and
other unknown factors.

E.g. sex is one of the major determinants of biological function, and most
diseases show some extent of sex dimorphism.
Thus, any personalized treatment approaches will have to take sex into account.

Differentiating causality from correlation based on omics analysis remains an
open question.

Hasin et al. Genome Biology
V10 18:83 (201 7) Processing of Biological Data WS 2021/22

After completing the analysis of a data set, we will (hopefully) arrive at some
statistically significant conclusions. Does this mean that these conclusions are
,true®?

Yes, they are true given the data we analyzed. But this may not necessarily
mean that they are true in a biological / medical sense.

The reason is that — sometimes — the derived conclusions are affected by
additional confounding factors. A well-known example is the question
whether drinking coffee increases your risk of cancer. See

https://cebp.aacrjournals.org/content/25/6/951 .long
for the latest update on this issue.

Previous epidemiologic studies had evaluated the potential association
between coffee consumption and risk of lung cancer, but the results were not
consistent. An important aspect to consider is the potential confounding effect
from tobacco smoking, a known cause of lung cancer, which in many
populations is associated with coffee drinking. An positive association between
coffee drinking and lung cancer risk is justified by the fact that coffee contains
agents which may cause cancer under experimental conditions, such as
acrylamide, which is formed at very low levels during the roasting of coffee
beans. In contrast, other agents present in coffee have been reported to exert an
anticarcinogenic effect, including the diterpenes cafestol and kahweol.
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Anyhow, this study concluded with good news: ,,when the potential confounding
effect from smoking is controlled for, coffee drinking does not appear to be a lung
cancer risk factor. “

We will turn to this issue — the analysis of confounding factors — in our last lecture
next week.
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