V8 - Functional annotation

Program for today:

- Have all genes been studied with the same intensity?

- Functional annotation of genes/gene products: Gene Ontology (GO)

- significance of annotations: hypergeometric test

- (mathematical) semantic similarity of GO-terms
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In lecture 8, we will deal with the downstream functional analysis of raw
experimental transcriptomics data.

A typical transcriptomics or proteomic experiment may yield a set of
upregulated or downregulated genes. Functional annotation then deals with
extracting the biological meaning from these findings.

Often, this is done using the hypergeometric test based on functional terms
from the Gene Ontology or based on biochemical pathways from KEGG or
Reactome.



High imbalance in intensity of research on individual genes

Frequency of the number of research
publications associated with individual
human protein-coding genes in MEDLINE.

1500
The observed disparity could in principle
i reflect a lack of importance of many genes.
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O More likely it reflects
0 - existing social structures of research,

100 10 102 10° 10* - scientific and economic reward systems,
- medical and societal relevance,

- preceding discoveries,

- the availability of technologies and
reagents, etc.

No. Publications

Stoeger et al. (2018)
PLoS Biol 16(9): €2006643.
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Link to this paper:
https://journals.plos.org/plosbiology/article7id=10.1371/journal .pbio.2006643

Importantly, the amount of knowledge about individual genes is largely
different. This figure shows how many papers were published about individual
human protein-coding genes up to 2018.

Some genes (right tail of the distribution) were studied by more than 1000
publications. On the other hand, some genes were only addressed by a handful
of publications. What is responsible for this imbalance?

Possibly the most studied genes are the most important genes in terms of
their function. But who should decide what functions are important?

Often, the research directions of individual scientists are the result of many
coincidences: How did they pick their PhD supervisor and post-doc advisor?
What were the bosses working on? Which ones of the many grant applications
that scientists write got funded?



What determines the number of publications per gene?
Using information on 430 physical, chemical, and biological features of genes,
one can predict the number of publications for single genes with 0.64 Spearman
correlation.
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PLoS Biol 16(9): €2006643.
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Here, the authors tried to find out which features determine what genes are
well studied.

Obviously, genes that can be robustly expressed and proteins that can be easily
synthesized have an advantage.

The reason is that many scientists don‘t like to work on ,,difficult* things that
only work once in a while.



Earlier studied genes continue to be studied

The number of publications per gene is SAMHO T 1
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The upper figure shows that the number of publications for a gene in the
period 2011-2015 is strongly correlated to the number of publications until
2010.

This shows that scientists continue to study research questions around certain
genes that they and others have already studied before.

If one includes the year of the first publication, the prediction accuracy
improves considerably, which emphasizes the importance of this feature
relative to the other 430 features.



Scientists working only on model organisms declining

-> Fraction of scientists who—within 5 1%

the indicated year—publish exclusively g g0 Genes
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In the 1980s and 1990s, the fraction of scientists who exclusively published on
human genes had been stable. But there were two opposite trends during this time:
the fraction of scientists working on human and nonhuman genes has been
steadily increasing in parallel to a decrease of scientists publishing exclusively on
nonhuman genes.

Around 2000, the fraction of scientists working on human and nonhuman genes
started to plateau, while the fraction of scientists working exclusively on human
genes increased by approximately 10 percent points and has since been steadily
increasing.

Stoeger et al. (2018)

PLoS Biol 16(9): e2006643.
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There has been a continuous decrease in the scientific activities on model
organisms. This negative trend accelerated around the year 2000 in favor of an
increased fraction of scientists that exclusively work on human genes.

One can speculate whether this is related to the ability of obtaining funding for
research projects. Also, this may be due to the availability of the human
genome sequence after 2001.



Attention of genes

Attention = fractional counting of publications; 4 0=0.91
Rather than counting every publication as 1 Cé
towards every gene, the value of a publication .g ’
towards a given gene is 1/(number of genes % -2
considered in the publication). 8; 4
B 0 1 2 3 -
Then, all the values of publications citing a log,, publications

particular gene are summed. |

Plotted here are the ranking of fractional counting versus normal counting
of publications with multiple genes.
In normal counting, the occurrence of a gene in a publication counts as 1.

Stoeger et al. (2018)
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For genes addressed by many publications with log10 > 2, there is a good
linear correlation of both counting measures.

For genes addressed in only few publications, the attention scores based on
fractional counting are downward shifted = the attention values of such genes
are reduced with respect to normal counting.



Attention of genes
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Given the observed historic continuity of scientific endeavors, Stoeger et al.
wondered whether biomedical research has already identified all particularly
important human genes and hence allocates the production of publications
accordingly. Inspite of the simplifying assumption made for fractional
counting (see previous slide), the authors reassuringly observed that genes that
have received the most attention in publications are around three to five times
more likely to be sensitive to loss-of-function mutations or to have been
identified in genome-wide association studies (GWAS). This enrichment is
greatest for genes that have been repeatedly identified by several independent
studies (“frequent GWAS”’) on the most frequently studied human phenotypic
traits.

However, one notices an extraordinarily more extreme 13-fold enrichment in
the average attention (from -10 to more than +2) when comparing the genes
that have received the least attention to those genes that have received the
highest attention. Hence, while biomedical research does focus on important
genes, a disproportionally high amount of research effort concentrates on
already well-studied genes.



What do we know about genes?
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(Top left) Attention_publication levels. Genes with values below 1 (,,unstudied
genes*) were only addressed in publications addressing several or many genes.

(Right) Statistics whether certain types of experiments have been performed,
or whether homologs exist in model organisms.

For some experiments (e.g. Western Blots), there is a drastic difference
between ,,studied* genes (> 40%) and ,,unstudied* genes (< 10%).

Also, ,,unstudied* genes are only about half as likely to have a homolog in
model organisms.

Thus, the ,,0ld-fashioned* scientists who worked and are working on a gene-
by-gene basis on model organisms had no chance to detect these genes.



Summary

Using machine learning, we can predict the number of publications on individual
genes, the year of the first publication about them, the extent of funding by the
National Institutes of Health, and the existence of related medical drugs.

We find that biomedical research is primarily guided by a handful of generic
chemical and biological characteristics of genes, which facilitated
experimentation during the 1980s and 1990s, rather than the physiological
importance of individual genes or their relevance to human disease.
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The authors suggest that an insufficient understanding of the biology of many
disease genes has prevented the successful development of further medical
therapies and that current preclinical research is biased towards experimentally
well-accessible genes



Primer on the Gene Ontology

The key motivation behind the Gene Ontology (GO) was the observation that
similar genes often have conserved functions in different organisms.

A common vocabulary was needed to be able to compare the roles of
orthologous (- evolutionarily related) genes and their products

across different species.
A GO annotation is the association of a gene product with a GO term

GO allows capturing isoform-specific data when appropriate. For example,
UniProtKB accession numbers P00519-1 and P00519-2 are the isoform
identifiers for isoform 1 and 2 of P0O0519.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,
https://arxiv.org/abs/1602.01876
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For those of you who are not closely familiar with the Gene Ontology, here is
some introduction or review.



The Gene Ontology (GO)

Ontologies are structured vocabularies. [o—
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At the top: most general term (root)

RNA metabolic
process

Red: tree leafs (very specific GO terms)
Green: common ancestor

Blue: other nodes.

Arcs: relations between parent and child nodes

PhD Dissertation Andreas Schlicker (UdS, 2010)
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The Gene Ontology consists of 3 branches: biological process, molecular
function (chemical details), and the cellular component that the encoded
protein localizes to.

Each branch starts with a root node on top and subsequent child nodes with
more and more specific functions that inherit the functions of all their parents
and grand-parents.

11



Simple tree vs. cyclic graphs

a b
Parent
Increasing
specificity
and/or
granularity
- . . . . . -

a | Asimple tree, in which each b | A directed acyclic

child has only one parent and the graph (DAG), in which each
edges are directed, that is, there child can have either one or
is a source (parent) and a more parents.

destination (child) for each edge. The node with multiple

parents is colored red and
the additional edge is

Rhee et al. (2008) Nature colored grey.
Rev. Genet. 9: 509
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The Gene Ontology has the topology of a directed acyclic graph where child
nodes can have multiple parent nodes.



Gene Ontology is a directed acyclic graph

Parent ¢

An example of the node
vesicle fusion

Increasing in the BP ontology with

i ) ) multiple parentage.

granularity

’ \
. D
\4 A

Mambrane organization
and biogenesis

Transport

Vesicle-mediated
Membrane fusion

A 4
Child

Dashed edges : there are other nodes not shown between the nodes and the root

node.

Root : node with no incoming edges, and at least one leaf.

Leaf node : a terminal node with no children (vesicle fusion).

Similar to a simple tree, a DAG has directed edges and does not have cycles.

Depth of a node : length of the longest path from the root to that node.
Height of a node: length of the longest path from that node to a leaf.
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Rev. Genet. 9: 509

This example shows that the leaf node ,,vesicle fusion* (found e.g. in
endocytosis and exocytosis and in vesicular transport between different
compartments) has two branches of parent nodes.

The left branch focuses on the vesicles, the right branch on the membrane
processes.

Although the arrows are directed downwards in this figure, they should be read
in the opposite direction. E.g. ,,vesicle fusion* is a ,,part_of* ,,vesicle-mediated
transport*, not the other way around.

13
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Here, the arrows are oriented in the correct upward direction.
There exist five different types of relationships shown on the top right.

All terms (except from the root terms representing each aspect) have an “is a”
sub-class relationship to another term; e.g. GO:1904659:glucose transport is a
GO0:0015749:monosaccharide transport.

The Gene Ontology employs a number of other relations, including “part of”,
e.g. GO:0031966:mitochondrial membrane is part of
GO0:0005740:mitochondrial envelope

and “regulates”, e.g: GO:0006916:anti-apoptosis regulates
GO0:0012501:programmed cell death

As shown in the figure, ,,regulating arrows may connect different branches or
reach directly to upper levels.

Obviously, ,,negatively_regulates* and ,,positively_regulates are
specifications of ,,regulates®. Sometimes, the direction of regulation (up/down)
may not be known — then one would assign ,,regulates®.

Also, in some cases, the direction of regulation may be in both directions
depending on the particular condition. Also then, one would assign
,regulates.

14



Full GO vs. special subsets of GO

GO slims are cut-down versions of the GO ontologies
containing a subset of the terms in the whole GO.

They give a broad overview of the ontology content
without the detail of the specific fine grained terms.

GO slims are created by users according to their needs, and may be
specific to species or to particular areas of the ontologies.

GO-fat : GO subset constructed by DAVID @ NIH
GO FAT filters out very broad GO terms

www.geneontology.org

va Processing of Biological Data WS 2021/22

The gene ontology terms are of different nature ranging from very general
terms that are annotated to thousands of genes to very specialized terms that
are annotated only to few genes.

Depending on the application, scientists may consider using either only subsets
of general terms (GO slim) or subsets of specific terms (GO fat).



Significance of GO annotations

Very general GO terms such as “cellular metabolic process®

are annotated to many genes in the genome.

Very specific terms belong to a few genes only.

- One needs to compare how significant the occurrence of a
GO term is in a given set of genes

compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

PhD Dissertation Andreas Schlicker (UdS, 2010)
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Often, one wants to annotate biological meaning e.g. to the results of a
differential expression analysis. It may not be helpful to know that half of the
upregulated genes carry out ,,metabolic processes®.

But it would be very helpful to know if several among them are e.g. annotated
with ,,purine nucleotide biosynthetic process “, which is a much more
specific GO term (0006164).

Hence, one needs to determine the statistical significance of the fact that out of
393 human genes in total that are annotated with this GO term, e.g. 100 are up-
regulated.

16



Hypergeometric test
min(n,K;) (1\"#) (N—I\',T)

() n—i

p-value = Z N
e (%)

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation 17 is statistically
significant enriched in a given test set of genes compared to the full genome.

N : number of genes in the genome
n : number of genes in the test set
K : number of genes in the genome with annotation .

k : number of genes in test set with annotation .

The hypergeometric test provides the likelihood that k,; or more genes

that were randomly selected from the genome also have annotation 1.

ve Processing of Biological Data WS 2021/22 http://great.stanford.edu

Often, one uses the hypergeometric test to compute a p-value for the statistical
significance of GO terms.

The formula needs to be interpreted in the following way:

In the denominator (Dt. Nenner), we consider the combinatorial number of
drawning n genes out of a large set of N genes.

In the numerator (Dt. Zdhler), we enter the current situation: the first term is
the number of i genes having a particular GO term (out of K genes in the full
set of N genes).

The second term considers the remaining n-i genes that do not have this GO
term assigned (here, we assume that they then actually do not have this
function — which may be incorrect due to partial knowledge).

These n-i genes can be drawn from the remaining N-K . genes in the full set of
N genes that do not have this GO term assigned.

By computing this ratio, we compute the number of cases where we could
generate such a scenario by chance.

If there exist many such cases, then the p_value would be quite high, and
hence the statistical significance low.

17



Hypergeometric test

Select i 2 k,, genes with

. The other n— i genes in the test
annotation 1 from the genome.

set do NOT have annotation 1.
There are N — K, such genes in
the genome.

min(n.K;) (I\i:)(:\’—l\':) —

p-value = Z l (.\’)I_i
i=k, n \

corrects for the number of
The sum runs from k;; possibilities for selecting
elements to the maximal
possible number of elements.

There are K, such genes.

n elements from a set of
N elements.

This ia sither the nilmber of This correction is applied if the

sequence of drawing the
elements is not important.

genes with annotation 1 in the
genome (K,;) or the number of
genes in the test set (n).

va Processing of Biological Data WS 2021/22 http://great.stanford.edu/
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The p-value is the probability that a scenario at least as extreme as observed
could occur by chance.

Therefore, we also consider cases where more than &, genes in the small set of
n genes are annotated with this GO term. This is the reason why we need to
sum over all these more extreme cases.

At least k, genes should have the GO term. At most all n genes could be
annotated with this GO term.



Example
min(n.K;) (I\':) (;\'—I\',)

p-Wert = Z %
i=k, ( n )

r Gene transcription start site

+—s=m— Curated/inferred gene regulatory domain
X Ontology annotation (e.g. “actin cytoskeleton®)
Y Genomic region (e.g. ChiP-seq peak)

P9 r9 v v ovyy v v[Pyvy
f—— —— !
—_— } ) - s

Hypergeometric test over genes
N =6t ene
Kn = 3 genes annotated with x

Is annotation 1 significantly enriched " = 3 genes with an associated genomic region
. Kn = 3 genes annotated and with a genomic region
in the test set of 3 genes? Povalue = 0.05 Ve gEemeres

Yes! p = 0.05 is (just) significant.
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This is a small-scale example, where we can evaluate the hypergeometric test
by hand. We assume a case where a genome contains only N = 6 genes (linear
bars between brackets below the line, the arrows indicate the position of
transcriptional start sites and the direction of transcription). Further, we
assume that the K. = 3 genes colored green possess a property (GO annotation)
pi.

Now we perform an experiment, e.g. differential expression analysis, and find
that n = 3 genes are upregulated in condition 2 vs. condition 1. Interestingly,
all these 3 genes have property © -> k, = 3.

Is this reason enough to get superexcited about this finding? What is the
chance of obtaining a similar result by chance, i.e. blindly picking the 3 white
balls out of a box with 3 white balls and 3 black balls.

In total, there are 6 over 3 possibilities of selecting 3 genes out of 6 genes. In
this example &k, K and n are all equal to 3. Therefore, we only need to
consider the case i = 3 and can omit the summation.

In the numerator, the first term is 3 over 3, which is equal to 1 by definition.
The second term is 3 over 0, which is also equal to 1 by definition.

The denominator is 6 over 3, whichis (6 x5x4) /(1 x 2 x 3) =20. So the
observed result of this experiment is just significant (p-value = 0.05).

19



Multiple testing problem

In hypothesis-generating studies it is a priori not clear,
which GO terms should be tested.

Therefore, one typically performs not only one hypothesis with a single term
but many tests with many, often all terms that the Gene Ontology provides
and to which at least one gene is annotated.

Result of the analysis: a list of terms that were found to be significant.

Given the large number of tests performed,
this list will contain a large number of false-positive terms.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)

v Processing of Biological Data WS 2021/22 http://great.stanford.edu
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In the example just discussed, we had considered only 1 property named 7.

However, in a typical differential expression analysis, we consider a large
number of GO terms.

This leads to a severe problem, the so-called multiple testing problem, because
we subject the same experimental outcome (which genes are up/down-
regulated for a given number of samples?) to many statistical tests for the
various GO terms. Each hypergeometric test applies to a particular GO term.

20



Multiple testing problem

If one statistical test is performed at the 5% level
and the corresponding null hypothesis is true, there is only
a 5% chance of incorrectly rejecting the null hypothesis

-> one expects 0.05 incorrect rejections.

However, if 100 tests are conducted and all corresponding
null hypotheses are true, the expected number of incorrect rejections
(also known as false positives) is 5.

If the tests are statistically independent from each other,
the probability of at least one incorrect rejection is 99.4%.

www.wikipedia.org

ve Processing of Biological Data WS 2021/22 http://great.stanford.edu
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Now we will discuss the so-called multiple testing problem.

This typically leads to the application of the False Discovery Rate (FDR)
correction of the obtained p-values and yields ,,adjusted p-values®.

First, we need to understand what the problem is.

There is no problem if we only perform one statistical test where we test one
null hypothesis.

The problem arises if we conduct a lot of statistical tests on the same data.

For example, we could have a cohort of 100 tumor patients and 100 healthy
individuals. The first test could be to see if gene 1 is differentially expressed
between both groups.

The second test would be the same for gene 2 and so on. In the end, we would
have conducted 20.000 statistical tests.

The chance that some of these genes will in fact show a significant difference
between both groups is very high.

21



Bonferroni correction

to a multiple testing correction.

The most simple one is the Bonferroni correction.

This method saturates at a value of 1.0.

Bonferroni controls the so-called family-wise error rate,

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017); wikipedia.org
va Processing of Biological Data WS 2021/22

Therefore, the result of a term enrichment analysis must be subjected

Carlo Bonferroni

Here, each p-value is simply multiplied by the number of tests. (1892-1960) did not

invent the .Bonferroni®
correction, but it uses
his inequalities.

which is the probability of making one or more false discoveries.
It is a very conservative approach because it handles all p-values as independent.

Note that this is not a typical case of gene-category analysis.

So this approach often leads to a reduced statistical power.

http://great.stanford.edu
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Let us consider the same example (100 healthy, 100 tumor patients, 20000
genes and assume that the smallest (not adjusted) p-value is 10-.

The Bonferroni correction simply multiplies all p-values by the number of
statistical tests (20000). This yields 2 x 10-! as smallest adjusted p-value,

which would not be considered significant.
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Benjamini Hochberg: expected false discovery rate

The Benjamini-Hochberg approach controls the expected false discovery rate
(FDR), which is the proportion of false discoveries among all rejected null
hypotheses.

This has a positive effect on the statistical power at the expense of having less
strict control over false discoveries.

Controlling the FDR is considered by the American Physiological Society as
“the best practical solution to the problem of multiple comparisons”.

Note that less conservative corrections usually yield a higher amount of significant
terms, which may be not desirable after all.

Sebastian Bauer, Gene Category Analysis
Methods in Molecular Biology 1446, 175-188
(2017)
va Processing of Biological Data WS 2021/22 http://great.stanford.edu
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Let us consider an example where 500 genes were determined as differentially
expressed.

With a "false discovery rate" set to 0.1, this actually means you expect 50 of
them to be false positives, so they are actually NOT differentially expressed.

This is a nice video that motivates the BH method:
https://www.youtube.com/watch?v=K8LQSvtjcEo
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Benjamini Hochberg correction: how to recipe

0. Select a FDR threshold Q (this is a percentage, chosen by you). Depending on
the specific project, FDR may be set to values between 1% and 25%.

1. Put the individual p-values in ascending order.

2. Assign ranks to the p-values. For example, the smallest has a rank of 1, the
second smallest has a rank of 2 etc

3. Calculate each individual p-value’s Benjamini-Hochberg critical value, using the
formula (i/m)Q, where:

i = the individual p-value’s rank,
m = total number of tests,
Q = the false discovery rate

4. Compare your original p-values to the critical B-H from Step 3; find the largest p
value that is smaller than the critical value.

https://www.statisticshowto.com/benjamini-

va Processing of Biological Data WS 2021/22 hochberg-procedure/
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Steps 1 — 4 are the main steps of the Benjamini Hochberg procedure.

I have added step O to this because the FDR threshold should be determined
first, not after seeing what results are obtained.



Benjamini Hochberg correction: how to recipe
As an example, the following list of data shows a partial list of results from 25
tests with their p-values in column 2.
The list of p-values was ordered (Step 1) and then ranked (Step 2) in column 3.

Column 4 shows the calculation for the critical value with a false discovery rate of
25% (Step 3). For instance, column 4 for item 1 is calculated as (1/25) * .25 = 0.01:

The bolded p-value (for Children) is Variable P Value Rank (Iim)Q
the highest p-value that is also smaller |Depression 0.001 1 0.01
than the critical value: .042 < .050. All |[Family History ~ 0.008 < 0.02
- . Obesity 0.039 3 0.03
values above it (i.e. those with lower |5, 00 e 0,041 4 0.04
p-values) are highlighted and Children 0.042 5 0.05
considered significant, even if those p- Divorce 0.060 6 0.06
- Death of Spouse  0.074 7 0.07
values are not lower than the critical Limited income 0205 8 0.08

values.

E.g. Obesity and Other Health are individually not significant when you compare the
result to the final column (e.g. .039 > .03). However, with the B-H correction, they are

considered significant; i.e. you would reject the null hypothesis for those values.

https://www.statisticshowto.com/benjamini-
va Processing of Biological Data WS 2021/22 hochberg-procedure/
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This is an example how FDR-adjusted p-values are computed in practice.

Column 2 contains the p-values obtained by applying a statistical test to the
data, e.g. a t-test.

Then, for a particular FDR-threshold, one determines the critical value
(I/m)xQ.
Interestingly, the magnitude of the p-values itself does not enter here.

If the p-values are very small, they have a better chance of being smaller than
the critical value. Note that p-values tend to become smaller and smaller the
more data points are available.

On the other, the critical values decrease inversely with the number of tests
performed (m). This penalizes against doing many tests on the same data.
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GO is inherently incomplete
The Gene Ontology is a representation of the current state of knowledge;
thus, it is very dynamic.
The ontology itself is constantly being improved to more accurately
represent biology across all organisms.
The ontology is augmented as new discoveries are made.
At the same time, the creation of new annotations occurs at

a rapid pace, aiming to keep up with published work.

Despite these efforts, the information contained in the GO database

is necessarily incomplete.
Thus, absence of evidence of function does not imply absence of function.

This is referred to as the Open World Assumption

Gaudet, Dessimoz,
V8 Gene Ontology: Pitfalls, Biases, RemediesProcessing of Biological Data WS 2021/22

https://link.springer.com/protocol/10.1007%2F978-1-4939-3743-1_14 ®

Now, we will discuss an important aspects of the Gene Ontology: its
incompleteness.

(1) The functional annotations in GO try to follow the expansion of the
scientific knowledge, but can only do this with a significant time delay.
Also, it is impossible to completely cover all scientific discoveries.

Sometimes, there may be even contradictory scientific reports in the literature
about the function of one gene.



Statistics of Gene Ontology terms

Ontology Property Value
Valid terms 44411 (A=-97)
Obsoleted terms 2947 (A= 23)
Merged terms 2056 (A=91)
Biological process terms 29112
Molecular function terms 11118
Cellular component terms 4181

Annotations Property Value
Number of annotations 7,975,639
Annotations for biological process 3,069,526
Annotations for molecular function 2,455,089
Annotations for cellular component 2,451,024
Annotations for evidence PHYLO 4,163,423
Annotations for evidence IEA 1,978,576
Annotations for evidence EXP 759,654
Annotations for evidence OTHER 791,743
Annotations for evidence ND 241,978
Annotations for evidence HTP 40,265
Number of annotated scientific publications 159,963

va Processing of Biological Data WS 2021/22
http://geneontology.org/stats.html
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This statistics was taken from the Gene Ontology website and refers to the

release of June 2020.
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Gene Ontology evidence codes

Experimental evidence codes

The EXPerimental (EXP) evidence codes indicate that there is evidence from an
experiment directly supporting the annotation of the gene.

E.g. an association between a gene product and its subcellular localization as
determined by immunofluorescence would be supported by the Inferred from Direct
Assay (IDA) evidence code, a subtype of EXP evidence.

The experimental evidence codes are:

Inferred from Experiment (EXP)
Inferred from Direct Assay (IDA)
Inferred from Physical Interaction (IPI)
Inferred from Mutant Phenotype (IMP)
Inferred from Genetic Interaction (IGl)
Inferred from Expression Pattern (IEP)

http://geneontology.org/docs/guide-go-evidence-codes/

va Processing of Biological Data WS 2021/22
28

The link
http://geneontology.org/docs/guide-go-evidence-codes/
provides detailed further information about each ,,inferred from* code.

Experimental evidence codes are the strongest informations because the
evidence is taken from direct experimental assays of this particular gene in this
organism.
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Gene Ontology: Phylogenetically-inferred annotations

Phylogenetic principles, reconstructing evolutionary events to infer relationships
among genes, provide a powerful way to gain insight into gene function.

Phylogenetically-based annotations are derived from an explicit model of gain and
loss of gene function at specific branches in a phylogenetic tree.

Each inferred annotation can be traced to the direct experimental annotations that
were used as the basis for that assertion.

Inferred from Biological aspect of Ancestor (IBA)
Inferred from Biological aspect of Descendant (IBD)
Inferred from Key Residues (IKR)

Inferred from Rapid Divergence (IRD)

A curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators
to infer annotations among members of a protein family.

va Processing of Biological Data WS 2021/22
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http://geneontology.org/docs/guide-go-evidence-codes/

Phylogeny-based annotations make up an important part of all GO annotations.

On the next slides, we will discuss a few examples how how the PAINT tool is
used to decide on phylogeny-based annotations.
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This example presents a MutS homolog family showing experimental evidence for
‘GO term’. (A) Primary experimentally based annotations to one term or any of its
ancestors (light green labels) are used to infer that the most recent common
ancestor (CA) of the all those proteins also had that function. The curator notes this
by dragging the term onto the node of the MCRA (orange box).

(B) Subsequently, PAINT propagated this annotation forward to other descendant
leaves (blue Iabels). https://pubmed.ncbi.nlm.nih.gov/21873635/

va Processing of Biological Data WS 2021/22
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Publication on PAINT: https://pubmed.ncbi.nlm.nih.gov/21873635/

The first element necessary for PAINT curation is the generation of
phylogenetic trees to be annotated with functional evolution events. PAINT
presents the biocurator with a phylogenetic tree and a multiple sequence
alignment dynamically retrieved from the PANTHER database, and auxiliary
information such as gene and protein names and identifiers. In addition it
displays all the experimentally based annotations dynamically retrieved from
the live GO database.
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Gene Ontology PAINT - gain of function

The most recent common ancestor
(MRCA) of all eukaryotic MSH2
orthologs (leftmost orange circle)
already likely functioned in DNA
repair and maintenance of DNA
repeats. The gene was then coopted
in the animal MRCA for a role in
apoptosis, and later, in the vertebrate
MRCA for a role in somatic hyper-
mutation of immunoglobulin genes.
Inferences for ancestral genes
(orange circles) are based on
experimental GO annotations for the
: genes shown in green, which are
B R A —— S i inferred by inheritance for
—:, descendants including uncharac-
ARATH,tocun 2498087 ] terized genes in extant organisms
shown in blue. Thus, the ortholog in
Bos taurus, for example, will be
annotated by PAINT with different
https://pubmed.ncbi.nlm.nih.gov/21873635/ functions than the ortholog in

Saccharomyces cerevisiae.
va Processing of Biological Data WS 2021/22
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A gain of function is the addition of a function to a protein, while retaining its
other existing functions. In PAINT, a biocurator is presented with all of the
experiment-based GO annotations for the genes in a given family. For each
annotation, the curator infers when in the evolutionary history of the family a
given function was most likely to have first evolved, i.e. which ancestor
‘gained’ the function. This is recorded as an annotation of a gene at an internal
node in the phylogenetic tree and means that the function is inferred to have
evolved along the branch leading to that gene. The location of the inferred
annotation determines the possible ‘phylogenetic span’ of the inferred
annotations, since only direct descendants of the annotated ancestral gene can
inherit that annotation. Gain of function may occur after a speciation event,
meaning that orthologous genes will not share all functions in common. One
example occurs in the MSH2 subfamily of PTHR11361, where a gene
originally involved in recognizing DNA mismatches and recruiting the DNA
repair machinery was co-opted in animals to regulate apoptosis and in
vertebrates to mediate somatic hypermutation of immunoglobulin genes
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Gene Ontology: PAINT - loss of function

Curated active site information from COD (0a00088)

The active site residues of PGM1

T 3T relatives have been annotated
ol 12 Sl o5 based on the 3D protein structure
212 EARNCR o5 for PGM from Paramecium
««GGIILTARNCPIGP tetraurelia
GGIILTASNCpagp .
“'*“‘:‘P‘”m;usmtmry
11LTASNcpagp
112 AN v In PAINT, the biocurator used the
1L Ne . .
12 ANl 95 integrated multiple sequence
GGIILTAsNNpIgp . : H
rriTAsHspagp alignment viewer to determine
IILTASNSPIgP 0 . .
CGTILTARNAP3IP that key active site residues are
GGIILTASNApIgp
LTASHaRggp mutated in all of the vertebrate
GGIILTASNOPIGP N
cGr1LTARNEps 9> PGMS5 orthologs, suggesting that
IILTASNOpggp )
1L EASNAps 9P Foutsemy - phosphoglucomutase activity was
IIL sHnp3gp . .
of: - R o lost shortly after duplication. The
G L 9P . .
1ILTASNARSIP biocurator correspondingly
IILTASNOpagp

annotated the vertebrate
ancestor of PGM5 with ‘NOT
phosphoglucomutase activity’,
which PAINT then propagated to
all vertebrate orthologs of PGM5.

https://pubmed.ncbi.nim.nih.gov/21873635/

va Processing of Biological Data WS 2021/22
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When a biological characteristic was lost during evolution, GO annotates an
ancestral (or extant) gene with the ‘NOT’ qualifier prefixed to the relevant
annotation. ‘NOT’ annotations are inherited by descendants just like other GO
annotations, in addition to preventing the inheritance of the corresponding
positive annotation. ‘NOT’ annotations of ancestral genes must be supported
by evidence, either: (i) an experiment-based annotation of a descendant
sequence indicating it lacks this function; or (ii) absence of specific residues in
the sequence, e.g. a missing active site residue.

In this example, loss of function can be observed in the phosphoglucomutase
(PGM) family. Based on the phylogeny and experimental annotations,
phosphoglucomutase activity most likely evolved prior to the last universal
common ancestor and is found in most eubacteria and eukaryotes. A gene
duplication event in the vertebrate ancestor in this family resulted in two genes
that would become PGM1 and PGMS5 in humans. Both mouse and human
PGMS5 have been demonstrated experimentally to have lost
phosphoglucomutase activity. These experimental annotations strongly suggest
that the loss occurred before the mouse—human common ancestor, but how
long before? Based on active site mutations present in almost all of the
vertebrate PGMS proteins, the biocurator determined that the loss of function
occurred in the vertebrate common ancestor. Obviously, curators must go
deeply into the specific biology of this gene, its function, and its phylogeny.
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Gene Ontology evidence codes

Computational analysis evidence codes

Use of the computational analysis evidence codes indicates that the annotation is
based on an in silico analysis of the gene sequence and/or other data as described
in the cited reference. The evidence codes in this category also indicate a varying
degree of manual curatorial input. The computational analysis evidence codes are:

Inferred from Sequence or structural Similarity (ISS)
Inferred from Sequence Orthology (ISO)

Inferred from Sequence Alignment (ISA)

Inferred from Sequence Model (ISM)

Inferred from Genomic Context (IGC)

Inferred from Reviewed Computational Analysis (RCA)

http://geneontology.org/docs/guide-go-evidence-codes/

va Processing of Biological Data WS 2021/22
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Also ,,computational* analysis requires the manual activity of a curator. An
ISS annotation is often based on more than just one type of sequence-based
evidence and may involve searches with BLAST, profile HMMs, TMHMM,
SignalP, PROSITE, InterPro, etc. Evaluation of output from these search
tools leads an annotator to a particular ISS annotation for a particular protein.

E.g.,a BLAST search might reveal that a query protein matches an
experimentally characterized protein from another species at 50% identity over
the full lengths of both proteins. After reading literature about the match
protein, the curator sees that the match protein is known to contain a domain
located in the plasma membrane and another domain that extends into the
cytoplasm. It is also known from the literature that the experimentally
characterized match protein requires the binding of ATP to function. TMHMM
analysis of the query protein predicts several membrane spanning regions in
one half of the protein. In addition there are PROSITE and Pfam results which
reveal the presence of an ATP-binding domain in the other half of the protein
which TMHMM predicts to be cytoplasmic. These four search results taken
together point to a probable identification of the query protein as having the
function of the match protein.
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Gene Ontology evidence codes: electronic annotations

‘Electronic’ (IEA) annotation are not manually reviewed. IEA-supported annotations are
ultimately based on either homology and/or other experimental or sequence
information, but cannot generally be traced to an experimental source.

Three methods make up the bulk of these annotations.

(1) InterPro2GO is based on the curated association of a GO term with a generalized
sequence model (‘signature’) of a group of homologous proteins. Protein
sequences with a statistically significant match to a signature are assigned the GO
terms associated with the signature, a form of homology inference.

(2) computational conversion of UniProt controlled vocabulary terms (including
Enzyme Commission numbers describing enzymatic activities, and UniProt
keywords describing subcellular locations), to associated GO terms.

(3) annotations are made based on 1:1 orthologs inferred from Ensembl gene trees,
an approach which automatically transfers annotations found experimentally in one
gene, to its 1:1 orthologs in the same taxonomic clade (e.g. those within the
vertebrate clade, and separately, those within the plant clade).

http://geneontology.org/docs/guide-go-evidence-codes/

va Processing of Biological Data WS 2021/22

Electronically inferred annotations are the ,,weakest* functional annotations in
GO. Still, they are based on careful methodological considerations.



Statistics of Gene Ontology terms

Number of annotations by evidence

Species filter: |All V]
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Statistics of the number of GO terms over the past 2 years taken from the listed
GO website. The number of experimental annotations is growing very slowly.
The largest changes are due to modifications in the PHYLO algorithm (blue).



GO annotations are dynamic in time

Example: strong and sudden variation in the number
of annotations with the GO term "ATPase activity” = Computational

- Curatorial

over time. X Experimental

Such changes can heavily affect the estimation of the
background distribution in enrichment analyses.

To minimize this problem, one should use an up-to- -
date version of the ontology/annotations and

ensure that conclusions drawn hold across recent
(earlier) releases.

Bottom: Number of terms directly annotated to the A
human gene GRIN1. Large drops and rises are '
observed superimposed over a general gradual
increase in annotation since 2002 (black).

= GRIN1
Species mean

Directly annotated terms

https:/iwww.ncbi.nim.nih.gov/pmc/articles/PMC6113503/
Gaudet, Dessimoz,

Gene Ontology: Pitfalls, Biases, Remedies
https://link.springer.com/protocol/10.1007%2F978-1-4939-3743-1_14

va Processing of Biological Data WS 2021/22
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First of all, the number of genes with annotation ,,ATPase activity* increases
constantly over time.

There are 2 problematic cases of up/down jumps: in the blue curve and in the
brown curve.

The blue curve suddenly jumped up near 2012. The reason for this is unclear —
maybe a change of the underlying algorithm was made, that was later
corrected — and then the curve jumped back.

A similar case is visible in the brown curve for ,,computational* annotations.
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Taxon-wide GO annotation statistics
(A) Number of annotated A B
genes. o e
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https://www.ncbi.nim.nih.gov/pmc/articles/PMC6113503/
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Large jumps and drops are sometimes simultaneously observed in multiple, or
even all, species. E.g. a rapid increase in the number of annotated genes started
in March 2011 for Arabidopsis, mouse, and zebrafish (A). Another dramatic
event was a large drop in the mean number of direct annotations per gene in
March 2012 for all species (C). The jump is not visible in the plots for indirect
annotations (D). This would be consistent with a large-scale purging of
redundant annotations (rejecting higher-level terms that are inferable from
more specific terms).
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Timestamp
2020-02-28
2019.05.04
2017-07-28
2016.03.05

2015-12-09

2014.04-12

20140412

2013-09-08

2013.00.06
va

2013-09-08

Action

Delated

Dedeted

Category Detail

XREF MIPS_funcat 40 10 02
XREF MIPS_funcat 40.10.02
SuUM gashm_pombe

SYNONYM caspase.dependent programmed cell death
CONSTRAINT  only_in_taxon NCBITaxon 33154 (Opisthokonta)

A programmed cell death process which begins when a cell recenves an internal
(e.9. DNA damage) or extemal signal (e.g. an extracellular death kgand), and
proceeds through a senes of biochemical events (signaling pathways) which
typically lead to roundng-up of the cell, retraction of pseudopodes, reducton of
DEFINITION cedluiar volume c , uclear
( ), plasma blebbing and of the cell into
apoplotic bodies. The process ends when the cell has ded. The process is
dwided into a signaiing pathway phase, and an execution phase, which is
Iriggered by the formes

A programmed cell death process which begins when a cell recenves an infernal
(e.9. DNA damage) or external signal (e g an extraceliular death kgand), and
proceeds through a senes of biochemical events (signaling pathway phase)
which tngger an execution phase The execution phase is the last step of an

DEFINITION  apoplotic process, and s typically characterized by rounding-up of the cel,
retraction of pseudopodes, reducton of celular volume (pyknosis), chromatin
condensation, nuclear plasma biabbing
and fragmentation of the cell into apoptotic bodies. When the exacution phase is
compilated, the cell has ded

SECONDARY GO 0006917 (induction of apoploss)

SYNONYM induchon of i
o o g rassing of Biological Data WS 2021/22

SYNONYM commitment 10 apoplosis

Changes to GO terms are recorded: GO:0006915

Change Log

apoptotic
process

https://www.ebi.ac.uk/
QuickGO/term/GO:00
06915
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GO carefully logs all changes made to GO terms over time at the end of each

QuickGO entry.

QuickGO is a web-based browser of the Gene Ontology and Gene Ontology
annotation data.
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Comparing GO terms

The hierarchical structure of the GO allows to compare proteins
annotated to different terms in the ontology, as long as the terms
have relationships to each other.

Terms located close together in the ontology graph
(i.e., with a few intermediate terms between them)

tend to be semantically more similar than those further apart.

One could simply count the number of edges between 2 nodes
as a measure of their similarity.

However, this is problematic because not all regions of the GO
have the same term resolution.

Gaudet, Skunca, Hu, Dessimoz
Primer on the Gene Ontology,

https://arxiv.org/abs/1602.01876

va Processing of Biological Data WS 2021/22
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Before, we introduced the structure of the Gene Ontology and how one can
identify significantly enriched GO terms. Sofar, we dealt with individual GO
terms.

Now, we will discuss how one can compare different GO terms by a numerical
measure.



Information content of GO terms
The likelihood of a node t is typically defined in the following way:

How many genes have annotation ¢ occur(r)

relative to the root node? Pannol1) = occur(root)

Here, one counts all genes annotated with t and their child nodes.

The likelihood takes values between 0 and 1 and
increases monotonic from the leaf nodes to the root.

Define information content of a node from its likelihood:

IC(r) = ~log p(t)

A rare node has high information content. PhD Dissertation Andreas Schlicker (UdS, 2010)
https:/fwww.ncbi.nim.nih.gov/pmc/articles/PMC2712090/
va Processing of Biological Data WS 2021/22
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Term information content (IC) approaches can be divided into two families:
annotation and topology-based IC approaches. The definition of p,,,, shown
here belongs to the annotation-based approaches.



Common ancestors of GO terms

Common ancestors of two nodes t;and t, : m e,
IC=0%
all nodes that are located on a path from t; —
to root AND on a path from t, to root. 7 .
- . Tramcnption .
The most informative Begibtor hctivity
common ancestor (MICA) of A P
terms t; und t, is their / \.\ T
. / \ { Protein Dinlisg )
common ancestor with / \ e
. . . / \
highest information content. / \
/ \ //Tx:n::xm:mn\‘\

‘\ Fator Dinlng )
N R T
\ S o

—

P

Typically, this is also the /
closest common ancestor.

In this example, the MICA of the terms
‘Transcription Factor Activity’ and
‘Transcription Cofactor Activity’ is the
term ‘Transcription Regulator Activity’,
since it has a higher IC than all other
common ancestors (terms in green).

V8 Processing of Biological Data WS 2021/22 451/14140/1/07-6.pdf

https://repositorio.ul pt/bitstream/10

a

One way of assigning semantic similarity between GO terms is to consider the
common ancestors of 2 GO terms. Intuitively, the ,,closest” common ancestor

would be most meaningful.

Due to the DAG-nature of the Gene Ontology, there may be multiple ,,closest*
common ancestors either on the same hierarchical GO level or with the same

path length to them.

Instead, one often selects the common ancestor with the highest information

content (IC). This is called the most informative common ancestor.
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Measure functional similarity of GO terms

Lin et al. defined the similarity of two GO terms t; und t,
based on the information content of the most informative common ancestor (MICA)

mi112) = 2 1CHMICA).
simRel(t1,12) = IC(t;) +1C(1p)

MICAs that are close to their GO terms receive a higher score than those that are
higher up in the GO graph

PhD Dissertation Andreas Schlicker (UdS, 2010)

va Processing of Biological Data WS 2021/22
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One normalizes the IC of the MICA by the sum of the ICs of the two GO
terms.

Because one is taking the ratio of 1 node attribute over 2 node attributes, one
multiplies this ratio by 2 to bring numerator and denominator on the same
level.

At most, this ratio can reach a value of 1 if ICIMICA) =IC (¢,) = IC (¢,).
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Optimal functional similarity score

. R . a Human/mouse
Test: see whether functional similarity score can 1.00~ - - -

distinguish true homologues from random gene pairs. R A

Top: scatter plot of BP (x-axis) and MF (y-axis) scores
(IEA* dataset) of orthologous gene pairs (circles)
and randomly selected gene pairs (crosses) from
human/mouse.

Molecular function

Solid/dashed iso-lines: 2D density function of the 0. oi* e

e 00 025 080 075 "1
2 distributions for cases and controls. .. Biological process

@4\
Bottom: 1D density function of the FBP+MF scores for S — /
. . . 0%0 0.25 0.50 0.75 1.0¢
cases (solid line) and controls (dashed line). BP+MF simGIC/fsBMA score
Their crossing point defines the optimal threshold for

minimizing the error rate.

Weichenberger et al. (2017)

Scientific Reports 7: 381

va Processing of Biological Data WS 2021/22
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Link to the paper: https://www.nature.com/articles/s41598-017-00465-5

Any two genes will have a certain semantic similarity, even if they ,,have
nothing to do with eachother*. What is a good threshold to distinguish ,,real*
functional similarity from the similarity of random gene pairs?

Here, the authors did a large-scale comparison of gene pairs from human and
mouse. Orthologous gene pairs (circles) have high BP and MF functional
similarity and are placed in the upper right quadrant.

Random gene pairs are in the bottom left quadrant. Shown in the bottom panel
is a combined BP + MF similarity score. Here, the best separation point would
be around 0.55 or so.



Optimal functional similarity score
Comment:

The human/mouse comparison is based somehow on a cyclic argument:

- Orthologues are defined on the basis of sequence similarity

- Then we test whether their GO-annotations are more similar than for random
protein pairs. BUT many GO annotations are made based on sequence

similarity.

Thus, this is more a test for consistency rather than a real proof.

Weichenberger et al. (2017)

Scientific Reports 7: 381
va Processing of Biological Data WS 2021/22

We should not forget where GO terms come from. This may sometimes lead to
circular arguments.
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Optimal functional similarity score

J Human /fly
1.00
(b) Human/fly
orthologues and controls with
. . . 0.75 ot
their associated sim/C/fsBMA 1,
Lo o
scores. -
0.50.
&, -
-> More overlap than for L S -
human/mouse because real 0.25] e 1
oo - x
o'rth'ololgues haye smaller R
similarity (red circle centered at 0. ‘Aoo 025 ‘050 075  1.00
0.5, not at 1.0). . Biological process
3:/ o
2

1
0%0 025 050 075 1.00
BP+MF simIC/fsBMA score

Weichenberger et al. (2017)

Scientific Reports 7: 381
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For the more remotely related organism pair human/fly, the densities for cases
and controls calculated with the simIC/fsBMA measures overlap to some
extent. Notably, there is a smaller fraction of orthologues that do not share any
similarity in the MF ontology, but do have considerable high BP scores



Summary

The GO is the gold-standard for computational annotation of gene function.
It is continuously updated and refined.

Issues in GO-analysis

protein annotation is biased and is influenced by different research interests:
- model organisms of human disease are better annotated

- promising gene products (e.g. disease associated genes) or specific
gene families have a higher number of annotations

- gene with early gene-bank entries have on average more annotations

Hypergeometric test is most often used to compute enrichment of GO terms in
gene sets

Semantic similarity concepts allow measuring the functional similarity of

genes. Selecting an optimal definition for semantic similarity of 2 GO terms and
for the mixing rule depends on what works best in practice.

va Processing of Biological Data WS 2021/22

46

46



va

Additional slides (not used)

Processing of Biological Data WS 2021/22

a7

47



Studies on model organisms affect studies on human genes

Check whether publications reporting the
discovery of new human genes also cite studies
on (other) human or non-human genes.

(1) One group of papers preferentially cited
studies on genes from Mus musculus, Rattus
norvegicus, Bos taurus, and Gallus gallus AND
studies on (other) human genes.

(2) The second group preferentially cited genes
from Drosophila melanogaster, S. cerevisiae, E.
coli, Xenopus laevis, C. elegans, and S. pombe.
but DID NOT cite publications on (other) human
genes,

-> initial reports on human genes have been
particularly influenced by research in model
organisms.

Ve Stoeger et al. (2018)
PLoS Biol 16(9): e2006643.

M. musculus
35 ¢

30
25 D. melanogaster
L]

20
15 R. norvegicus

Share of cited
publications [%]

10 B.taurus s cerevisae

. .
| /G oome X oty € co
ol *° ® e *C elegans

-05 00 05 1.0

Enrichment over cited publications
with at least one human gene

Fraction of nonhuman organisms cited by
initial publications of human genes.
Enrichment represents log2 ratio of the
fraction of nonhuman organisms among all
initial publications on human genes over the
fraction of nonhuman organisms among initial
publications on human genes, which also cite
publications on human genes.

The 10 most cited organisms are shown

Processing of Biological Data WS 2021/22
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Human genes <-> homologous genes
Including the years of the initial reports on homologous

genes improved prediction accuracy of the number of é r to o7 8
publications to 0.87. g° e

o
This is higher than when the year of the initial reporton 32 , .
the human genes themselves is used (0.75). <3

g 1
- The number of publications on homologous genes § o ) ) )
yielded almost perfect predictions of the number of e ogsewel, ,ongpub“;tions
publications for individual human genes (Spearman:
0.87).

- Human-specific genes without homologous genes
remain significantly less studied (p-value < 10732),

- The homologous genes of unstudied human genes are
likewise unstudied in model organisms.

Stoeger et al. (2018)

PLoS Biol 16(9): e2006643.
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Number of GO-annotated human genes

o Between 01/2003 and 12/2003 the
o \THE Tam M estimated number of known genes in
0000 e o e the human genome was adjusted.
.00 62320 o E::v:“ Gr:u;wo‘

aceo naermm@me Between 12/2004 and 12/2005, and
o “* between 10/2008 and 11/2009

o] n‘M‘" annotation practices were modified.

One can argue that, although the number of annotated genes decreased, the
quality of annotations improved, see the steady increase in the number of genes
with non-lIEA annotations.

However, this increase in the number of genes with non-IEA annotations is very
slow. Between 11/2003 and 11/2009, only 2,039 new genes received non-IEA
annotations. At the same time, the number of non-lIEA annotations increased from
35,925 to 65,741, indicating a strong research bias for a small number of genes.

va Khatri et al. (201 2) PLoS Processing of Biological Data WS 2021/22
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IEA stands for ,,inferred by electronic annotation®.

Non-IEA annotations are considered more trustworthy than [EA.



Mixing rules
Given:
protein P that is annotated with m GO terms t, t,,.., t,, and
protein R that is annotated with n GO terms r4, r», .., Ip.
Then the matrix M is given by all possible pairwise semantic similarity (SS) values
s; = sim(t;, r;) with sim being one of the SS measures introduced above,

i=1,2,..,mandj=1,2,.,n.

Functional similarity is computed from the SS entries of M according to a specific
mixing strategy (MS).

Several mixing strategies have been suggested:
fsMax uses the maximum value of the matrix, fsMax = max;;s;,

fsAvg takes the average over all entries, '/:<A vg =

:S:e
mx n<=h 1

Weichenberger et al. (2017)

va Scientific Repons 7: 381 Processing of Biological Data WS 2021/22
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Compare methods to measure functional similarity

sand t: two GO terms that will be compared semantically
S(s, t) : set of all common ancestors of s and t.

Resnik (simRes) simRes(s, t) = max I(c)
cES(s, 1)
2. (¢
Lin (simLin) simLin(s, t) = max — 1)

cests,nI(s) + I(t)

Schlicker (simRel) simRel(s, t) = max 2-1(c) (1 — P(c))
cests.l I(s) + I(1)

2 - max I(c)

information coefficient (sim/C) simIC(s, t) = ceS(s,1) 1y 1
I(s) + I(t) 1 — max I(c)
cES(s,t)
Jiang and Conrath (simJC), simJC(s, 1) = 1
1+ I(s) + I(t) — 2 - max I(c)
ceS(s,t)
graph information content (simGIC). simGIC(s, 1) — Yeeisis.s) sl (©)
Weichenberger et al. (2017) ZL-( [S(s,5) U 5(,‘,,.1(5)
va Scientific Reports 7: 381 Processing of Biological Data WS 2021/22
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Mixing rules

Using the maximum of averaged row and column best matches
has been suggested for incomplete annotations. , |
fSBMM = nmx(mzd.nmxjs,-i. —2max;s;
Instead of taking the maximum, averaging gives the so-called best match average
a4 o L[] ‘1 )
fsBMA = ?(;Z,max Sij ,_,Ziln‘lxisii)

Conversely, the averaged best match is defined as

JSABM = %(Zimaxisﬁ + 3max s)

n+n / ry

A combined functional similarity F is computed by combining any of the semantic
similarities for the different ontologies: biological process (Fgp), molecular function
(Fume), and cellular component (Fec):

1 2 2
Fgpymr = \h(Fm’ + Fyp)

T 2 2 2
Fgpimpscc = \/I(Flw + Fyp + Fo)

Weichenberger et al. (2017)
va Scientific Reports 7: 381 Processing of Biological Data WS 2021/22
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Effect of high-throughput experiments

High-throughput experiments are another source for annotation bias.

They contribute disproportionally large amounts of annotations
by only few published studies.

This information is further propagated by automated methods.

The huge body of electronic annotations (evidence code IEA) has
therefore a strong influence on semantic similarity scores.

va

Weichenberger et al. (2017)
Scientific Reports 7: 381 Processing of Biological Data WS 2021/22
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Influence of electronic annotations (IEA): BP scores

Average simLin/fsAvg score distributions for -
BP ontology for human/mouse protein pairs.

Shown are mean BP scores for different human proteins 0
and in each case 1000 randomly selected mouse proteins.
- the IEA(+) dataset (black solid lines, density computed 5
from 93806 annotated proteins) and

Densty

i

- the IEA(-) dataset (grey lines, 21212 annotated proteins). 0

an n1 nz 03

Mean functional s milarity BP score

No random pair has SS > 0.4 - good threshold to distinguish random / non-random

Manually annotated protein pairs (grey) show a clear peak at a score of 0.15.

Including IEA evidence generates a second peak close to 0.0. A large portion of this

peak can be attributed to the roughly 70000 human gene products, which are
exclusively annotated with IEA evidence codes

Weichenberger et al. (2017)
va Scientific Reports 7: 381 Processing of Biological Data WS 2021/22
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Influence of electronic annotations on MF + CC scores

(b) MF based score distribution. b
Unlike BP, this ontology is ;
characterized by a more uniform
distribution of scores, with a notable
peak near 0.27, generated by ca.
1600 proteins.

GO enrichment analysis of these I - R LI 0z oy

. Mean funclional similarity MF score Mean funclional similarily CC score
proteins shows that they are
significantly enriched in “protein (c) CC score distribution. Here, both manual

binding” (GO:0005155, p < 107'%).  an4 electronic annotation peaks are closer to
each other than in the other 2 ontologies.

This suggests that gene products Electronic annotations have higher densities i
yield much higher than average manual annotation scores have already tailed
simLin/fsAvg MF scores. off.

Weichenberger et al. (2017)

Scientific Reports 7: 381
va Processing of Biological Data WS 2021/22
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Gene functional identity changes over GO editions

100

Gene Ontology edition

100

40 60 80
Gene Ontology edition

The average fraction of identity maintained in successive editions of GO is 0.971.

. Shading : fraction of genes that retain a
.« functional identity between GO editions.

** Semantic similarity is calculated and genes
are matched between GO editions.

If a gene is most similar to itself between
editions, it is said to retain its identity.

This means that, each month, the annotations of about 3% of the genes have

changed so substantially that they are not functionally ‘the same genes’ anymore.

Gillis, Pavlidis, Bioinformatics
(2013) 29: 476-482.
ve
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Annotation bias persists in the GO

Annotation bias: defined as area under ROC curve for ranking the genes by the
number of GO terms.

If all genes had the same number of GO terms, the annotation bias would be 0.5.
At the other extreme, if there are only a few GO terms used and they are all
applied to the same set of genes, then the bias is 1.0.

Aoss Bozs
g‘ 084 ¥ o g o7sft o
3: 5 go.u o o
g 0.82 i o .:n o
g o8 | go.n o
o an
078 071} 4m
on’/’ 07} an ¢ o
0 50 100 "o 20 4 e 80 100
Human Gene Ontology edition Yeast Gene Ontology edition
(A) Annotation bias has risen among (B) For yeast, annotation bias has
human genes over time. Genes with generally fallen over time.

many annotations have become more
dominant within GO over time.

ve  Gillis, Pavlidis, Bioinformatics  Processing of Biological Data WS 2021/22
(2013) 29: 476-482. 56
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What determines the number of publications per gene?

Individual genes grouped by the embedding technique “t-SNE visualization”
using the 15 most informative features that determine #publications / gene.

Neighboring genes are most similar in these features.
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Stoeger et al. (2018)
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Red dots are genes studied in many publications, yellow dots are little studied.
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