V7 — Analyzing 3D chromatin conformation

Chromatin conformation has large implications on gene expression, but
is usually ignored in expression analysis.

Program for today:

- 3D chromatin conformation
- Hi-C method
- Biases in Hi-C data analysis

- integrated analysis of multiple data sources
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In lecture 7, we will discuss methods that characterize the three-dimensional
conformation of chromatin in the cell nucleus.

As you know, the 2 m long nuclear DNA needs to be drastically compacted in
order to fit into a tiny nucleus of a eukaryotic cell (diameter ca. 6 micrometer
in mammalian cells).

We will start with a short introduction of the three-dimensional conformation
of chromatin.

Then, we will discuss the principles of the so-called Hi-C method that is able
to provide information on the chromatin conformation.

Every experimental method may have biases. This is also the case for Hi-C.
This means that bioinformaticians need to develop methods to correct for these
biases.

Finally, we will discuss a computational study that integrated evidence from
multiple data sources to resolve details about the chromatin conformation.
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This figure is taken from the ,,chromatin® entry of Wikipedia.

When bioinformaticians speak about gene expression, they either think of the
bare DNA strand (top left), or when DNA is wound around nucleosome
particles consisting of histones (next figure to the right).

But DNA needs to be further compacted until the final structure of a
chromosome pair (bottom right).
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This figure is taken from the Wikipedia entry on
,,Chromosome_conformation_capture”. As in the ChIP-seq method, the
formation of DNA-protein crosslinks is induced by application of
formaldehyde (see lecture 5, slide 4).

The genome is then cut (or: digested) into fragments by a restriction
endonuclease enzyme. The size of restriction fragments determines the
resolution of interaction mapping. Certain restriction enzymes (REs) such as
EcoR1 or HindIIl make cuts in 6bp recognition sequences. This means they
cut the genome on average once every 4° = 212=4096 bp, giving ~ 1 million
fragments in the human genome. (Hint: the recognition sequence of EcoR1 is
G/AATTC. The cut is made after the initial Guanine base. Assuming a random
sequence, where every nucleotide has frequency Y4, GAATTC sequences occur
randomly every 4096 bps). For more precise interaction mapping, a 4bp
recognizing RE may also be used, that will generate shorter fragments. In the
next step, two ends are ligated by a DNA ligase enzyme. Cross-links are then
reversed and the ligation mixture is purified. This is followed by quantitative
detection of 3C or higherC ligation products, e.g. by PCR. There are many
variants of the original 3C method. We will not discuss their differences here.
In the Hi-C protocol, one uses high-throughput sequencing to determine the
identity of the two ligated sequences.



3D Chromatin conformation: highest level
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Data from human GM12878 cells (lymphoblastoid cell line). Nucleus

At the highest-level of 3D organization trans-interactions are rare and individual
chromosomes (chrs) occupy distinct territories (denoted by irregular shapes) within
the nucleus (grey circle).

Gene-rich chromosomes are preferentially found inside the nuclear core and gene-
poor chromosomes are localized close to the nuclear membrane.

Bonev & Cavalli, Nature Rev

Genet 17, 661-678 (2016) |
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This is the link to the Bonev & Cavalli paper:
https://www.nature.com/articles/nrg.2016.112

We continue our review of the three-dimensional conformation of chromatin.

At this highest level of genomic contacts (left picture), one clearly sees that
many contacts exist within individual chromosomes and few contacts exist
between chromosomes.

The right picture symbolizes the nucleus. Distinct ,,territories* are
represented by darker or brigher colors.

Each chromosome is located in a particular territory.

Possibly, the nuclear core provides more conformational freedom to pack and
unpack the chromatin. Here, one finds chromosomes containing many genes.

Gene-poor chromosomes tend to be at the periphery of the nucleus, close to
the nuclear membrane.



Around the nuclear membrane
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Biomed Eng 21, 443 (2019) |
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This figure shows the double-layer composition of the nuclear membrane.

At the outside, microtubules (shown as sheets) and intermediate filaments
connect to it.

At the inside is a meshwork, the nuclear lamina containing lamin proteins.
We will revisit these lamins at the end of this lecture.
This architecture suggests that the nuclear membrane will be quite stiff.

Any molecule that comes close to this stiff membrane will probably
experience a reduced conformational flexibility.



3D Chromatin conformation: 50 kb resolution
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Different topological domains with similar epigenetic signatures are characterized by
stronger inter-domain interactions.
They are organized into compartments.

Here, blue and grey represent the active compartment, whereas interactions
between green, orange and red topologically associating domains (TADs) form

the inactive compartment.
Bonev & Cavalli, Nature Rev

Genet 17, 661-678 (2016) |
V7 Processing of Biological Data - WS 2021/22 6

The left figure shows a 28 Mb region of the 242 Mb long chromosome 2.

Note the much higher resolution than on the previous slide 4.

On the next slide, we will zoom even further into the dashed area.

In the right figure, we see five differently colored so-called TAD domains.
These are regions containing either actively expressed genes or inactive genes.

In the figure, this is represented by looser contacts between the balls in the
blue and grey TAD domains.



3D Chromatin conformation: 10kb resolution

(left) ca. 8 Mb region containing several TADs that are manually annotated with solid
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(right) 3 different TADs, enriched for either active marks (H3K4me3 and H3K36me3;
grey), Polycomb (H3K27me3; green) or heterochromatin (H3K9me3; orange) are
schematically represented in the 3D space.

CTCF proteins are shown as blue rectangles and loop-extrusion complexes
(potentially cohesin) are depicted as green circles. Bonev & Cavalll. Nature Rev

Genet 17, 661-678 (2016) |
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A very interesting recent discovery was that chromosomes are spatially
segregated into sub-megabase scale domains, called topologically associating
domains (TADs).

TADs typically manifest as triangles in Hi-C maps, in which regions within
the same TAD interact with each other much more frequently than with
regions located in adjacent domains.

The spatial partitioning of the genome into TADs correlates with many linear
genomic features such as histone modifications and coordinated gene
expression.



3D Chromatin conformation: 5kb resolution
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(left) : example of an architectural loop (circled blue)

as seen in high-resolution Hi-C data. Regions participating
in loop formation are demarcated with dotted lines).

Also shown are CCCTC-binding factor (CTCF)-binding

profile and CTCF motif orientation.
Bonev & Cavalli, Nature Rev
Genet 17, 661-678 (2016) |
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In vertebrate genomes, cis-regulatory elements, such as enhancers, are
separated from their target genes by relatively long distances along the linear
genome.

In order to elicit its effect, an enhancer is brought into close spatial proximity
with its target promoter through the formation of a 'chromatin loop‘.

The left figure shows dense contacts of neighboring regions along the x-axis
and one peak (marked by a blue circle) between the two regions connected by
dashed lines.

The right figure shows four examples how such loops can form. Long-range
chromatin contacts can bring an enhancer region into close proximity of a
promoter.

In a 'gene loop’ (primarily identified in yeast), the transcription termination
site of a gene loops back to make contact with its own promoter. Gene loops
have been suggested to reinforce the directionality of RNA synthesis from the
promoter.

Anchors of cell-type-specific loops are often the promoters of differentially
expressed genes and contain binding sites for the architectural protein CTCF.

Spatial associations between actively transcribed co-regulated genes in mice,
between Polycomb-repressed genes in Drosophila melanogaster and more
recently in mammalian cells have also been observed.



Processing data from HiC
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Raw sequencing paired-end reads (in FASTQ files) are aligned to the reference
genome considering the mate reads independently. Then, aligned reads (in BAM
files) are assigned to their fragment of origin and paired. The paired reads are
stored in a sorted file. Finally, after filtering and binning, the read counts are stored

in contact matrix files. Pal et al. Biophys Reviews
11, 67-78(2019)
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Link to Pal et al: https://link.springer.com/article/10.1007/s12551-018-0489-1

The alignment of NGS reads to the genome is, in principle, a standard task.
However, for Hi-C reads, alignment may be challenging if the read spans the
ligation junction.

Then, two portions of the read will match distinct genomic positions. These
are also termed “chimeric reads”.

Aligned reads are then filtered to remove spurious signal due to experimental
artifacts. Read filtering is particularly important for Hi-C data as multiple steps
in the experimental protocol can generate biases in the sequencing results.
Read level filters include the removal of reads with low alignment quality or
PCR artifacts, i.e., multiple read pairs mapped in the same positions.

Then, read pairs filters are based on the distance of aligned reads to the
downstream restriction site, which is used to estimate if the read pair is
compatible with the expected size of sequenced fragment obtained from the
ligation product (see slide 14).

Moreover, read pairs can be filtered if they are mapped on the same fragment,
thus resulting from lack of ligation or self-ligation events, or if their
orientation and distance in mapping positions is compatible with an undigested
chromatin fragment.



Data from HiC

n X n contact matrix, where the genome is divided into n equally sized bins.

The value within each cell of the matrix indicates the number of pair-ended reads
spanning between a pair of bins.

Depending on sequencing depths, the commonly used sizes of these bins can
range from 1 kb to 1 Mb.

The bin size of Hi-C interaction matrix is also referred to as 'resolution’,

Owing to high sequencing cost, most available Hi-C datasets have relatively low
resolution such as 25 or 40 kb, as the linear increase of resolution requires a
quadratic increase in the total number of sequencing reads.

Zhang et al. Nature Commun
9, 750 (2018)
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Now we turn to the analysis of HiC-data. The data is typically represented as a
contact matrix.

Although the reads are mapped and counted on individual restriction fragment
ends, Hi-C data are usually not analyzed at single-fragment level. Instead, the
read counts are generally summarized at the level of genomic bins, i.e., a
continuous partitioning of the genome in intervals of fixed size ranging from 1
kb to 1 Mb. The rationale behind this approach is that genomic bins allow
achieving a more robust and less noisy signal in the estimation of contact
frequencies, at the expense of resolution.

10



Biases in computational analysis of Hi-C data

Procedures including crosslinking, chromatin fragmentation, biotin-labelling and
re-ligation can all introduce biases that complicate the interpretation of observed
contact frequencies.

Efficient and effective removal of multiple systematic biases is critical for the
success of any subsequent analysis of C-data as well as for the proper
interpretation of results.

Schmitt et al. Nature Rev Mol
Cell Biol (2016) 17, 743
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Link to this paper: https://www.nature.com/articles/nrm.2016.104

As mentioned, we need to remember that the Hi-C contact matrices are
obtained by a complicated multi-step protocol.

All these steps can introduce biases that would lead to misleading
interpretations if we do not correct for them.

11



Random collisions affect chromosome capture data
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For sites separated by larger genomic distances, this
'background' signal decreases rapidly, but remains
detectable for sites separated by as much as 150 kb.

Job Dekker, Nature Methods 3,
17-21 (2006)
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https://bionumbers.hms.harvard.edu/bionumber.aspx?id=103112:

Job Dekker is first author on a paper from 2002
(https://science.sciencemag.org/content/295/5558/1306) that presented the 3C
method. This paper has been cited more than 3500 times.

Link to this Job Dekker paper: https://www.nature.com/articles/nmeth823

On this slide, we consider how the distance between two regions of the DNA
affects the formation of contacts between them.

Job Dekker et al. reported (middle figure) that, on a length scale of many kb,
the frequency decays with the inverse of the distance. For this, we consider
DNA as a “cooked spaghetti”.

But is this true?

Double-stranded DNA is a polymer. The stiffness of a polymer is typically
characterized by its “persistence length” that defines the scale over which a
polymer (such as DNA) remains roughly unbent in solution. For DNA, the
persistence length has a value of ~50 nm (~150 bp). Thus, on length scales of
kb, thermal fluctuations result in spontaneous bending of the DNA and the
DNA can indeed be considered as a cooked spaghetti.

12



Specific contacts affect neighboring loci
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In this example, only the interaction between the two

centromeres may be specific (-> highest peak) ,

whereas interactions with neighboring loci are likely

the result of random collisions.

Job Dekker, Nature Methods 3,

17-21 (2006)
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If a specific contact is formed in one location, neighboring regions are also
close to the ,,opposite* DNA regions.

This may lead to the formation of non-specific contacts between adjacent
regions which would not form if the specific contact had not formed.

Dekker suggests that only the highest peak should be considered in the bottom
figure and the other peaks should be omitted from the analysis.

13
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Hi-C ligation products (shown schematically in a) are expected to map near
restriction sites because of size selection.

(b) For each Hi-C paired read, the sum of distances is computed from mapped Hi-C
sequences to the nearest restriction sites. Shown is the distribution of distances.

Two distinct populations of reads are observed, one distributed as expected for
normally ligated and size-selected products and one including reads mapped farther
away from restriction sites.

Solution: discard reads with distance > 500 bp Yaffe, Tanay Nature Genet

(2011) 43, 1059
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Yaffe & Tanay paper: https://www.nature.com/articles/ng.947

Some Hi-C sequence pairs likely represent ligation products between
nonspecific cleavage sites rather than restriction fragment ends. This
means that the DNA ligase did not merge the blue and green fragments shown
in (a) that are connected by a crosslink. Rather, the ligase merged two arbitrary
fragments. Such cases are not useful for the analysis of chromatin contacts.

As shown in (b), 22% of the trans read-pairs in the HindIII experiment and
12% in the Ncol experiment were mapped with a generally uniform
distribution over the restriction fragments, in contrast to the majority of reads
that mapped with the expected distribution within 500 bp (the size selection
parameter) of the nearest restriction site.

The cleavage and ligation events that generated these reads are unlikely to
have occurred on cutter sites. Yaffe and Tanay therefore suggest to discard
them from downstream analysis.

14



Bias 2 : GC content
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(e) Ligation product processing and sequencing may be biased by GC content.
In this schematic example, the GC-rich region produces many more reads.

(f) Plotting the GC content of the 200 bp near the restriction fragment ends for
trans-contacts shows intense and contrasting GC biases for the Hindlll and Ncol
experiments:

Ncol “prefers” GC-rich sequences, Hindlll disfavors them.

Processing of Biological Data - WS 2021/22

Yaffe, Tanay Nature Genet 5

(2011) 43, 1059

Another known major source of bias in sequencing experiments is the
nucleotide composition of the DNA under study.

Also in Hi-C, some key steps are likely to be affected by the GC content near
the ligated fragment ends (e). Analysis of the correlation between the GC
content of the 200 bp next to the restriction site and the probability of trans
contact (f) shows that GC content is a source of incompatibility between the
replicates. The GC-content bias maps for the HindIII and Ncol data sets were
inversely correlated (element-wise ¢ = —0.14), providing a partial explanation

for a global low correlation between the derived trans-contact maps.

15



Bias 3 : sequence mappability
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(g) Effect of sequence uniqueness. Different fractions of uniquely mappable short
tags are observed next to restriction sites.
As shown in h, this has a direct empirical linear effect on Hi-C coverage.

Mappability is predicted and confirmed (h) to have a linear effect on the
estimated trans-contact probabilities.

Yaffe & Tanay correct for biases 2 & 3

by a maximum likelihood approach. Yaffe, Tanay Nature Genet
(2011) 43, 1059

\u Processing of Biological Data - WS 2021/22

16

Another genomic variable affecting trans-contact probabilities in a purely

technical fashion is the mappability (or genomic uniqueness) of the frag
ends (g).
To compute the mappability score of fragment ends, the whole-genome

ment

sequence was split into artificial reads (50-bp reads, starting every 10 bp) and
then mapped back to the genome using MAQ. For each fragment end, the
mappability score was then defined to be the portion of artificial reads mapped
uniquely to the genome (MAPQ quality > 30) within a 500-bp window starting

at the fragment end toward the fragment.

16



Poisson regression

Poisson regression is a generalized linear model form of regression analysis
used to model count data and contingency tables.

Poisson regression assumes that the response variable Y has a Poisson
distribution, - AN —
f(n, 1) = (\e*)/n!

and assumes that the logarithm of its expected value can be modeled by a linear
combination of unknown parameters.

If x € R™ is a vector of independent variables, then we formulate
Log (E(Y|x))=a+bx=06x
with coefficients a and b which can be summarized into 6.

The predicted mean of the associated Poisson distribution is then
A= E(Y|x) = e

www.wikipedia.org
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On the next slide, we will introduce the HiCnorm tool for bias correction.
HiCnorm utilites a mathematical technique termed Poisson regression.

On this slide, we provide some brief background on this method.



HiCnorm tool

HiCnorm corrects for the 3 biases (effective length feature, the GC content feature
and the mappability feature) using Poisson regression.

Let Ul = {u]‘ﬁk}1 1 en TEPrESENt the n;xn; Hi-C cis contact map for chromosome i,
=).K=n;
where n; is the number of consecutive, disjoint 1 MB bins in chromosome i.

uj, : number of detected paired-end reads spanning two bins Lj and L (‘raw data”)
x/ and x; : effective length feature at loci j and k for chromosome i,

y; and y, : GC content feature at loci j and k for chromosome i,

z; and z;, : mappability feature at loci j and k for chromosome i.

Hu et al. Bioinformatics 28,
3131-3133 (2012)
www.wikipedia.org
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Link to HiCnorm paper:
https://academic.oup.com/bioinformatics/article/28/23/3131/192582

HiCnorm is an explicit bias correction method.
Here, we will look at the basic steps how biases are estimated and removed.

HiCnorm attempts to correct 3 types of biases. Each one of them is modeled
by an independent variable x, y and z.



HiCnorm tool

We assume that ul‘fk follows a Poisson distribution with rate G}k:
log(Gj‘k) = B¢+ Bl log(x;x,‘() + Blee log(y;y,‘c) + log(z;z,").

Here B} is the intercept term.

Bl., and Bécc represent the effective length bias and the GC content bias,
respectively. ]og(z;'z;;) is the Poisson offset term of the mappability bias.

We fit this Poisson regression model, and let g, B/, and B}, represent the
corresponding parameter estimates.

We further define the estimated Poisson rate 9},( as following:
Oji = exp{Bo + Bien 108(xjxk) + Bec log(yjyi) +log(z]z,)}-

The residual e, = uj,/6j, is the normalized interaction between two bins L;
and L. This is done separately for cis and trans interactions.

Hu et al. Bioinformatics 28,
3131-3133 (2012)
\ Processing of Biological Data - WS 2021/22  www.wikipedia.org 19

Link to HiCnorm paper:
https://academic.oup.com/bioinformatics/article/28/23/3131/192582

Shown at the bottom is the normalization of the raw data by the estimated
Poisson rate of loci j and k.

Cis interactions take place on the same chromosome.

Trans interactions are contacts between DNA regions that are located on
different chromosomes.

19



Biases in computational analysis of Hi-C data

In general, there exist two types of approaches to account for biases in C-data.

(1) account for biases in an explicit fashion — by assuming that all sources of
systematic biases are known based on biases determined empirically from the
observed data.

(2) account for biases in an implicit way — by assuming no known source (or
sources) of bias, and assuming that the cumulative effect of the bias is captured
in the sequencing coverage of each locus (or ‘bin’).

As Hi-C is a genome-wide assay, the implicit models assume that each locus
should receive equal sequence coverage after biases are removed.

Implicit models all rely on some implementation of matrix-balancing algorithms.

Schmitt et al. Nature Rev Mol
Cell Biol (2016) 17, 743
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Link to this paper: https://www.nature.com/articles/nrm.2016.104

Schmitt et al. recommend that researchers should analyse their data using both
the explicit and implicit approaches to ensure the biological relevance of their
findings.



Matrix balancing

A matrix is unbalanced if the L2 norm of some rows and their corresponding
columns are different by orders of magnitude.

||y = 4/a2 + - + 3.

Some computations such as the computation of eigenvalues are numerically
unstable if the matrix is unbalanced.

Generally, given an unbalanced matrix A, the goal of matrix balancing is to find
an invertible diagonal matrix D such that DAD-! is balanced or approximately
balanced in the sense that every row and its corresponding column have the
same norm.

\u Processing of Biological Data - WS 2021/22 21

Here, we describe what characterizes unbalanced and balanced matrices.

21



Matrix balancing approaches

Implicit matrix-balancing approaches are widely used to account for biases in Hi-C
data. They rely on two different assumptions.

(1) the combinatorial-bias effect between two interacting loci can be simplified as the
product of the two locus-specific bias effects.

(2) if there is no bias effect (that is, when all bias has been accounted for), the total
genome-wide contact summation for each locus will be a constant, implying that
each locus has ‘equal visibility’ to the Hi-C assay.

Schmitt et al. Nature Rev Mol
W Processing of Biological Data - WS 2021722 Cell Biol (2016) 17,743 22

No comments.
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Matrix balancing approaches
Two matrix-balancing algorithms used together with HiC-data are:

Vanilla coverage: To account for bias, the observed contact frequency between
locus A and locus B is divided by the product of the total genome-wide contact
frequency at locus A and the total genome-wide contact frequency at locus B.

This ratio is used as the normalized contact frequency.

Interactions

e s
Raw heatmap
Iterative correction and eigenvector decomposition (ICE): \ -vn
this process iterates through the vanilla coverage procedure \ ,
(using updated total genome-wide contact frequencies!) until (T S
there is convergence of the normalized contact frequency. N E— - ,\f
E 5[2 S AN

+ reduced coverage variability from locus to locus

Iteratively corrected

= greatly increased computational cost. —
Schmitt et al. Nature Rev Mol )
Cell Biol (2016) 17, 743 ) )
Imakaev et al. Nature Methods \_'

9, 999-1003 (2012) £3

Visitilty
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The idea of the first method (,, Vanilla coverage®) is that two DNA loci having
each a high contact frequency in principle also have a relatively high chance of

making contacts to eachother.

Thus, one normalizes the contact frequency A-B by the product of the
individual contact frequencies.

The second method builds upon the first method but adds further iterations.

The reasons is that normalization of all matrix entries of e.g. locus A (one row

or one column) will affect its total contact frequency.

Then, the normalization factor in the next iteration will be somehow different.

This element is similar to the SVDimpute method (lecture 3, slide 20).

23



Application of 4 bias removal methods: full chromosome
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High-resolution Hi-C data from IMR90 cells were processed uniformly until the
bias-removal step. Then either raw contact matrices were generated (a) or
normalization was conducted with one of three methods (b) to (d).

Shown is data for whole human chromosome 7 for a raw Hi-C contact matrix
(part a), after normalization with HICNorm (b), or with vanilla coverage (VC) (c)
and iterative correction and eigenvector decomposition (ICE) (part d).

Schmitt et al. Nature Rev Mol
V7 Processing of Biological Data - WS 2021/22  Cell Biol (2016) 17,743 24

So far, no extensive comparisons of the different methods have been reported.
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Application of 4 bias removal methods: TAD domains
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Pairwise interactions observed at higher frequency are depicted as a darker red
colour along the colour gradient, whereas light red coloration represents very few
observed interactions in the Hi-C data.

Different normalization methods yield slightly differences but very different numbers.

It is currently unclear which method works best.

Schmitt et al. Nature Rev Mol

Cell Biol (2016) 17, 743
\ Processing of Biological Data - WS 2021/22 25

Another bias that is not explicity considered by HiCnorm is that restriction
enzymes used in library preparation are biased towards cutting at open
chromatin regions.

Schmitt et al. further recommend ,,It is also good practice to conduct Hi-C data

analyses using both types of bias-removal approaches, as this eliminates the

possibility of making a discovery that is dependent on the type of bias-removal

method.”
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Integration of multiple data sets

The group of Frank Alber/USC has originally constructed a 3D model of the
nuclear pore complex via data integration.

They now work on 3D models of chromatin.

lamina-DamID experiments identify specific chromatin domains with a high
propensity to be located at the nuclear envelope (NE).

Chromosome conformation capture experiments (Hi-C and variants) detect
chromatin interactions at a genome-wide scale.

Li et al. Genome Biology

‘ (2017) 18:145
\u Processing of Biological Data - WS 2021/22 26

Now we will turn to a very different approach.

In 2007, Frank Alber was leading author or a pioneering study that determined
the molecular structure of the nuclear pore complex
(https://www.nature.com/articles/nature06405). The team integrated diverse
experimental observables and then used molecular simulations to generate
molecular conformations that are compatible with the observables. His own
group at the University of Southern California
(http://web.cmb.usc.edu/people/alber/Group.html) now utilizes similar
approaches to study the three-dimensional conformation of the genome. For
this, they utilize here two sorts of experimental information: lamina-DamID
and Hi-C.

Link for the Li et al. paper:
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1264-
5
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lamina-DamiD experiments
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WIRESs Dev Biol (2016) 5:25 — 37.
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This slide illustrates the principles of the lamina-DamID experiments. ,,Dam*
is an abbreviation of the enzyme DNA adenine methyltransferase that
methylates adenine bases at the N6 position.

The idea behind this is that Dam will methylate adenine bases in the genome
that it can access. By sequencing the DNA one can then find out which regions
these are.

If Dam could distribute freely in the nucleus, one would probably not learn
much from this experiment beside the general accessibility of open/chosed
chromatin that can also be studied by DNase experiments.

However, one can try to localize Dam to the nuclear membrane. Then it would
only be able to methylate DNA fragments that are in contact with the nuclear
membrane. This is exactly what is done here.

Dam is fused to the protein lamin B1 that is part of the nuclear lamina. For
comparison, one also runs a control experiment (top left figure) where Dam is
expressed alone.
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lamina-DamID experiments

A Position on chr2L (kb) Original DamID dataset were
1o 6200 6300 16600 16800 " reported by Filion et al.

- - Here, DamID was fused to 53
broadly selected chromatin
— proteins in Drosophila cells.

11331113

&

2 :
2 v ————— -
g o = PCA identified 5 chromatin types.
‘é o : PC2
-15 -0 -5 0 5 10 15
] 2 4
8 o
Oo
-8
s S INNEN BN IN IN) 1M II H !llllll.l" Ill H
Genes | . l- HAWHI WEE I
Filion et al. Cell 143:212 (2010)
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Traditionally, chromatin was divided into heterochromatin and euchromatin.
Filion et al. wanted to study how many states a finer classification needs to
contain.

They determined high-resolution binding profiles of 53 chromatin proteins in
the embryonic Drosophila melanogaster cell line Kc167.

These include proteins from most known chromatin protein complexes (e.g.

histone-modifying enzymes), proteins that bind specific histone modifications,

general transcription machinery components, nucleosome remodelers,
insulator proteins, heterochromatin proteins, structural components of
chromatin, and several DNA-binding factors.

They found that the majority of silent genes in the genome are located in
BLACK chromatin.

BLACK chromatin is almost universally marked by four of the 53 mapped
proteins: histone H1, D1, IAL, and SUUR, whereas SU(HW), LAM, and EFF
are also frequently present
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Integration of multiple data sets

So far, most population convolution models of genome structures have typically
relied on just one data type, such as Hi-C, even though a single experimental
method cannot capture all aspects of the spatial genome organization.

However, data are available from several technologies with complementary
strengths and limitations.

Integrating all these different data types should increase the accuracy and
coverage of genome structure models.

Moreover, such models would offer a way to cross-validate the consistency of
data obtained from complementary technologies.

Li et al. Genome Biology

(2017) 18:145
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No comments.
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Integration of multiple data sets

For example, lamina-DamID experiments show a chromatin region’s probability to
be close to the lamina at the nuclear envelope,

whereas Hi-C experiments reveal the probability that two chromatin regions are in
spatial proximity.

3D fluorescence in situ hybridization (FISH) experiments show the distance
between loci directly, and can be used to measure the distribution of distances
across a population of cells.

Li et al. Genome Biology

(2017) 18:145
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Li et al. also performed independent FISH experiments to test the predictions
from the data integration approach.
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Drosophila melanogaster

23 Mb (225 TADs) 5.4 Mb 11 Mb  21.1 Mb (213 TADs)
H 2R )

24.5Mb (221 TADs) 82Mb 82Mb  27.9 Mb (307 TADs)

3.1 Mb 1.4 Mb (18 TADs)

22.4 Mb (184 TADs) 20 Mb
G X 0

The genome of D. melanogaster (sequenced in 2000, and curated at the FlyBase
database) contains 139.5 million base pairs on four pairs of chromosomes:

an X/Y pair, and three autosomes labeled 2, 3, and 4.

It contains around 15,682 genes.
The euchromatin genome was divided into 1169 physical domains
based on Hi-C interaction profiles.

www.wikipedia.org

\ Processing of Biological Data - WS 2021/22 31

Frank Alber and co-workers wanted to characterize the three-dimensional
structure of chromatin from Drosophila melanogaster, the fruit fly, because
both data sets (Hi-C and lamina-DamID) were available.

Drosophila is an extremely well-known model organism for studying animal
development.

Around 1980, Eric Wieschaus and Christiane Niisslein-Volhard succeeded in
identifying and classifying the 15 genes that direct the cells to form a new fruit
fly. For this discovery, they receive the Nobel Prize in Physiology or Medicine
in 1995.
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Integration of multiple data sets

Suppose A is a probability matrix derived from Hi-C data.
Its elements describe how frequently a given pair of TADs
are in contact with each other in an ensemble of cells.

E is a probability vector derived from lamina-DamID data.
Its entries describe how frequently a given TAD is in contact

with the nuclear envelope (NE).

The goal is to generate a population of genome structures X, whose TAD-TAD
and TAD-NE contact frequencies are statistically consistent with both A and E.

We formulate the genome structure modeling problem
as a maximization of the likelihood P(A, E|X).

Li et al. Genome Biology
(2017) 18:145
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Two independent experiments (Hi-C and lamina-DamID) generated two sets of
observations, A and E.

A is a matrix describing contacts between pairs of DNA regions.
E is a vector with entries for each DNA region.

The task is now to generate chromatin 3D conformations that are compatible
with A and E.
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Consider population of chromatin conformations

The structure population is defined as a set of M diploid genome structures

X ={Xy, Xz, ..., Xu}, where the m-th structure X,, is a set of 3D vectors
representing the center coordinates of 2 N domain spheres.

The contact probability matrix A = (a;;)nx nfor N TAD domains is derived from the
Hi-C data. Each element a,; is the probability that a direct contact between
domains | and J exists in a structure of the population.

The contact probability vector E = {g|||= 1, 2,..., N} is derived from the lamina-
DamlID data and defines the probability for each TAD to be localized at the NE.

Li et al. Genome Biology

‘ (2017) 18:145
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Chromatin is modelled as a linear sequence of N spheres representing N
domains.

A diploid genome consists of 2 sets of chromosomes. Hence, each chromatin
conformation has 2N spheres.

Likely, there does NOT exist a single chromatin conformation where every
genomic region only occupies a single, fixed spot.

Instead, we can imagine that the DNA shows dynamic flexibility so that we
should rather speak of an ensemble of conformations that can interconvert and
will be visited over time.

Li et al. model this ensemble by a population of M genome structures.

Not every single structure needs to be compatible with the observed data A and
E, but rather the full population of structures needs to be compatible.
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Integration of multiple data sets
Thus, the optimization problem is expressed as:

X = arg max log P(A,E,W,V|X)

spatial constraint I : nuclear volume constraints
spatial constraint II : excluded volume constraints

subject t
sumject fo spatial constraint IIl : chromosome pairing upper bound

spatial constraint IV : consecutive domain constraint

The log likelihood can be expanded as

logP(A.E.W.V[X) = logP(A.E/W,V)P(W.V|X)
= logP(A|W)P(E|V)P(W,V|X)

The “contact indicator tensor” W = (Wjim) 2nx 2n xm IS @ binary, third-order tensor. It
contains the information missing from the Hi-C data A, namely which domain
contacts belong to each of the M structures in the model population and also
which homologous chromosome copies are involved.

V = (Vim) 2n x v Specifies which domain is located near the NE in each structure of
the population and also distinguishes between the two homologous TAD copies

Li et al. Genome Biology
\ Processing of Biological Data - WS 2021/22 (2017) 18:145

One interesting problem is to assign which of the M structures belongs to
which chromatin contacts.
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Integration of multiple data sets
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Final structure population

The initial structures are random configurations. Maximum likelihood optimization is
achieved through an iterative process with two steps, assignment (A) and modeling
(M). We increase the optimization hardness over several stages by including
contacts from the Hi-C matrix A with lower probability thresholds (8). After the
population reproduces the complete Hi-C data, we include the vector E (lamina-
DamlD), again in stages with decreasing contact probability thresholds (A).

Li et al. Genome Biology 35

\ Processing of Biological Data - WS 2021/22 (2017) 18:145

The approach taken here is similar to the approach used previously when
Frank Alber modeled the structure of the nuclear pore complex.

Li et al. argue that it is practically impossible to generate genome structures

,»-ab 1nitio* (without prior knowledge) that simultaneously fulfil all
experimental constraints.

Instead, they introduce contact distance restraints A piecewise (upper row,
from left to right) followed by adding the membrane distance restraints E.

The colored spaghetti balls in the bottom row illustrate the populations of M

genome structures.
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Snapshot of a single structure picked from final population

Heterochromatin Heterochromatin

Nucleolus
2R
4] 3R
e
2L . ' PcG
Nuclear Envelope Nuclear Envelope
(left) The full diploid chromosomes are shown (right) euchromatin domains
in colors: blue, chr2; green, chr3; magenta, are colored to reflect their
chr4; orange, chrX. epigenetic class:
The two homologs of the same chromosome :)eld’ a;tn(/:;
are distinguished by the color tone, with one ue, Fc,
green, HP1;

homolog copy with lighter and one with darker
color. The heterochromatin spheres are larger
than the euchromatin domains. The nucleolus

dark purple, null.
Heterochromatin spheres are
shown in grey and the

is colored in silver. nucleolus in pink
V7 Processing of Biological Data - WS 2021/22  Li etal. Genome Biology 3¢
(2017) 18:145

In these figures, physical domains (which would be referred to as TADs in
mammalian cells) are represented as spheres.

In the left figure, each chromosome is colored differently.
In the right figure, the domain spheres are colored differently.

It is unclear whether this structure represents the same conformation as in the
left figure.

Coloring represents the functional classes of the physical domains. Four
functional classes based on their epigenetic signatures are assigned: null,
active, Polycomb-group (PcG), and HP1/centromere.

Note that this figure only represents a single structure snapshot of the
conformational population.



FISH experiment on larval brain cels Independent control experiments (FISH)
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The model predicts certain location preferences for pericentromeric heterochromatin
of individual chromosomes. We confirmed these predictions using FISH staining of
heterochromatic repeated sequences (satellites) in Drosophila cells of larval brains.

o1 . Li et al. Genome Biology
T - 2021/22
V7 Processing of Biological Data - WS 2021/22 (2017) 18:145 37

(Left panel) FISH experiments showed that the satellite repeats of
chromosomes X and 4 (grey) are more often closer to each other than those of
chromosomes X and 2 (blue), or 2 and 4 (magenta( (top), in agreement with
the computational models (bottom).

(middle panel) The satellite repeats of chromosomes X (top) and 4 (middle)
are more often closer to the nuclear periphery than those of chromosome 2
(bottom).

This matches the conformations of the model population (right panel).
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Summary
Chromosome capture techniques enable to obtain information on contacts
along one chromosome and between chromosomes.

Experimental design introduces various biases that must be corrected
before analysis.

Data integration has great potential.

Considering populations of different structures helps to resolve conflicts
between data. [x] Das Bild kann derzeit nicht angezeigt werden

An important
activity in this
area is the

4D Nucleome
project.

https://www.4dnucleome.org/index.html
\ Processing of Biological Data - WS 2021/22 38

Paper on 4D Nucleome project: https://www.nature.com/articles/nature23884

https://www.4dnucleome.org/index.html
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