
In today‘s lecture, we will discuss the detection of differentially expressed
genes between samples from two groups.
The 2 groups may correspond to healthy and disease conditions or to two
sequential stages in cellular differentiation.
Traditionally, gene expression was measured by DNA microarrays.
Since 2015 or so, this has been replaced more and more by next generation
sequencing, namely the RNAseq technology.
But there still exists a lot of useful expression data in public repositories that
was measured by microarrays.
So, bioinformaticians will keep analyzing this data in the coming years.
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We will start with some basics about the microarray technology.
Essentially, microarrays detect the hybridization (binding) of single-stranded
DNA stretches of the probe to single-stranded DNA probes that were
chemically fixed in the wells of the microarray chip.
Each well contains many copies of the same DNA fragment.
The fragments have a typical length of 40-60 nt. If they were much shorter, 
then multiple DNA stretches could bind to them -> loss of specificity.
If they were much longer, this would increase the costs for production, and
carry the danger that the DNA fragment finds a way to hybridize with itself -> 
loss of accessibility.
So if we want to apply DNA microarrays to measure the abundance of mRNAs
in the sample, we first need to reverse-transcribe the mRNAs into cDNA.
Also, we need a detectable readout. For this, we label the cDNA stretches with
a fluorescent dye molecule.
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If we use 2 different fluorescent dye molecules that emit at different light 
colors (e.g. green and red light), then we can detect to which sample the
majority of cDNA/mRNA belonged to.
Remember: we are not measuring the original mRNA abundance. A cell often
only contains 1 – 10 copies of individual mRNA molecules. Detecting this on 
a chip is practically impossible. This can only be done by mass spectrometry.
Also, we measure the amount of labeled cDNA that was obtained after several
chemical processing steps. Each of them has its own efficiency.
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Here, we review the findings of a large-scale comparison that tested the
reproducability of MA experiments.
This is the link to the paper on the MACS study: 
https://www.nature.com/articles/nbt1239
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ABI – NCI are the 7 different microarray platforms tested. The segments
labeled A to D are the 4 titration pools. The right system termed NCI shows
higher variability.
The boxplots illustrate the coefficient of variation (y-axis left), the zig-zag 
lines at the top indicate the number of detected genes (y-axis right).
For each segment, there are 3 data distributions representing 3 different test
sites.
The authors concluded in the abstract of their paper that there exists
“intraplatform consistency across test sites”.
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The authors concluded in the abstract of their paper that there exists “a high 
level of interplatform concordance in terms of genes identified as differentially 
expressed.”
We will explain in a bit how differentially expressed genes are determined by
different algorithms.
There is a follow study termed MACS-II:
https://www.nature.com/articles/nbt.1665 that compared linear models for
tumor outcome based on MA expression data
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Here, we present an overview of the various steps of microarray data analysis.
The individual steps listed on the flow chart will be explained on subsequent 
slides.
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Box plot, PCA and density plot are different ways to visualize the distribution
of data points in the individual samples, see also lecture #2 slide 21.
In the case shown here, no apparent outlier is visible.
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Normalization is crucial for analysis of microarray data, see also lecture #2 
(quantile normalization of proteomics data).
The manufacturers of the microarray chips typically recommend particular
normalization strategies that may (or may not?) be best suited for the data
produced with their devices.
Usually, it is easiest to follow these instructions. This also avoids most of the
trouble with reviewers of your manuscripts.
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It is not possible to give a universal threshold above which fold changes
should be considered „significant“.
One aspect is statistical significance. This cannot be answered by analyzing
fold changes.
Another aspect is biological relevance.  For some genes, a small fold change 
may already be very relevant to the cell. For other genes,  only larger fold 
changes may induce a phenotypic change.
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The standard deviation measures the typical deviation of single data points
from the average.
But how about the standard deviation of the average itself?
This is measured by the standard error of the mean.
It is obtained by dividing the standard deviation by the square root of the
number of data points.
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The student t-test compares the magnitude of the effect (e.g. what is the
different of the averages of 2 sample groups) to the standard error of the mean.
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To measure the statistical significance of the obtained t-values (effect over sd), 
the so-called t-distribution is used.
It is tabulated.
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The 1-sample t-test compares the mean value of a normally distributed
population to a particular value.
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The 2-sample t-test compares the averages of two distributions.
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The name of this plot reflects that the data usually has the shape of an inverted
volcano.
Each data point is typically the difference in gene expression of one gene
between samples from 2 groups, e.g. healthy vs. disease.
Each gene is characterized by its fold-change of expression (x-axis) and by the
statistical significance (y-axis) that will depend on the number of samples.
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Now we come to the detection of outlier points.
In gene expression data, an outlier can be a problematic gene or a problematic
sample.
As will be later demonstrated, it is crucially important to identify and remove
problematic outlier genes/samples before the further processing of the data set.

Link to the paper: https://www.longdom.org/open-access/robust-detection-of-
outlier-samples-and-genes-in-expression-datasets-jpb-1000387.pdf
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Grubbs’ test can be used to test the presence of one outlier and can be used 

with data that is normally distributed (except for the outlier) and has at least 7 

elements (preferably more).
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The Generalized Extreme Studentized Deviate (ESD) Test (Rosner 1983) is a 
generalization of Grubbs’ Test and handles more than one outlier. It is widely
used.
In GESD, you essentially run k separate Grubbs’ tests to detect one or more 
outliers in a univariate data set that follows an approximately normal 
distribution.
See e.g. https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm 
or https://www.astm.org/standardization-
news/images/nd15/nd15_datapoints.pdf
for more infos.
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No comments.
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The median absolute deviation (MAD) is a measure of statistical dispersion (or 
variability) of the data in a population. 
https://eurekastatistics.com/using-the-median-absolute-deviation-to-find-
outliers/ states:
One of the most common ways of finding outliers in one-dimensional data is 
to mark as a potential outlier any point that is more than two standard 
deviations, say, from the mean. 
But the presence of outliers is likely to have a strong effect on the mean and 
the standard deviation, making this technique unreliable. 
As the standard deviation is based on squared distances, extreme points are 
much more influential than those close to the mean. 
Thus it is preferential to use a measure of distance that's robust against 
outliers. A good candidate for this job is the median absolute deviation from 
median, commonly shortened to the median absolute deviation (MAD).
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No comments.
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This slide shows you examples on real data sets for tumor patients from the
TCGA data portal. 
They are labeled COAD (for colon adenocarcinoma), GBM (glioblastoma), 
HCC (hepatocellular carcinoma), OV (ovarian cancer). 
Measured is the auto-correlation of the expression of single genes. Without
data outliers, the value should be 1.
Shown on the x-axis is the magnitude of the outlier points in multiples of
standard deviation.
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Here, we did a test with synthetic data that was generated by randomly
drawing data points from a Gaussian distribution (SDS1-3) or from a Poisson
distribution (SDS4).
Into these data sets, we introduced outlier data points of a certain magnitude at 
known positions.
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Shown here is the clustering result.
The outliers were introduced at positions 50 and 100. This was perfectly
detected by clustering.
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This slide shows clustering of the same data as the slide before.
Shown on the x-axis is the silhouette coefficient that measures how well this
data point fits into its current cluster.
A high value indicates that the object is well matched to its own cluster and 
poorly matched to neighboring clusters.

26



We compared the three algorithms GESD, MAD, and Boxplot in terms of their 
ability to identify simulated outliers in 100 generated datasets in the form of 
SDS3. 
Each outlier gene was modeled to have 5 known outlier values out of 50 
points. 
The GESD algorithm was able to detect at least four out of five outlier values 
in 46 out of 50 outlier genes on average. 
In contrast, MAD and Boxplot on average detected four out of five outlier 
points in only 33 and 34 genes, respectively, and some outlier points of the 
other outlier genes. 
On average, 31 outlier genes were commonly detected by all algorithms. 
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Wolfgang Huber from EBI is the developer of several important software
packages for detecting differential expression, e.g. DESeq and DESeq2.
He is also on the advisory board of the Bioconductor initiative.
Here, they analyzed whether removing outliers improves the detection of
differentially expressed genes.
Link for this paper: 
https://www.sciencedirect.com/science/article/pii/S0888754310000042

The developers of the arrayWeights method argued in 
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-
261
„that "bad" arrays are usually not entirely bad. Very often the lesser quality 
arrays do contain good information about gene expression but which is 
embedded in a greater degree of noise than for "good" arrays. “
In their method, an array with exp γ j = 2 is twice as variable as a typical array 
and will be given half weight in an analysis.
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Here, the authors analyzed 7 experimental data sets.
If all data points are used (white bars), only few genes are detected as
differentially expressed.
If they remove outliers identified by boxplots (black bars), the largest number
of DE genes is detected.
E-MEXP-170 with over 4000 DE genes likely suffers from a confounding 
effect of treatment or experiment date.
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The previous slide only showed that the number of DE genes increases when
outliers are removed.
Does one also find the same genes?
With the exception of experiment E-GEOD-3419 (top left), the outlier removal 
strategy identifies almost all genes detected using the weighting method
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Compared with using all arrays, removal of random arrays leads to a loss of 
power and hence fewer genes are detected. In contrast, outlier removal and 
array weighting increased the numbers of differentially expressed genes.
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Listed are the biological pathways that are enriched in DE genes.
From the biological design of the experiment, these findings are to be
expected.
However, one finds them only to be significant after removing the problematic
sample outliers.
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GESD and MAD identified very similar problematic samples.
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As mentioned before, the RNAseq technique has replaced microarrays since
several years.
Importantly, RNAseq provides much more information about individual 
samples, because it also detects sequence mutations, isoforms etc.
It can be applied to novel organisms without reference genome and without
availability of a standardized chip.
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Unfortunately, the methodology for detecting DE genes from RNAseq data is
not as mature yet as for microarray data.
One clear point is that assuming a Poisson distribution for the observed read
counts is too unflexible in that both variance and mean must be equal to l.
This is not observed in reality.
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The variance of data points is also termed „dispersion“.
Thus, if the variance is greater than the mean, one speaks of „over-dispersion“. 
One way of modelling their dependence is by a polynomial with linear and
quadratic term. The „dispersion factor“ alpha describes the magnitude of the
quadratic term.
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How should one decide which differential expression analysis method is the
best one?
This can only be done based on a gold-standard dataset when the correct
answer is known.
But it is usually not known what genes are differentially expressed. This is
what we expect from the method.
One suitable strategy is to add synthetic data points with known
concentrations.
Here, the authors added quantities of 92 synthetically generated
oligonucleotides (250 – 2000 nt long) to the probes.
This strategy is termed „spike-in“.
These 92 oligonucleotides are then used as gold-standard set.
Link to this paper: 
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2013-14-9-r95
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This test on spike-in probes was successful, but an AUC of 0.78 is far from
perfect.
Maybe this is due to the medium size of the data set and the definition of the
two classes (undifferentiated 1:1 and differentiated which contains all other
mixing ratios).
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Here, the authors used a larger set of 1000 genes from the MACQ benchmark
and the expression values determined by rtPCR.
Differential expression was determined based on the log2-transformed data.
Now, all AUC values are quite good (between 0.86 and 0.89) and similar to
eachother.
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This test shows that one should not compare methods only at one fixed
threshold.
Probably such methods are preferable that show a consistently high 
performance over a range of parameters.
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Link für Li-Paper:
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6502-7

RPKM is one of the most-often used normalization methods.
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FPKM is analogous to RPKM.
But there exist many other normalization methods.
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There exists already a number of benchmark studies, but no consistent trends
are apparent yet.
DESeq2 is often among the best-performing methods, but not always.
Li et al. found for the benchmark MAQC dataset that their own method 
performed best.
I guess the jury is still out what method will make it in the long run.
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This paper by the group of Julien Gagneur presents a Deep Learning 
(autoencoder) method termed Outrider to identify outliers in RNAseq data.
The left figure illustrates schematically how the autoencoder transforms raw
counts into so-called controlled counts.
Now, the yellow-colored field clearly represents an outlier that was not 
detectable in the raw counts.
The right figure presents two ways of representing expression data. 
The upper example belongs to gene TRIM33, the lower example to the gene
SLC39A4 (a membrane transporter).
For SLC39A4, two clear outliers are visible both in the sample rank plot as
well as in the Q-Q plot for the p-values.
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Link to this paper: https://www.nature.com/articles/s41467-020-14561-0

Large-scale projects such as GTEx have produced very valuable and costly
datasets. However, many of these methods used bulk sequencing, not single-
cell sequencing.
Can one decompose / deconvolute these data sets into the contributions of
individual cell types?
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The idea is to steer the convolution by providing a certain amount of single-
cell sequencing data either from human or from mouse.
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Deconvolution was done using the CIBERSORT software that uses nu-support 
vector regression to split up samples into groups.
The details of nu-support vector regression are not relevant at this point.
CIBERSOFT software: https://www.nature.com/articles/nmeth.3337
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The upper plot shows the convolution of human bulk liver sequencing data
into 15 different cell types present in human livers.
The middle plot shows a deconvolution of the same bulk data into 5 broad
types of mouse liver cells.
The bottom plot shows a deconvolution of the same data when the data of the
top plot is collapsed into seven broad types.

Interpretation: scRNA-seq generated from human and mouse liver captured 
similar cell types.
Technical differences, including the number of cells analyzed and tissue 
sampling methodology, affect the cell type resolution.
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CIBERSOFT software: https://www.nature.com/articles/nmeth.3337
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CIBERSOFT software: https://www.nature.com/articles/nmeth.3337
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CIBERSOFT software: https://www.nature.com/articles/nmeth.3337
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The .CEL files produced from Affymetrix chips and the .idat from Illumina
chips are most common.
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