
Today, in lecture #5, we will discuss the issue of identifying peaks in a series
of data points.
This is a typical problem in diverse areas of bioinformatics and in data analysis
in general.
Of course, there exist many different solutions.
Which one is most suitable for a particular problem depends a lot on the kind
of data.
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In computer science, one typically deals with very accurate data.
In the 1D example shown on the right, one can easily see that the red-circled
entries in fields 2 and 5 are local peaks.
They fulfil the simple requirement that they shouldn‘t be smaller than their left
and right neighbors.
Algorithms for finding peaks in such perfect data are described e.g. in the
classic book by Cormen et al. with the title „Introduction to Algorithms“.
In contrast, bioinformaticians must detect peaks in inherently „noisy“ data = 
data that is subject to sizeable fluctuations due to biological and technical
variation.
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As first example, we will discuss the case of histone modifications. 
These are an important type of epigenetic marks and consist of
posttranslational modifications (methylation, acetylation, phosphorylation …) 
of lysine and other amino acids in the N-terminal flexible tails of histone
proteins.
Shown in the figure are the two marks H3K36 me3 (tri-methylation of
lysine36 of histone #3) and H3K27me3 along the genome sequence.
Also marked are the exons of two genes, FBXO7 and SYN3. The vertical lines
or bars indicate the position of exons.
H3K36me3 is typically enriched in the gene body region (inside the gene, not 
in its promoter or enhancer regions) and associated with active gene 
transcription.
H3K27me3 is typically a repressive histone modification of nearby genes.
Histone marks can be detected by the ChIP-seq method that will be explained
on the next slide.
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Experimentally, histone marks are nowadays ususally detected by the ChIP-seq
method (Chromatin Immuno Precipitation followed by sequencing) that is
illustrated on the left.
First, DNA is crosslinked to bound proteins e.g. by applying formaldehyde, 
see right figure. 
Formaldehyde crosslinking is routinely employed for detection and 
quantification of protein-DNA interactions, interactions between chromatin 
proteins, and interactions between distal segments of the chromatin fiber.
The DNA-protein mixture is then sheared into ~500 bp DNA fragments by 
sonication (application of ultrasound, induces DNA vibrations) or by digesting 
the free DNA ends with the enzyme DNA nuclease.
Then, an antibody is added to the mixture that is attached to a bead that can
later be used to „fish“ the antibodies from the sample. One selects for this a 
particular antibody that binds selectively e.g. to a histone protein carrying a 
particular histone mark.´The antibodies are then „fished“ from the solution. 
Subsequently, the protein-DNA crosslinks are broken up and the DNA is
sequenced.
One assumes that all DNA prepared in this way was bound e.g. to the histone
protein carrying the particular histone mark.
This experimental strategy is quite labor intensive and costly.
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Every histone mark needs to be detected in a separate experiment using a different 
special antibody.
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Now we discuss the output of the final sequencing step of a ChIP-seq
experiment.
One obtains sequencing reads that belong to the DNA sequences that were
„protected“ by the protein of interest (e.g. a histone protein) against digestion
by DNA nuclease or against DNA breakage during sonication.
Thus, one can assume that these DNA sequences bind specifically to the
protein of interest. Of course, these regions will not only consist of the DNA 
stretch that makes physical contacts with the protein. The regions will extend a 
bit further. The sequencing reads may also contain further regions that are
included by accident (experimental noise or unspecific binding events).
Some of this noise can be suppressed by performing several replicate
experiments.
One checks which regions show a higher coverage (enrichment) over the
background of the full genome.
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MACS is a very popular tool to detect peaks in ChIP data.
It considers the average read coverage in a window relative to the background.
The Poisson distribution (compare V4) is a statistical distribution that is often
used to model stochastic processes.
Here, one assumes that obtaining NGS reads from a genomic sample is such a 
stochastic process. 
Regions in the upper tail of the distribution (default 10-5) are reported as peaks.
Needed for this is an estimate of the lambda parameter.
MACS does not use a uniform lambda for the full sample, but a local lambda
for the local segment.
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Thomas et al.: https://www.ncbi.nlm.nih.gov/pubmed/27169896
This is a comparison of several tools that are used to identify ChIP-seq peaks.

GEM is a 2-step method. In the second step, GEM also considers the motif
content of the analyzed sequences (red circle).
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Presented here is a protocol to generate synthetic ChIP data.
Link to Zhang et al. paper: 
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.100015
8
Gap regions in the UCSC genome assembly are excluded. Also, repetitive 
regions are excluded (row 2).
In row 3 row, we place synthetic transcription factor binding sites that should
be detected by the ChIP-seq protocol.
In row 4, we select a suitable (blue colored) probability distribution for the
expected read coverage (looks like a Poisson distribution) of the background
and assign a coverage to each sequence region. Based on this distribution, 
many regions will get an average (low) coverage. Few regions will get a high 
coverage (darker blue).
For the binding sites, we use a different (green) probability distribution for
their coverage (row 5).
In row 6, the coverage of each binding site is adjusted to follow somehow a 
Gaussian profile.
Finally, in the bottom row, we generate synthetic sequence reads. Their
coverage matches the previously assigned coverage values.
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It makes quite a difference whether one assumes a uniform background or
varying backgrounds. For a uniform background, every nucleotide position in 
the background is given one as its sampling weight. For a varying background, 
every adjacent 1-kb block in the background is given a random weight drawn 
from a pre-specified underlying distribution and all nucleotide positions in a 
block are assigned the same weight.
The authors distinguished 4 regions of varying tag counts: low / medium / high 
/ ultra-high. Tag clusters with low and high (including ultrahigh) tag counts are 
almost certain to be background and binding sites, respectively. Because there 
is a mixture of signals, the true identities of the clusters with medium tag 
counts are much less certain, and thus some form of thresholding is necessary.
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(left) The sensitivity is also called true positive rate (TRP) or recall. TRP = 
TP / P = TP / (TP + FN). 
The more peaks exist (x-axis from the left to right: 101, 102, 103, 104), the
better all methods perform in terms of sensitivity.
(Middle) Precision PPV is also called positive predictive value. PPV = TP / 
(TP + FP)
Precision measures how many identified peaks are correct. Here, the
performance decreases steadily from left to right. The more peaks exist, the
more difficult it is to detect the correct ones.
(Right) The F1-score is a measure that combines sensitivity and precision. It is
the harmonic mean of precision and sensitivity F1-score = 2 ⋅ PPV ⋅ TPR 
/(PPV + TPR) 
Consequently, it shows an optimal performace near 102 reads.

This comparison was done based on a simulated data set for which the correct
answer is known.

10



Here, ChIP-seq was used to identify binding positions of the transcription
factor Tbx5 on the genomic DNA. This example shows real data.
The precise binding motif where a transcription factor binds to DNA is known
for many transcription factors including Tbx5.
One can identify such motifs e.g. with the MEME tool by checking for often
occurring DNA strings in the ChIP-data for this transcription factors.

Here, several methods can identify the precise location of about half the Tbx5 
binding positions to about 10 bp and even more to about 100 bp. 
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This is the cumulative distribution of the plot on the previous slide.
About 90% of the regions are detected within 1000 bp.
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H3K36me3 is a mark that is characteristic for actively transcribed genes.
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Summary by Thomas et al.
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In the second example of this lecture, we will discuss the task of identifying
peaks in mass spectroscopy data.
We have already introduced the basic principle of MS in lecture V2.
This is a quick reminder of the main principles.
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Shown here is the MS spectrum of the simple alkane molecule pentane shown
at the bottom.
A carbon atom has mass 12 Da, a hydrogen has mass 1 Da.
Hence, the mass of an intact pentane molecule with 5 carbon atoms and 12 
hydrogens is 5 x 12 + 12 x 1 = 72 Daltons.
This is the right-most peak in the upper spectrum. Apparently, this molecule
was detected with charge z = 1, giving a m/z ratio of 72.
Also detected are peaks at 57 Da (4 carbons with 9 hydrogens – meaning that
one of the terminal carbon atoms has 3 hydrogens attached to it, the other one
has 2 hydrogens),
43 Da (3 carbons with 7 hydrogens), and at 29 Da (2 carbons with 5 
hydrogens).
The peak at 43 Da is highest showing that ionization of pentane mostly
produces fragments with 3 carbon atoms.
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This is the main protocol for processing of raw MS m/z data and identification
of peaks.
First, the raw data is smoothened (a -> b). This suppresses many small
intensity peaks.
Then, (b -> c) a baseline signal is removed (this is high (4000 to 6000 
intensities) at small m/z values, and converges to an intensity of around 1000 
for large m/z.
This step makes sure that one can identify peaks against a uniform background
intensity of 0.
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In this benchmark, the authors compared 12 tools that use various strategies
for smoothing (S), baseline correction (B) and for peak finding (P).
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A typical approach for smoothing of the raw data is to replace actual values
y(n) or y(t) by averages taken over a local region.

The simplest approach is a „moving average filter“. Here, one simply adds
the values of the k values to the left and the k values to the right to the central
value and divides the sum by 2k +1.
This average is then assigned as smoothened value to the central data point.

An alternative is applying a Gaussian filter that takes into account essentially
all data points from –infinitiy to +infinity, but weights the contribution of each
point by the negative exponential of its quadratic distance t to the central point
(as in the Gaussian distribution). Again, this weighted average is assigned as
smoothened value to the central data point.
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Another smoothing method is to weight neighboring data points by a so-called
Mexican-hat wavelet, see figure.
This belongs to the so-called continuous wavelet transforms (CWT).
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Now we introduce different methods for identifying peaks in the smoothened
data.
The SNR method tries to identify peaks as „signals“ relative to the normal 
fluctuation („noise“) of the data.
The noise is identified e.g. as the area including most (95%) of the data points
or as MAD (see lecture 4, slide 22).

The „Slopes of peaks“ method inspects the shape of any peak.
Left slope and right slope need to be steeper (i.e. the first derivative of the
signal) than a certain threshold.
This criterion was likely developed to prevent detection of very broad and
slowly rising mountains.
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A local maximum is simply the largest data point among all its neighbors.

The shape ratio requires that the peak area should exceed a certain threshold. 
This excludes peaks that appear like sharp needles.
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The left example tests how well different peak detection methods can identify
peaks in synthetically generated data.
The right example is an experimental benchmark data set of 246 given proteins
that have been digested by trypsin.
On both examples, CWT (detecting a Mexican hat profile) worked best. 
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Now we will discuss a related example, detected peaks in 2D data from MS.
Precisely, the field of breathomics attempts to identify organic compounds in 
exhaled breath.
The aim is – as can be expected – to use this method as early detection for
diseases of the individual.
Shown here is how the exhaled breath is analyzed by a MS instrument and
then processed in several steps of data analysis.
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If the sample contains many different species, their MS signals could largely
overlap if we try to analyze them only in a 1D m/z spectrum.
Therefore, breathomics separates the data in two dimensions.
Along the y-axis, we plot the retention time how fast a substance passes a 
capillary column. One uses a 17 cm long,  3mm diameter column that contains
about 1000 thin capillaries. This architecture largely increases the surface of
the capillary walls. The walls are coated with a thin „stationary phase“, often a 
silica polymer.
Along the x-axis, we plot a kinetic property measured by the mass
spectrometer.
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The reduced mobility K of an ion drifting through a buffer gas is related to the
square root of the charge over mass ratio, see eq. (1).
Instead of the mass of the ion, one considers the „reduced mass“ that is
combined from the ion mass and the mass of the gas molecules in the buffer
gas inside the mass spectrometer.
The details of converting K into the inversed reduced ion mobility are not 
relevant for us here.
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This figure shows the raw data of an IM spectrum-chromogram from which we
want to identify the peaks of individual organic molecules.
Remember, plotted on the y-axis is the retention time through the MCC 
capillary column in seconds. Compounds that pass quickly, will show up at the
bottom (short retention times).
Plotted on the x-axis are signals with different reduced inverse mobilities. The 
MS measurements are carried out sequentially for different retention time 
points.
This spectrum is provided to us as an r x t matrix.
The brightest peak of the spectrum (colored in yellow) is a peak at x = 0.5 that
is present at all retention times.
This RIP peak belongs to the ions of the carrier gas in the MS spectrometer
and is not relevant for us.
The other yellow and red peaks shown right of the RIP  are only present at one
retention time.
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These are different steps of breathomics analysis.
In step 1, the RIP peak is removed from the spectrum.
In step 2, the signal is denoised (smoothed) and the baseline is subtracted.
In step 3, the peaks of interest are identified, here marked by boxes.
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This is a flowchart presented in the PhD thesis of Dr. Ann-Christin Hauschild 
who worked on this topic in the group of Dr. Jan Baumbach.
Jan Baumbach was previously a young group leader at CBI and is now a full
professor at TU Munich.
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Humans are best able to identify the most interesting peaks in such a 
complicated spectrum.

30



Dr. Hauschild compared different algorithms and their ability to precisely
identify peaks.
A simple „local maximum search“ identifies central points as peaks with
higher intensity than that of all 8 neighboring points.
Even very tiny differences would then be reported as local maximum.
Therefore in a second step, „significant“ maxima are identified as those points
that are higher at least by a given minimal intensity threshold than their
neighbors.
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Also clustering can be used to identify peaks.
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The watershed algorithm is a widely used algorithm in image processing: 
https://en.wikipedia.org/wiki/Watershed_(image_processing).
This is an overview of the algorithm when it is applied for peak detection.
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The Watershed algorithm was adapted for 2D chromatographic peak detection
by S. Reichenbach, M. Ni, V.V.A. Kottapalli, Chemom. Intell. Lab. Syst. 71
(2004) 107.
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The PME method will not be explained in detail here.
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Thesis: https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26718

Table 6.1: The number of identified clusters varies between 41 and 88 except
for the Watershed algorithm WST
Table 6.2: The overlap between the peaks identified by different methods is
quite reasonable.
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Testing of the peak annotation was performed using samples containing known
reference molecules.
This is similar to the spike-in protocol presented in lecture #4, slide 38.
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Signals #5 and #14 - #17 were not part of the reference analyte mixture, but
could be clearly identified as decanal, n-nonan and heptanal. 
They are components in many fragrances and could have entered the IMS 
from the room air.
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It would be great if one could use breathomics for detection of complicated
diseases.
Obvious candidates that may affect the composition of exhaled breath are lung
diseases. 
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The software was tested on a public MCC/IMS dataset of COPD patients and
healthy controls.

40



This study is described in https://www.mdpi.com/2218-1989/5/2/344/htm. 
In the spectra, characteristic peaks of 120 volatile organic compounds were 
identified that are present in at least three of the patients’ measurements.
Then, the 120 metabolites were clustered by hierarchical agglomerative 
clustering (HAC) and Pearson correlation. 
By a suitable clustering threshold, the set of metabolites was split into 40 
subsets, one for each cluster of correlating metabolites. 
All clusters with less than three compounds were excluded, yielding a total of 
14 metabolite sets.
Using this data, COPD could be separated from healthy samples with good
success (85-95% success).
A Random Forest classifier achieved the highest accuracy.

41



Today, we discussed examples ranging from identification of the peaks of
certain histone marks over 1D mass spectroscopy to 2D MCC/IMS-based
breathomics analysis.
These examples illustrated that one needs to adapt various peak identification
methods to the data type and problem being studied.
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