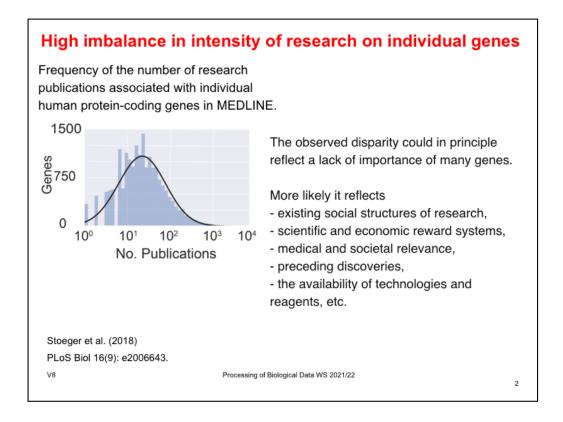


In lecture 8, we will deal with the downstream functional analysis of raw experimental transcriptomics data.

A typical transcriptomics or proteomic experiment may yield a set of upregulated or downregulated genes. Functional annotation then deals with extracting the biological meaning from these findings.

Often, this is done using the hypergeometric test based on functional terms from the Gene Ontology or based on biochemical pathways from KEGG or Reactome.



Link to this paper:

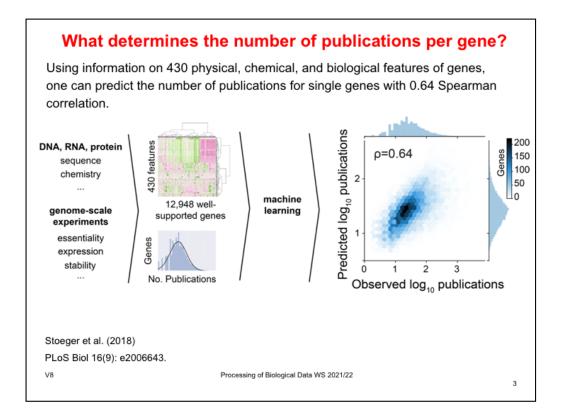
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006643

Importantly, the amount of knowledge about individual genes is largely different. This figure shows how many papers were published about individual human protein-coding genes up to 2018.

Some genes (right tail of the distribution) were studied by more than 1000 publications. On the other hand, some genes were only addressed by a handful of publications. What is responsible for this imbalance?

Possibly the **most studied genes** are the **most important genes** in terms of their function. But who should decide what functions are important?

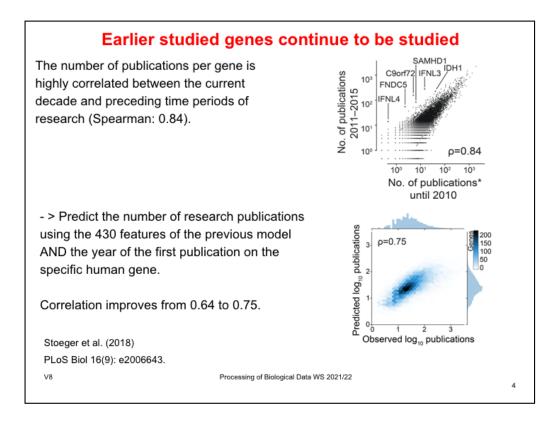
Often, the research directions of individual scientists are the result of many coincidences: How did they pick their PhD supervisor and post-doc advisor? What were the bosses working on? Which ones of the many grant applications that scientists write got funded?



Here, the authors tried to find out which features determine what genes are well studied.

Obviously, genes that can be robustly expressed and proteins that can be easily synthesized have an advantage.

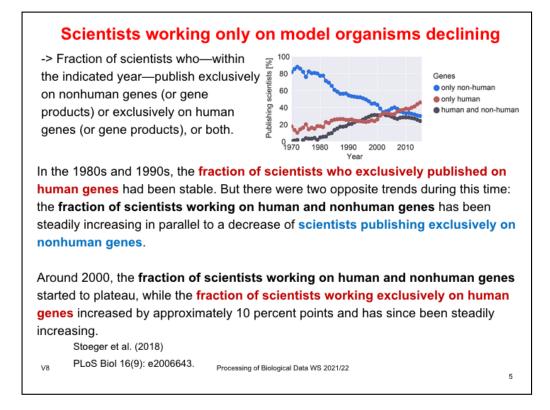
The reason is that many scientists don't like to work on "difficult" things that only work once in a while.



The upper figure shows that the number of publications for a gene in the period 2011-2015 is strongly correlated to the number of publications until 2010.

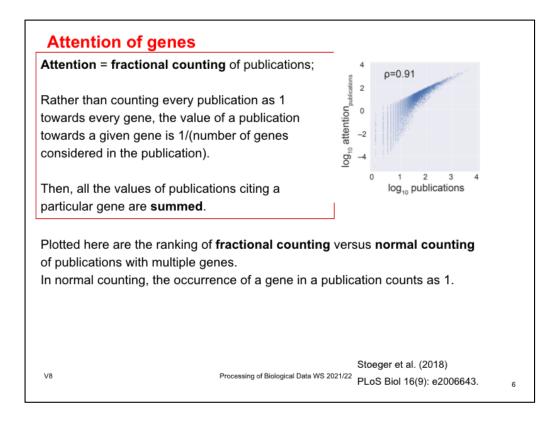
This shows that scientists continue to study research questions around certain genes that they and others have already studied before.

If one includes the year of the first publication, the prediction accuracy improves considerably, which emphasizes the importance of this feature relative to the other 430 features.



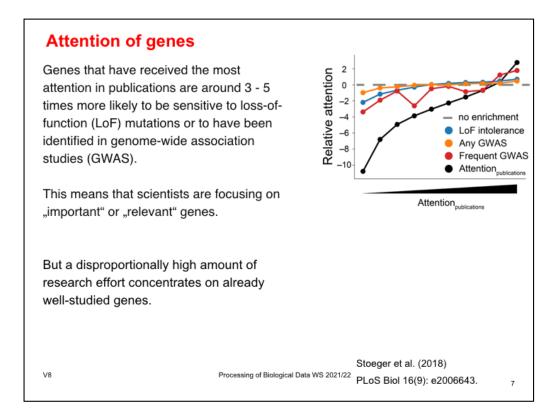
There has been a continuous decrease in the scientific activities on model organisms. This negative trend accelerated around the year 2000 in favor of an increased fraction of scientists that exclusively work on human genes.

One can speculate whether this is related to the ability of obtaining funding for research projects. Also, this may be due to the availability of the human genome sequence after 2001.



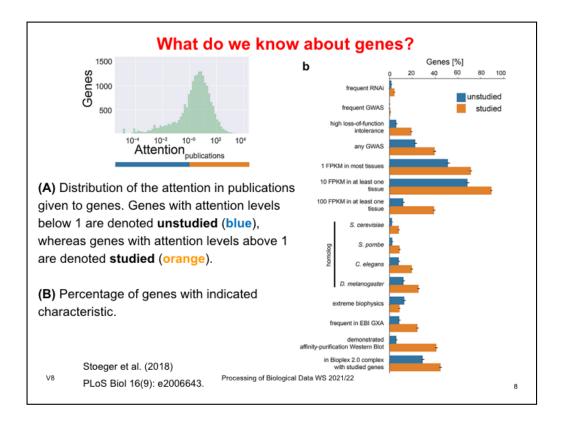
For genes addressed by many publications with log10 > 2, there is a good linear correlation of both counting measures.

For genes addressed in only few publications, the attention scores based on fractional counting are downward shifted = the attention values of such genes are reduced with respect to normal counting.



Given the observed historic continuity of scientific endeavors, Stoeger et al. wondered whether biomedical research has already identified all particularly important human genes and hence allocates the production of publications accordingly. Inspite of the simplifying assumption made for fractional counting (see previous slide), the authors reassuringly observed that genes that have received the most attention in publications are around three to five times more likely to be sensitive to loss-of-function mutations or to have been identified in genome-wide association studies (GWAS). This enrichment is greatest for genes that have been repeatedly identified by several independent studies ("frequent GWAS") on the most frequently studied human phenotypic traits.

However, one notices an extraordinarily more extreme 13-fold enrichment in the **average attention** (from -10 to more than +2) when comparing the genes that have received the least attention to those genes that have received the highest attention. Hence, while biomedical research does focus on important genes, a disproportionally high amount of research effort concentrates on already well-studied genes.



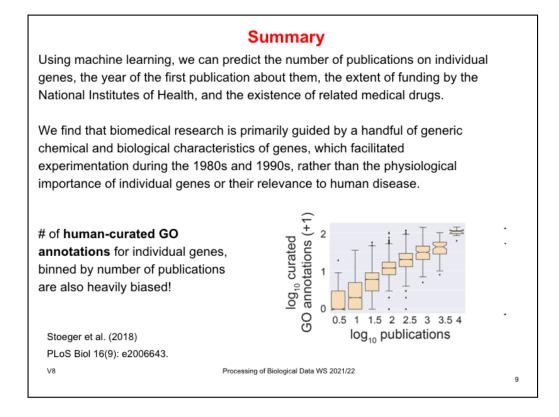
(Top left) Attention_publication levels. Genes with values below 1 ("unstudied genes") were only addressed in publications addressing several or many genes.

(Right) Statistics whether certain types of experiments have been performed, or whether homologs exist in model organisms.

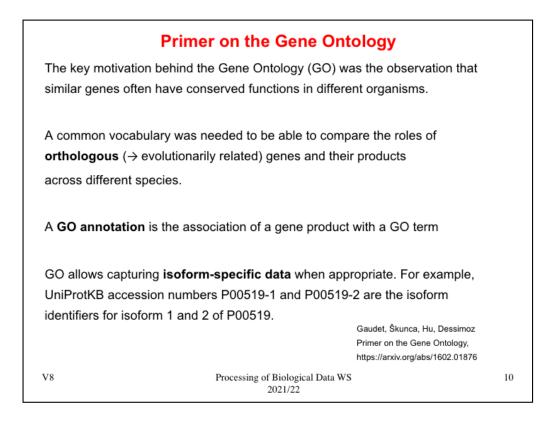
For some experiments (e.g. Western Blots), there is a drastic difference between "studied" genes (> 40%) and "unstudied" genes (< 10%).

Also, "unstudied" genes are only about half as likely to have a homolog in model organisms.

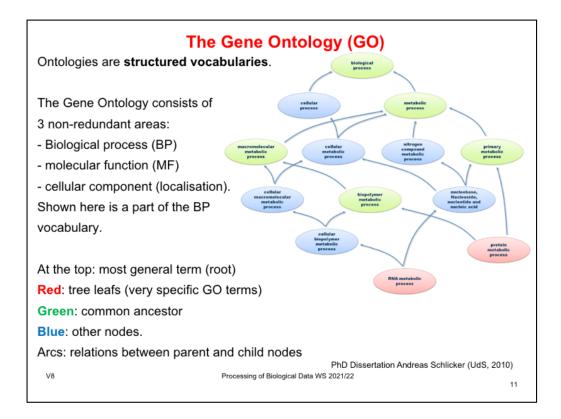
Thus, the "old-fashioned" scientists who worked and are working on a geneby-gene basis on model organisms had no chance to detect these genes.



The authors suggest that an insufficient understanding of the biology of many disease genes has prevented the successful development of further medical therapies and that current preclinical research is biased towards experimentally well-accessible genes

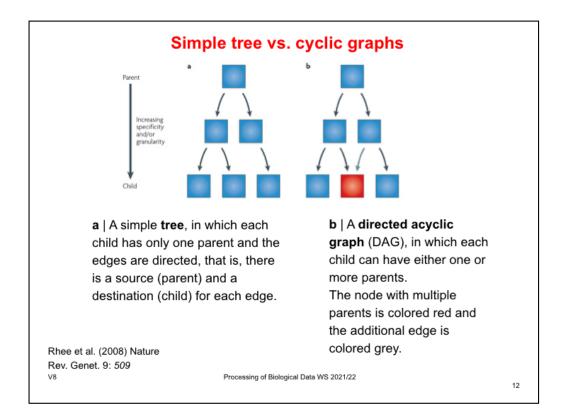


For those of you who are not closely familiar with the Gene Ontology, here is some introduction or review.

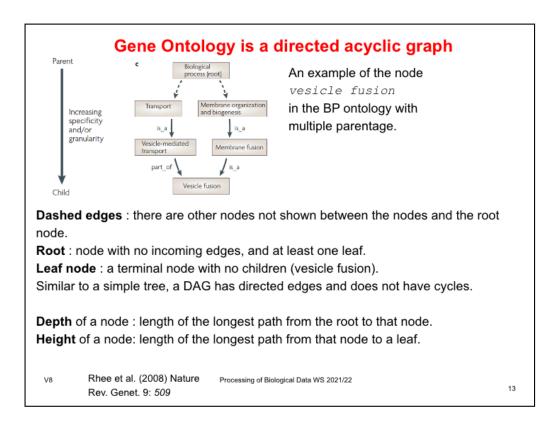


The Gene Ontology consists of 3 branches: **biological process, molecular function** (chemical details), and the **cellular component** that the encoded protein localizes to.

Each branch starts with a root node on top and subsequent child nodes with more and more specific functions that inherit the functions of all their parents and grand-parents.



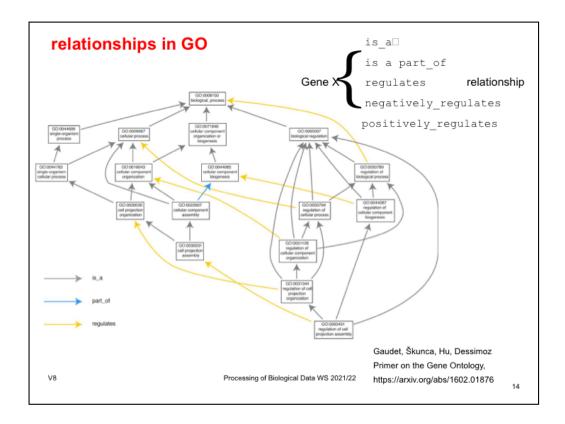
The Gene Ontology has the topology of a **directed acyclic graph** where child nodes can have multiple parent nodes.



This example shows that the leaf node "vesicle fusion" (found e.g. in endocytosis and exocytosis and in vesicular transport between different compartments) has two branches of parent nodes.

The left branch focuses on the vesicles, the right branch on the membrane processes.

Although the arrows are directed downwards in this figure, they should be read in the opposite direction. E.g. "vesicle fusion" is a "part_of" "vesicle-mediated transport", not the other way around.



Here, the arrows are oriented in the correct upward direction.

There exist five different types of relationships shown on the top right.

All terms (except from the root terms representing each aspect) have an "**is a**" sub-class relationship to another term; e.g. GO:1904659:glucose transport is a GO:0015749:monosaccharide transport.

The Gene Ontology employs a number of other relations, including "**part of**", e.g. GO:0031966:mitochondrial membrane is part of GO:0005740:mitochondrial envelope

and "**regulates**", e.g: GO:0006916:anti-apoptosis regulates GO:0012501:programmed cell death

As shown in the figure, "regulating" arrows may connect different branches or reach directly to upper levels.

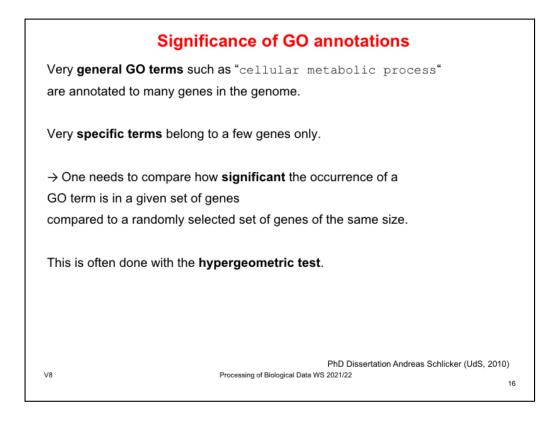
Obviously, "negatively_regulates" and "positively_regulates" are specifications of "regulates". Sometimes, the direction of regulation (up/down) may not be known – then one would assign "regulates".

Also, in some cases, the direction of regulation may be in both directions depending on the particular condition. Also then, one would assign "regulates".

Full GO v	s. special subsets of GO		
GO slims are cut-down versions of the GO ontologies			
containing a subset of the terms in	n the whole GO.		
They give a broad overview of the	e ontology content		
without the detail of the specific fir	ne grained terms.		
GO slims are created by users according to their needs, and may be			
specific to species or to particular areas of the ontologies.			
GO-fat : GO subset constructed by DAVID @ NIH			
GO FAT filters out very broad GO terms			
www.geneontology.org			
	energies of Distribut Data WD 0001/00		
V8 Pi	rocessing of Biological Data WS 2021/22	15	

The gene ontology terms are of different nature ranging from very general terms that are annotated to thousands of genes to very specialized terms that are annotated only to few genes.

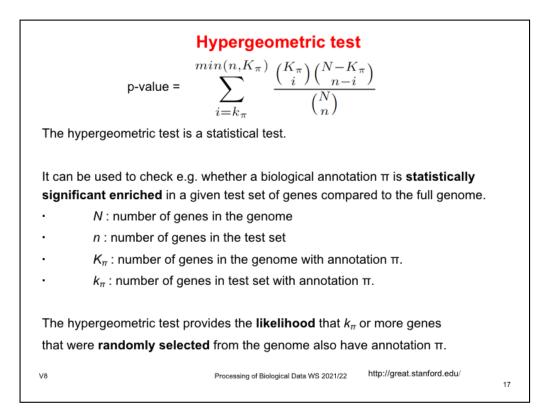
Depending on the application, scientists may consider using either only subsets of general terms (GO slim) or subsets of specific terms (GO fat).



Often, one wants to annotate biological meaning e.g. to the results of a differential expression analysis. It may not be helpful to know that half of the upregulated genes carry out "metabolic processes".

But it would be very helpful to know if several among them are e.g. annotated with "**purine nucleotide biosynthetic process** ", which is a much more specific GO term (0006164).

Hence, one needs to determine the statistical significance of the fact that out of 393 human genes in total that are annotated with this GO term, e.g. 100 are upregulated.



Often, one uses the hypergeometric test to compute a p-value for the statistical significance of GO terms.

The formula needs to be interpreted in the following way:

In the denominator (Dt. Nenner), we consider the combinatorial number of drawning n genes out of a large set of N genes.

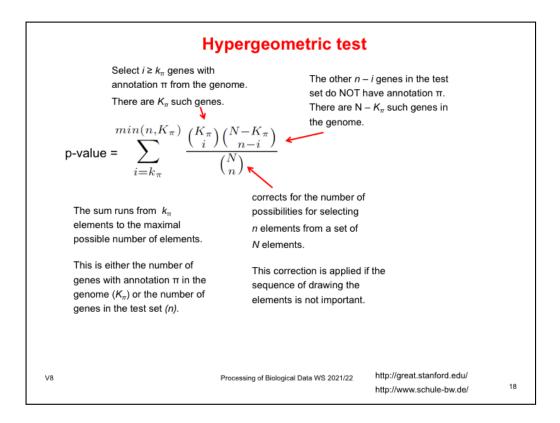
In the numerator (Dt. Zähler), we enter the current situation: the first term is the number of *i* genes having a particular GO term (out of K_{π} genes in the full set of *N* genes).

The second term considers the remaining n-i genes that do not have this GO term assigned (here, we assume that they then actually do not have this function – which may be incorrect due to partial knowledge).

These *n*-*i* genes can be drawn from the remaining N- K_{π} genes in the full set of N genes that do not have this GO term assigned.

By computing this ratio, we compute the number of cases where we could generate such a scenario by chance.

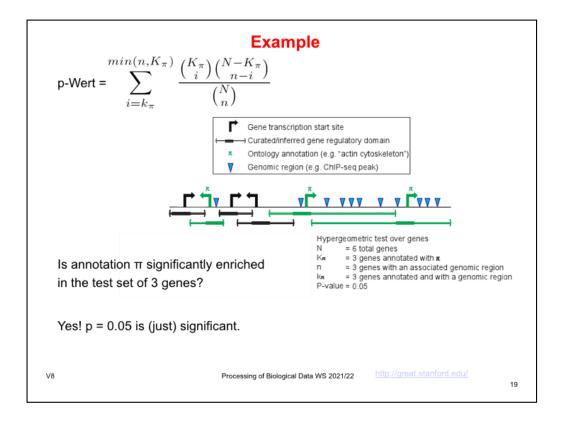
If there exist many such cases, then the p_value would be quite high, and hence the statistical significance low.



The p-value is the probability that a scenario at least as extreme as observed could occur by chance.

Therefore, we also consider cases where more than k_{π} genes in the small set of n genes are annotated with this GO term. This is the reason why we need to sum over all these more extreme cases.

At least k_{π} genes should have the GO term. At most all *n* genes could be annotated with this GO term.



This is a small-scale example, where we can evaluate the hypergeometric test by hand. We assume a case where a genome contains only N = 6 genes (linear bars between brackets below the line, the arrows indicate the position of transcriptional start sites and the direction of transcription). Further, we assume that the K_{π} = 3 genes colored green possess a property (GO annotation) pi.

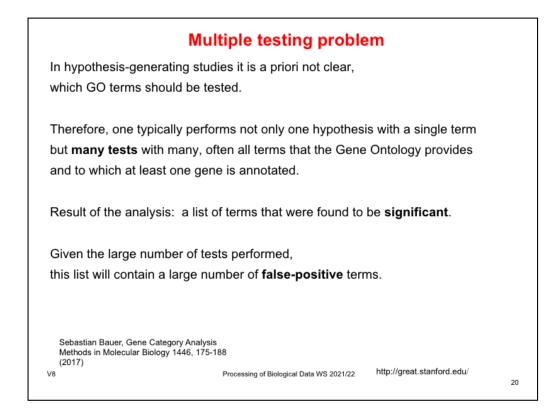
Now we perform an experiment, e.g. differential expression analysis, and find that n = 3 genes are upregulated in condition 2 vs. condition 1. Interestingly, all these 3 genes have property $\pi \rightarrow k_{\pi} = 3$.

Is this reason enough to get superexcited about this finding? What is the chance of obtaining a similar result by chance, i.e. blindly picking the 3 white balls out of a box with 3 white balls and 3 black balls.

In total, there are 6 over 3 possibilities of selecting 3 genes out of 6 genes. In this example k_{π} , K_{π} and *n* are all equal to 3. Therefore, we only need to consider the case i = 3 and can omit the summation.

In the numerator, the first term is 3 over 3, which is equal to 1 by definition. The second term is 3 over 0, which is also equal to 1 by definition.

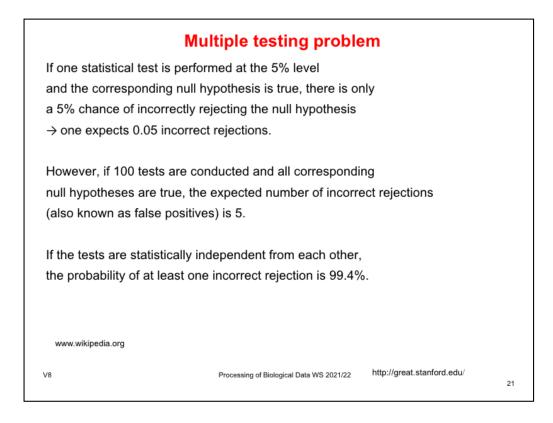
The denominator is 6 over 3, which is $(6 \times 5 \times 4) / (1 \times 2 \times 3) = 20$. So the observed result of this experiment is just significant (p-value = 0.05).



In the example just discussed, we had considered only 1 property named π .

However, in a typical differential expression analysis, we consider a large number of GO terms.

This leads to a severe problem, the so-called multiple testing problem, because we subject the same experimental outcome (which genes are up/downregulated for a given number of samples?) to many statistical tests for the various GO terms. Each hypergeometric test applies to a particular GO term.



Now we will discuss the so-called multiple testing problem.

This typically leads to the application of the **False Discovery Rate** (FDR) correction of the obtained p-values and yields "adjusted p-values".

First, we need to understand what the problem is.

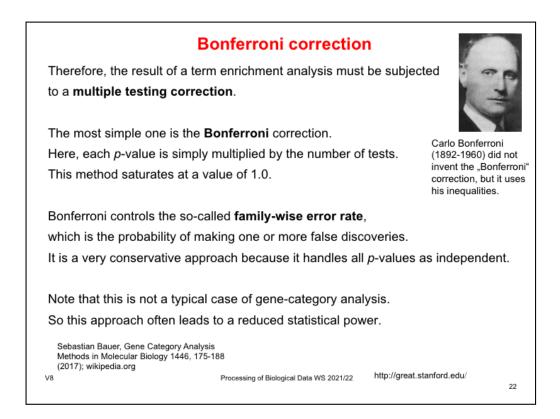
There is no problem if we only perform one statistical test where we test one null hypothesis.

The problem arises if we conduct a lot of statistical tests on the same data.

For example, we could have a cohort of 100 tumor patients and 100 healthy individuals. The first test could be to see if gene 1 is differentially expressed between both groups.

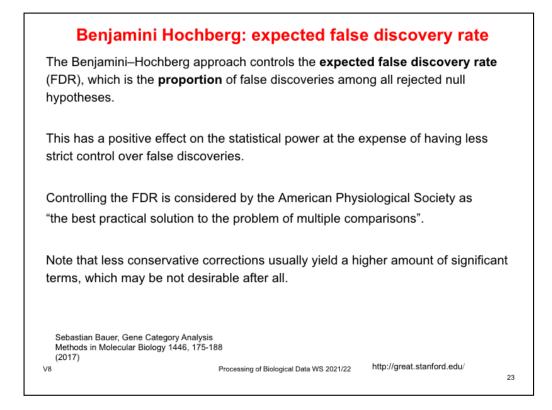
The second test would be the same for gene 2 and so on. In the end, we would have conducted 20.000 statistical tests.

The chance that some of these genes will in fact show a significant difference between both groups is very high.



Let us consider the same example (100 healthy, 100 tumor patients, 20000 genes and assume that the smallest (not adjusted) p-value is 10^{-5} .

The Bonferroni correction simply multiplies all p-values by the number of statistical tests (20000). This yields 2×10^{-1} as smallest adjusted p-value, which would not be considered significant.



Let us consider an example where 500 genes were determined as differentially expressed.

With a "false discovery rate" set to 0.1, this actually means you expect 50 of them to be false positives, so they are actually NOT differentially expressed.

This is a nice video that motivates the BH method: https://www.youtube.com/watch?v=K8LQSvtjcEo

Benjamini Hochberg correction: how to recipe				
0. Select a FDR threshold Q (this is a percentage, chosen by you). Depending on the specific project, FDR may be set to values between 1% and 25%.				
1. Put the individual	p-values in ascending order.			
2. Assign ranks to the second smallest has	e p-values. For example, the smalle a rank of 2 etc	est has a rank of 1, the		
3. Calculate each ind formula <i>(i/m)</i> Q, where <i>i</i> = the individual <i>m</i> = total numbe Q = the false dis	p-value's rank, r of tests,	erg critical value, using the		
4. Compare your original p-values to the critical B-H from Step 3; find the largest p value that is smaller than the critical value.				
V8	Processing of Biological Data WS 2021/22	https://www.statisticshowto.com/benjamini- hochberg-procedure/ 24		

Steps 1 - 4 are the main steps of the Benjamini Hochberg procedure.

I have added step 0 to this because the FDR threshold should be determined first, not after seeing what results are obtained.

Benjamini Hochberg correction: how to recipe						
As an example, the following list of data shows a partial list of results from 25 tests with their p-values in column 2.						
The list of p-values was ordered (Step 1) and then ranked (Step 2) in column 3.						
Column 4 shows the calculation for the critical value with a false discovery rate of 25% (Step 3). For instance, column 4 for item 1 is calculated as $(1/25) * .25 = 0.01$:						
The bolded p-value (for Children) is	Variable	P Value	Rank	(I/m)Q		
the highest p-value that is also smaller	Depression	0.001	1	0.01		
than the critical value: .042 < .050. All	Family History	0.008	2	0.02		
values above it (i.e. those with lower	Obesity	0.039	3	0.03		
	Other health	0.041	4	0.04		
p-values) are highlighted and	Children	0.042	5	0.05		
considered significant, even if those p-	Divorce	0.060	6	0.06		
values are not lower than the critical	Death of Spouse	0.074	7	0.07		
	Limited income	0.205	8	0.08		
values. E.g. Obesity and Other Health are individually not significant when you compare the result to the final column (e.g039 > .03). However, with the B-H correction, they are considered significant; i.e. you would reject the null hypothesis for those values. N8 Processing of Biological Data WS 2021/22 https://www.statisticshowto.com/benjamini- hochberg-procedure/ 25						

This is an example how FDR-adjusted p-values are computed in practice.

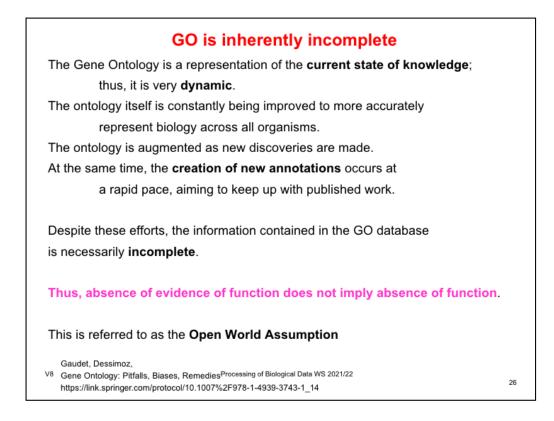
Column 2 contains the p-values obtained by applying a statistical test to the data, e.g. a t-test.

Then, for a particular FDR-threshold, one determines the critical value (I/m)xQ.

Interestingly, the magnitude of the p-values itself does not enter here.

If the p-values are very small, they have a better chance of being smaller than the critical value. Note that p-values tend to become smaller and smaller the more data points are available.

On the other, the critical values decrease inversely with the number of tests performed (m). This penalizes against doing many tests on the same data.



Now, we will discuss an important aspects of the Gene Ontology: its incompleteness.

 The functional annotations in GO try to follow the expansion of the scientific knowledge, but can only do this with a significant time delay. Also, it is impossible to completely cover all scientific discoveries.

Sometimes, there may be even contradictory scientific reports in the literature about the function of one gene.

Ontology	Property	Value
	Valid terms	44411 (Δ = -97)
	Obsoleted terms	2947 (Δ = 23)
	Merged terms	2056 (Δ = 91)
	Biological process terms	29112
	Molecular function terms	11118
	Cellular component terms	4181
Annotations	Property	Value
	Number of annotations	7,975,639
	Annotations for biological process	3,069,526
	Annotations for molecular function	2,455,089
	Annotations for cellular component	2,451,024
	Annotations for evidence PHYLO	4,163,423
	Annotations for evidence IEA	1,978,576
	Annotations for evidence EXP	759,654
	Annotations for evidence OTHER	791,743
	Annotations for evidence ND	241,978
	Annotations for evidence HTP	40,265
V8	Number of annotated scientific publications Processing of Biological Data	

This statistics was taken from the Gene Ontology website and refers to the release of June 2020.

Gene Ontology evidence codes Experimental evidence codes				
The EXPerimental (EXP) evidence codes indicate that there is evidence from an experiment directly supporting the annotation of the gene. E.g. an association between a gene product and its subcellular localization as determined by immunofluorescence would be supported by the Inferred from Direct Assay (IDA) evidence code, a subtype of EXP evidence.	t			
The experimental evidence codes are:				
Inferred from Experiment (EXP) Inferred from Direct Assay (IDA) Inferred from Physical Interaction (IPI) Inferred from Mutant Phenotype (IMP) Inferred from Genetic Interaction (IGI) Inferred from Expression Pattern (IEP)				
http://geneontology.org/docs/guide-go-evidence-codes/				
V8 Processing of Biological Data WS 2021/22	28			

The link

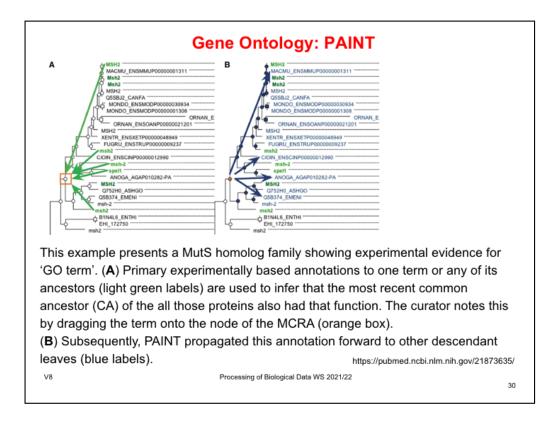
http://geneontology.org/docs/guide-go-evidence-codes/

provides detailed further information about each "inferred from" code.

Experimental evidence codes are the strongest informations because the evidence is taken from direct experimental assays of this particular gene in this organism.

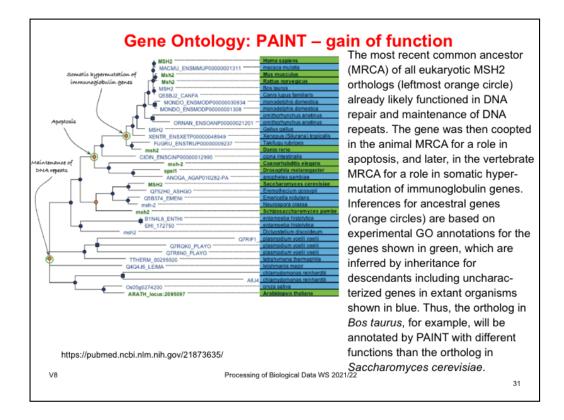
Phylogeny-based annotations make up an important part of all GO annotations.

On the next slides, we will discuss a few examples how how the PAINT tool is used to decide on phylogeny-based annotations.



Publication on PAINT: https://pubmed.ncbi.nlm.nih.gov/21873635/

The first element necessary for PAINT curation is the generation of phylogenetic trees to be annotated with functional evolution events. PAINT presents the biocurator with a phylogenetic tree and a multiple sequence alignment dynamically retrieved from the PANTHER database, and auxiliary information such as gene and protein names and identifiers. In addition it displays all the experimentally based annotations dynamically retrieved from the live GO database.

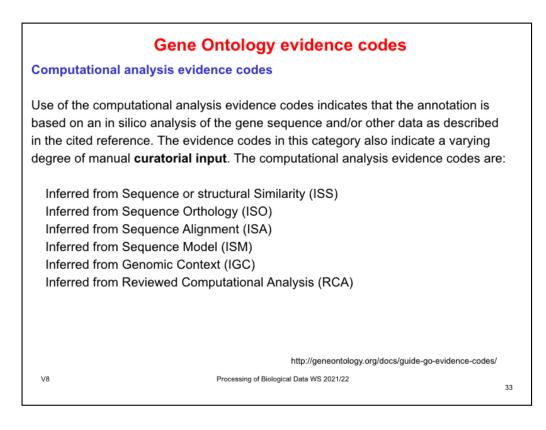


A gain of function is the addition of a function to a protein, while retaining its other existing functions. In PAINT, a biocurator is presented with all of the experiment-based GO annotations for the genes in a given family. For each annotation, the curator infers when in the evolutionary history of the family a given function was most likely to have first evolved, i.e. which ancestor 'gained' the function. This is recorded as an annotation of a gene at an internal node in the phylogenetic tree and means that the function is inferred to have evolved along the branch leading to that gene. The location of the inferred annotation determines the possible 'phylogenetic span' of the inferred annotations, since only direct descendants of the annotated ancestral gene can inherit that annotation. Gain of function may occur after a speciation event, meaning that orthologous genes will not share all functions in common. One example occurs in the MSH2 subfamily of PTHR11361, where a gene originally involved in recognizing DNA mismatches and recruiting the DNA repair machinery was co-opted in animals to regulate apoptosis and in vertebrates to mediate somatic hypermutation of immunoglobulin genes



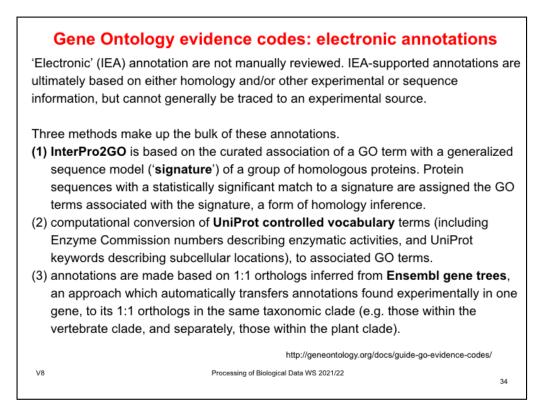
When a biological characteristic was lost during evolution, GO annotates an ancestral (or extant) gene with the 'NOT' qualifier prefixed to the relevant annotation. 'NOT' annotations are inherited by descendants just like other GO annotations, in addition to preventing the inheritance of the corresponding positive annotation. 'NOT' annotations of ancestral genes must be supported by evidence, either: (i) an experiment-based annotation of a descendant sequence indicating it lacks this function; or (ii) absence of specific residues in the sequence, e.g. a missing active site residue.

In this example, loss of function can be observed in the phosphoglucomutase (PGM) family. Based on the phylogeny and experimental annotations, phosphoglucomutase activity most likely evolved prior to the last universal common ancestor and is found in most eubacteria and eukaryotes. A gene duplication event in the vertebrate ancestor in this family resulted in two genes that would become PGM1 and PGM5 in humans. Both mouse and human PGM5 have been demonstrated experimentally to have lost phosphoglucomutase activity. These experimental annotations strongly suggest that the loss occurred before the mouse–human common ancestor, but how long before? Based on active site mutations present in almost all of the vertebrate PGM5 proteins, the biocurator determined that the loss of function occurred in the vertebrate common ancestor. Obviously, curators must go deeply into the specific biology of this gene, its function, and its phylogeny.

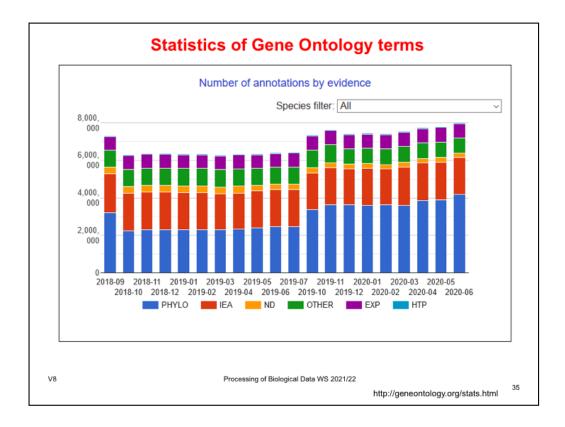


Also "computational" analysis requires the manual activity of a curator. An ISS annotation is often based on more than just one type of sequence-based evidence and may involve searches with **BLAST**, **profile HMMs**, **TMHMM**, **SignalP**, **PROSITE**, **InterPro**, etc. Evaluation of output from these search tools leads an annotator to a particular ISS annotation for a particular protein.

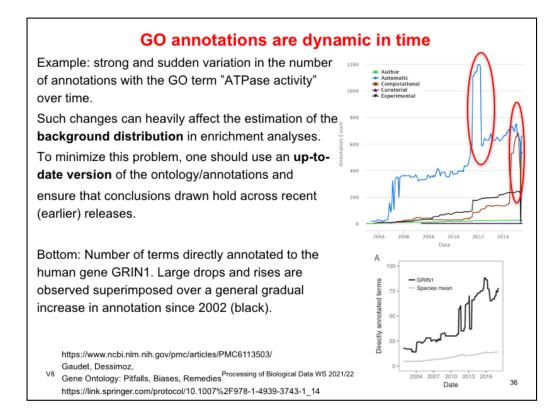
E.g., a BLAST search might reveal that a query protein matches an experimentally characterized protein from another species at 50% identity over the full lengths of both proteins. After reading literature about the match protein, the curator sees that the match protein is known to contain a domain located in the plasma membrane and another domain that extends into the cytoplasm. It is also known from the literature that the experimentally characterized match protein requires the binding of ATP to function. TMHMM analysis of the query protein predicts several membrane spanning regions in one half of the protein. In addition there are PROSITE and Pfam results which reveal the presence of an ATP-binding domain in the other half of the protein which TMHMM predicts to be cytoplasmic. These four search results taken together point to a probable identification of the query protein as having the function of the match protein.



Electronically inferred annotations are the "weakest" functional annotations in GO. Still, they are based on careful methodological considerations.



Statistics of the number of GO terms over the past 2 years taken from the listed GO website. The number of experimental annotations is growing very slowly. The largest changes are due to modifications in the PHYLO algorithm (blue).

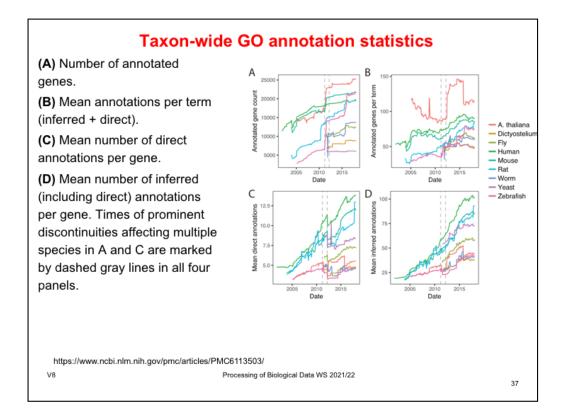


First of all, the number of genes with annotation "ATPase activity" increases constantly over time.

There are 2 problematic cases of up/down jumps: in the blue curve and in the brown curve.

The blue curve suddenly jumped up near 2012. The reason for this is unclear – maybe a change of the underlying algorithm was made, that was later corrected – and then the curve jumped back.

A similar case is visible in the brown curve for "computational" annotations.

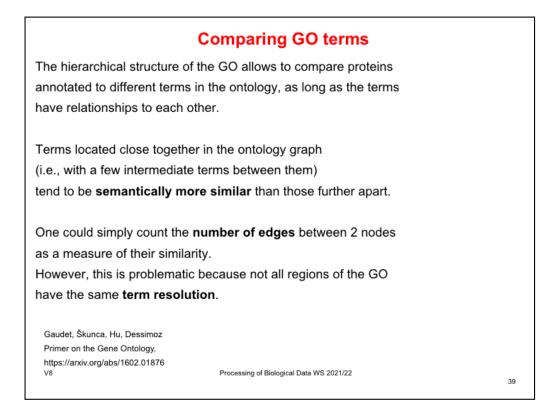


Large jumps and drops are sometimes simultaneously observed in multiple, or even all, species. E.g. a rapid increase in the number of annotated genes started in March 2011 for *Arabidopsis*, mouse, and zebrafish (A). Another dramatic event was a large drop in the mean number of direct annotations per gene in March 2012 for all species (C). The jump is not visible in the plots for indirect annotations (D). This would be consistent with a large-scale purging of redundant annotations (rejecting higher-level terms that are inferable from more specific terms).

All changes	Term	Definition / Syn	onyms Relationships Cross-references Other	apoptotic process
Timestamp	Action	Category	Detail	process
2020-02-28	Deleted	XREF	MIPS_funcat:40.10.02	
2019-05-04	Added	XREF	MIPS_funcat:40.10.02	
2017-07-28	Added	SLIM	goslim_pombe	
2016-03-05	Added	SYNONYM	caspase-dependent programmed cell death	
2015-12-09	Added	CONSTRAINT	only_in_taxon NCBITaxon:33154 (Opisthokonta)	
2014-04-12	Deleted	DEFINITION	A programmed cell death process which begins when a cell receives an internal (e.g. DNA death ligand), and proceeds through a series of biochemical events (signaling pathways) which typically lead to rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pythoxis), chromatin condensation, nuclear fragmentation (karyorthexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. The process ends when the cell has died. The process is divided into a signaling pathway phase, and an execution phase, which is triggered by the former.	
2014-04-12	Added	DEFINITION	A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g. an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathway phase) which trigger an execution phase. The execution phase is the last step of an apoptotic process, and is typically characterized by rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pytnosis), chromatin condensation, nuclear fragmentation (baryorthexis), plasma membrane blebbing and fragmentation of the cell in the apoptotic bodies. When the execution phase is completed, the cell has died.	https://www.ebi.ac.ul QuickGO/term/GO:0 06915
2013-09-06	Added	SECONDARY	GO:0006917 (induction of apoptosis)	
2013-09-06	Added	SYNONYM	induction of apoptosis Processing of Biological Data WS 2021/22	
2013-09-06	Added	SYNONYM	commitment to apoptosis	38

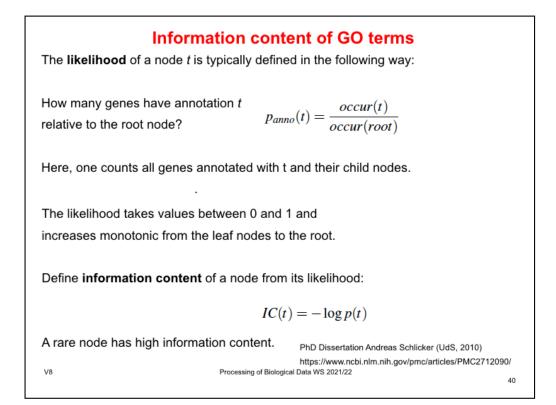
GO carefully logs all changes made to GO terms over time at the end of each QuickGO entry.

QuickGO is a web-based browser of the Gene Ontology and Gene Ontology annotation data.

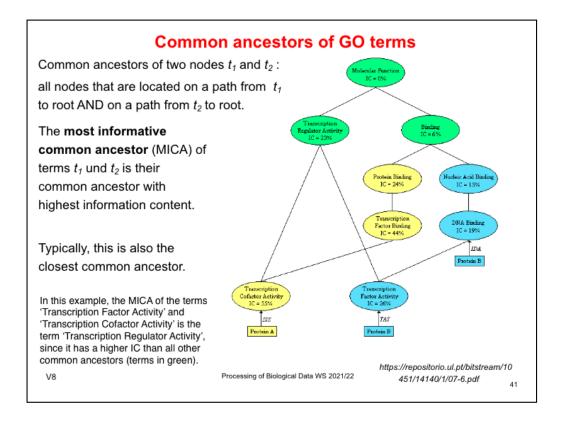


Before, we introduced the structure of the Gene Ontology and how one can identify significantly enriched GO terms. Sofar, we dealt with individual GO terms.

Now, we will discuss how one can compare different GO terms by a numerical measure.



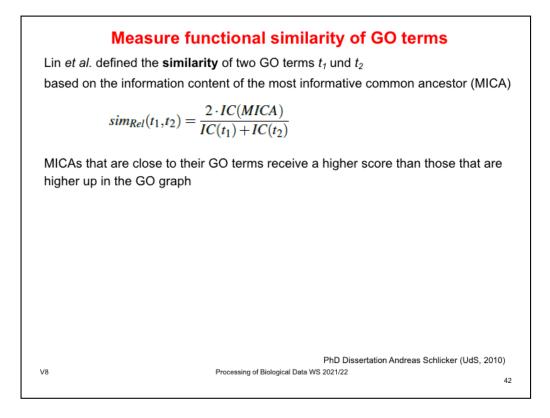
Term **information content** (IC) approaches can be divided into two families: annotation and topology-based IC approaches. The definition of p_{anno} shown here belongs to the annotation-based approaches.



One way of assigning semantic similarity between GO terms is to consider the common ancestors of 2 GO terms. Intuitively, the "closest" common ancestor would be most meaningful.

Due to the DAG-nature of the Gene Ontology, there may be multiple "closest" common ancestors either on the same hierarchical GO level or with the same path length to them.

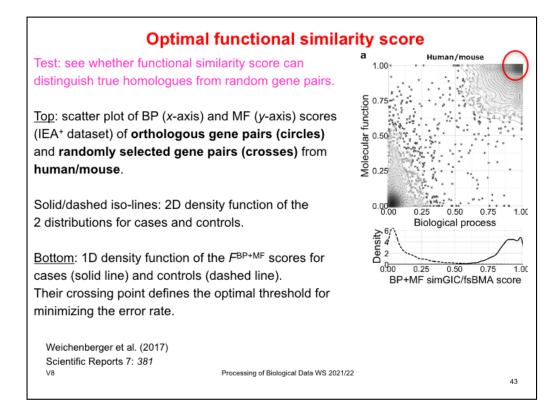
Instead, one often selects the common ancestor with the highest information content (IC). This is called the **most informative common ancestor**.



One normalizes the IC of the MICA by the sum of the ICs of the two GO terms.

Because one is taking the ratio of 1 node attribute over 2 node attributes, one multiplies this ratio by 2 to bring numerator and denominator on the same level.

At most, this ratio can reach a value of 1 if $IC(MICA) = IC(t_1) = IC(t_2)$.



Link to the paper: https://www.nature.com/articles/s41598-017-00465-5

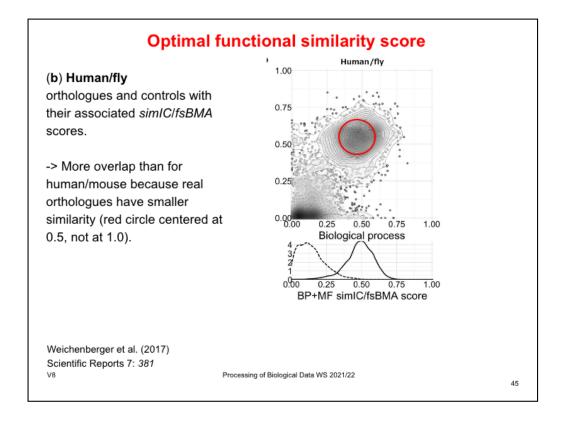
Any two genes will have a certain **semantic similarity**, even if they "have nothing to do with eachother". What is a good threshold to distinguish "real" functional similarity from the similarity of random gene pairs?

Here, the authors did a large-scale comparison of gene pairs from human and mouse. Orthologous gene pairs (circles) have high BP and MF functional similarity and are placed in the upper right quadrant.

Random gene pairs are in the bottom left quadrant. Shown in the bottom panel is a combined BP + MF similarity score. Here, the best separation point would be around 0.55 or so.

Optimal functional similarity score		
The human/mouse comparison is based somehow on a cyclic argument	t:	
- Orthologues are defined on the basis of sequence similarity		
 Then we test whether their GO-annotations are more similar than for random protein pairs. BUT many GO annotations are made based on sequence similarity. 		
Thus, this is more a test for consistency rather than a real proof.		
Weichenberger et al. (2017) Scientific Reports 7: 381 V8 Processing of Biological Data WS 2021/22	44	

We should not forget where GO terms come from. This may sometimes lead to circular arguments.



For the more remotely related organism pair human/fly, the densities for cases and controls calculated with the *simIC/fsBMA* measures overlap to some extent. Notably, there is a smaller fraction of orthologues that do not share any similarity in the MF ontology, but do have considerable high BP scores

	Summary	
-	The GO is the gold-standard for computational annotation of gene function It is continuously updated and refined.	
-	Issues in GO-analysis protein annotation is biased and is influenced by different research interests: - model organisms of human disease are better annotated - promising gene products (e.g. disease associated genes) or specific gene families have a higher number of annotations - gene with early gene-bank entries have on average more annotations	
-	Hypergeometric test is most often used to compute enrichment of GO terms i gene sets	n
-	Semantic similarity concepts allow measuring the functional similarity of genes. Selecting an optimal definition for semantic similarity of 2 GO terms and for the mixing rule depends on what works best in practice.	
١	V8 Processing of Biological Data WS 2021/22	46

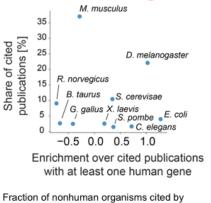
Studies on model organisms affect studies on human genes

Check whether publications reporting the discovery of new human genes also cite studies on (other) human or non-human genes.

(1) One group of papers preferentially cited studies on genes from *Mus musculus*, *Rattus norvegicus*, *Bos taurus*, and *Gallus gallus* AND studies on (other) human genes.

(2) The second group preferentially cited genes from *Drosophila melanogaster*, *S. cerevisiae*, *E. coli*, *Xenopus laevis*, *C. elegans*, and *S. pombe*. but DID NOT cite publications on (other) human genes,

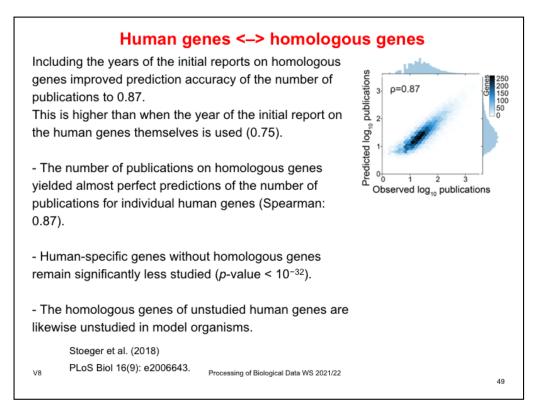
-> initial reports on human genes have been particularly influenced by research in model organisms.

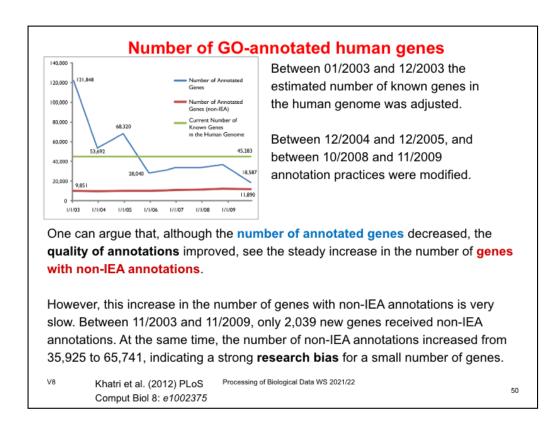


initial publications of human genes. Enrichment represents log2 ratio of the fraction of nonhuman organisms among all initial publications on human genes over the fraction of nonhuman organisms among initial publications on human genes, which also cite publications on human genes. The 10 most cited organisms are shown

V8 Stoeger et al. (2018) PLoS Biol 16(9): e2006643.

Processing of Biological Data WS 2021/22





IEA stands for "inferred by electronic annotation".

Non-IEA annotations are considered more trustworthy than IEA.

Mixing rules

Given:

V8

protein *P* that is annotated with *m* GO terms t_1 , t_2 ,..., t_m and protein *R* that is annotated with *n* GO terms r_1 , r_2 , ..., r_n .

Then the matrix *M* is given by all possible pairwise semantic similarity (SS) values $s_{ij} = sim(t_i, r_j)$ with *sim* being one of the SS measures introduced above, i = 1, 2, ..., m and j = 1, 2, ..., n.

Functional similarity is computed from the SS entries of *M* according to a specific **mixing strategy** (MS).

Several mixing strategies have been suggested:

fsMax uses the **maximum** value of the matrix, *fsMax* = $\max_{i,j} s_{ij}$,

fsAvg takes the average over all entries,

$$fsAvg = \frac{1}{m \times n} \sum_{i,j} s_{ij}$$

Weichenberger et al. (2017)

Scientific Reports 7: 381 Processing of Biological Data WS 2021/22

Compare methods to measure functional similarity

s and *t* : two GO terms that will be compared semantically S(s, t) : set of all common ancestors of *s* and *t*.

Resnik (<i>simRes</i>)	$simRes(s, t) = \max_{c \in S(s,t)} I(c)$
Lin (<i>simLin</i>)	$simLin(s, t) = \max_{c \in S(s,t)} \frac{2 \cdot I(c)}{I(s) + I(t)}$
Schlicker (<i>simRel</i>)	$simRel(s, t) = \max_{c \in S(s,t)} \left(\frac{2 \cdot I(c)}{I(s) + I(t)} \cdot (1 - P(c)) \right)$
information coefficient (simIC)	$simIC(s, t) = \frac{2 \cdot \max_{c \in S(s,t)} I(c)}{I(s) + I(t)} \cdot \left(1 - \frac{1}{1 - \max_{c \in S(s,t)} I(c)}\right)$
Jiang and Conrath (<i>simJC</i>),	$sim JC(s, t) = \frac{1}{1 + I(s) + I(t) - 2 \cdot \max_{c \in S(s,t)} I(c)}$
graph information content (sime	GIC). simGIC(s, t) = $\frac{\sum_{c \in \{S(s,s) \cap S(t,t)\}} I(c)}{\sum_{c \in \{S(s,s) \mid S(t,t)\}} I(c)}$
Weichenberger et al. (2017) V8 Scientific Reports 7: 381	$\angle c \in \{S(s,s) \cup S(t,t)\}^{T}$ (C) Processing of Biological Data WS 2021/22 52

Mixing rules

Using the maximum of averaged row and column best matches has been suggested for incomplete annotations. $fsBMM = \max\left(\frac{1}{m}\sum_{i}\max_{j}s_{ij}, \frac{1}{n}\sum_{j}\max_{i}s_{ij}\right)$

Instead of taking the maximum, averaging gives the so-called best match average

$$fsBMA = \frac{1}{2} \left(\frac{1}{m} \sum_{i} \max_{j} s_{ij} + \frac{1}{n} \sum_{j} \max_{i} s_{ij} \right)$$

Conversely, the **averaged best match** is defined as $fsABM = \frac{1}{m+n} \left(\sum_{i} \max_{j} s_{ij} + \sum_{j} \max_{i} s_{ij} \right)$

A combined functional similarity *F* is computed by combining any of the semantic

A combined functional similarity *F* is computed by combining any of the semantic similarities for the different ontologies: biological process (F_{BP}), molecular function (F_{MF}), and cellular component (F_{CC}):

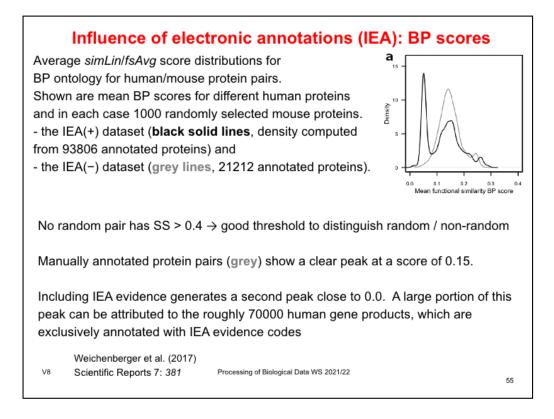
$$\begin{split} F_{BP+MF} &= \sqrt{\frac{1}{2}(F_{BP}^2 + F_{MF}^2)} \\ F_{BP+MF+CC} &= \sqrt{\frac{1}{3}(F_{BP}^2 + F_{MF}^2 + F_{CC}^2)} \end{split}$$

Weichenberger et al. (2017) Scientific Reports 7: 381

V8

Processing of Biological Data WS 2021/22

	Effect of high-throughput experiments					
	High-throughput experiments are another source for annotation bias.					
They contribute disproportionally large amounts of annotations by only few published studies.						
	This information is further propagated by automated methods.					
	The huge body of electronic annotations (evidence code IEA) has therefore a strong influence on semantic similarity scores.					
	V8 Scientific Reports 7: 381 Processing of Biological Data WS 2021/22 54					



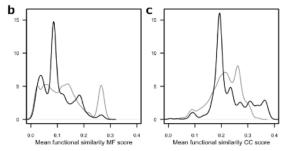
Influence of electronic annotations on MF + CC scores

(**b**) MF based score distribution. Unlike BP, this ontology is characterized by a more uniform distribution of scores, with a notable peak near 0.27, generated by ca. 1600 proteins.

GO enrichment analysis of these proteins shows that they are significantly enriched in "protein binding" (GO:0005155, $p < 10^{-100}$).

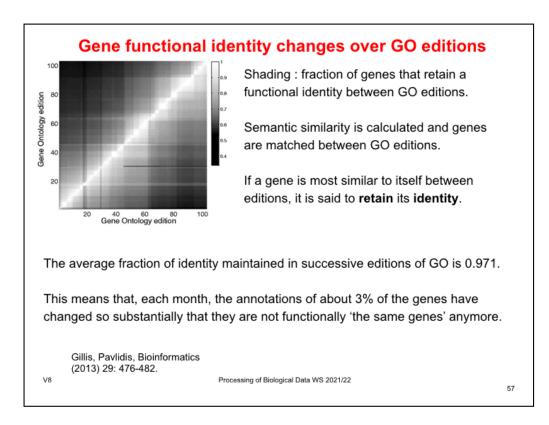
This suggests that gene products annotated to this term generally yield much higher than average *simLin/fsAvg* MF scores.

Weichenberger et al. (2017) Scientific Reports 7: 381



(c) CC score distribution. Here, both manual and electronic annotation peaks are closer to each other than in the other 2 ontologies. Electronic annotations have higher densities in the upper score range (>0.3), where the manual annotation scores have already tailed off.

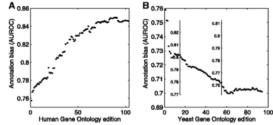
Processing of Biological Data WS 2021/22



Annotation bias persists in the GO

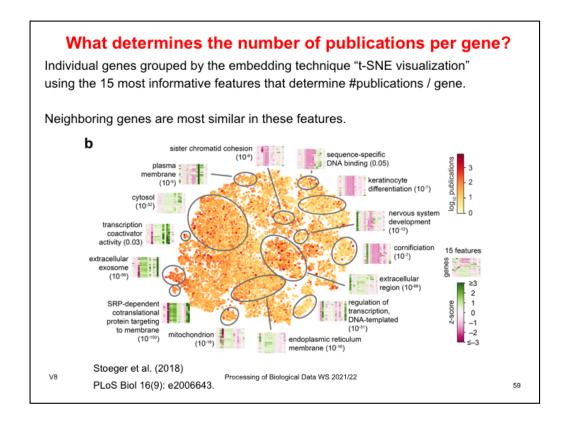
Annotation bias: defined as area under ROC curve for ranking the genes by the number of GO terms.

If all genes had the same number of GO terms, the **annotation bias** would be 0.5. At the other extreme, if there are only a few GO terms used and they are all applied to the same set of genes, then the bias is 1.0.



(A) Annotation bias has risen among human genes over time. Genes with many annotations have become more dominant within GO over time. (**B**) For yeast, annotation bias has generally fallen over time.

V8 Gillis, Pavlidis, Bioinformatics Processing of Biological Data WS 2021/22 (2013) 29: 476-482.



Red dots are genes studied in many publications, yellow dots are little studied.