
Today, in lecture #9, we will deal with several topics around genomic
sequences.
Points (1) and (2) deal with the two most common tasks in sequence analysis: 
mapping of reads and identification of single nucleotide polymorphisms
(SNPs).
Sometimes, we need to take special care when preparing a dataset for a 
statistical analysis.
E.g. we will mention the issue of overlapping genes in point (3) and the issue
of removing sequence redundancy in point (6).
In point (5), we will touch on a point that you may consider for granted: 
translation starts „always“ with a AUG codon that is translated into a 
methionin (M) amino acid. This is what you read in molecular biology
textbooks. It turns out that this is not always the case.
In point (4), we briefly comment on the importance of mRNA and protein
isoforms that result from alternative splicing. 
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Unless we talk about de novo assembly of a genomic sequence, the first task in 
an NGS project is usually the alignment of sequencing reads to an existing
reference genome.
Listed here are some workflows where read mapping is a crucial part.
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These are some of the well-known software tools used for mapping of NGS 
reads.
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In principle, one could simply scan the genomic sequence for each read
sequence. However, this would be quite inefficient.
Therefore, the existing tools typically construct an index either for the
reference genome or for the reads. This index is then used during the string
search.
The first type of indexing techniques use a hash table, see the table shown on 
the bottom right.
In this example, the genomic sequence is indexed. Different 6-letter words are
each given a hash index and where they are located in the genome.
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The second technique does not index the string itself, but uses its so-called
Burrows Wheeler transform (BWT).
According to Wikipedia, the Burrows–Wheeler transform is an algorithm to 
prepare data for use with data compression techniques such as bzip2. It was 
invented by Michael Burrows and David Wheeler in 1994. 
The algorithm can be implemented efficiently using a suffix array thus 
reaching linear time complexity.

An FM-index is a compressed full-text substring index based on the Burrows–
Wheeler transform, with some similarities to the suffix array. It was created by 
Paolo Ferragina and Giovanni Manzini.
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These are two auxiliary tables used to construct the FM index.
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According to
http://pages.di.unipi.it/ferragina/Libraries/fmindexV2/index.html
The FM-index combines compression and indexing by encapsulating in a 
single compressed file both the original file plus some indexing information. 
The space occupancy of the FM-index is close to the one required by the best 
known compressors, like bzip2. But additionally to a compressor, the FM-
index is able to efficiently support substring search operations, and the 
decompression of portions of the original file. Every such operation is 
executed on the FM-index by looking only at a small portion of the 
compressed file, thus requiring few milliseconds on a commodity PC over files 
of several megabytes. 
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One complication in read alignment is that we are not only looking at positions
that align perfectly or exactly. Often, the two sequence may differ „a little bit“ 
due to either the normal biological variation between an individual and the
reference genome or due to technical sequencing errors.
The genetic difference between individual humans today is minuscule – on 
average about 0.1% of all positions
(https://humanorigins.si.edu/evidence/genetics).
Based on this, we instruct the alignment algorithm to search for almost
perfectly matching positions of read and reference genome and allow for a 
small given number of mismatches.
From Hatem et al paper: „Seeding represents the first few tens of base pairs of 
a read. The seed part of a read is expected to contain less erroneous characters 
due to the specifics of the NGS technologies. Therefore, the seeding property 
is mostly used to maximize performance and accuracy.”
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Link to Hatem et al paper: 
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-
184
Alignment (3) is a perfect match of the altered string to an alternative position
in the genome. In this position, the match achieves the highest mapping score 
MQ = 50. MQ stands for „mapping quality“. 
Alignment (2) is a position shifted by one base pair where it has only 1 
mismatch G-A  and a slightly better score (MQ = 45) than in the original 
position (MQ = 40).
The naïve criteria would judge the tool as incorrectly mapping the read if the 
tool returned either alignment (2) or (3) while in fact it picked a more accurate 
matching.
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Link to the Li & Durbin paper: https://pubmed.ncbi.nlm.nih.gov/18714091/
Phred values were introduced by Ewing & Green 
(https://genome.cshlp.org/content/8/3/186.full) as quality values for base
calling:
q = -10 x log10 (p)
where p is the estimated error probability for that base-call. Thus a base-call 
having a probability of 1/1000 of being incorrect is assigned a quality value of 
30.
Text of this slide was copied from
https://genome.sph.umich.edu/wiki/Mapping_Quality_Scores
For paired end reads, we calculate SUM_BASE_Q as the sum of base quality 
scores at mismatched bases for both reads.
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Ruffalo et al.
(https://academic.oup.com/bioinformatics/article/27/20/2790/201940) classify 
the accuracy of the mapping(s) of a read as follows. 
Correctly mapped read (CM): the read is mapped to the correct location in the 
genome and its quality score is greater than or equal to the threshold.
Incorrectly mapped read—strict (IM-S): the read is mapped to an incorrect 
location in the genome and its quality score is greater than or equal to the 
threshold.
Incorrectly mapped read—relaxed (IM-R): the read is mapped to an incorrect 
location in the genome, its quality score is greater than or equal to the 
threshold and there is no correct alignment for that read with quality score 
higher than the threshold.
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Shown are the mapping results using the default options of each tool. The tools 
try to use the options that yield a good performance while maintaining a good 
output quality. 
For instance, Bowtie achieves a throughput of around 1.6·105 bps/s at the 
expense of mapping only 67.58% of the reads. On the other hand, BWA maps 
91% of the reads at the expense of having only a throughput of 0.1·105 bps/s. 
Additionally, SOAP and mrsFAST look like they provide the smallest 
mapping. However, they are only allowing 2 mismatches while other tools 
such as mrFAST and GSNAP are allowing more than 5 mismatches. Therefore, 
using only the default options to build our conclusions would be misleading. 
Indeed, further experiments show that BWA obtains a high throughput when 
allowed to use the same options as Bowtie. Moreover, BWA achieves a higher 
throughput than Bowtie in other experiments. Therefore, it is important to use 
the same options to truly understand how the tools behave.
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For synthetic data generated with the software wgsim, quality thresholds of 60, 
80, 100, 120, and 140 should correspond to 3, 4, 5, 6, and 7 mismatches. Here, 
all tools were allowed a maximum of 7 mismatches while using a quality 
threshold of 140. The figure shows that the tools map the reads with the same 
maximum number of mismatches while having similar mapping rates. 
The differences in the mapping rates shown in the previous slide are due to the 
pruning of the search space done by the default options for some of the tools. 
In addition, other tools incorrectly mapped some of the reads causing an 
increase in the mapping percentage. 
From the throughput point of view, the tools behave differently. For instance, 
Bowtie, MAQ, RMAP, and mrsFAST are able to maintain almost the same 
throughput while the throughput increases for SOAP2 and GSNAP and 
decreases for BWA. The degradation in BWA’s performance is due to 
exceeding the default number of mismatches leading to excessive backtracking 
to find mismatch locations.
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Longer reads tend to have more mismatches beside requiring more time to be 
fully mapped. In general, for a fixed number of mismatches, increasing the 
read length decreases the percentage of mapped reads. Therefore, the aim of 
this experiment is to understand the read length effect. 
The figure shows that the mapping percentage decreases with the increase in 
the read length while the error percentage increases. 
Bowtie, Bowtie2, and BWA were the only short sequence mapping tools that 
managed to map long reads. In particular, the max read length was 128 for 
MAQ, 300 for RMAP, and 200 for GSNAP, 199 for mrsFAST, while SOAP2 
took more than 24 hours to map the reads with length 300 and hence not 
reported. 
From the throughput point of view, tools do not maintain the same behavior. 
For instance, the throughput of Bowtie and SOAP2 decreases for long read 
lengths. This is due to the backtracking property and the split strategy used by 
Bowtie and SOAP2, respectively, to find inexact matches. 
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This example illustrates that using a different mapping tool can greatly affect
the number of obtained results.
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Website of the GIAB consortium: https://www.nist.gov/programs-
projects/genome-bottle
GIAB publication: https://www.nature.com/articles/sdata201625
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Hwang et al paper: https://www.nature.com/articles/srep17875
To compare the overall performance among thirteen pipelines, the authors 
compared the distributions of APR scores of multiple data sets for each 
pipeline on SNPs and indels. 
The Ion Proton data set has much lower exome coverage (<10×) than those of 
Illumina data sets (43.6×–298.5×). 
For SNP variant calls, BWA-MEM-Samtools pipeline showed the best 
performance and Freebayes showed good performance across all aligners for 
both Illumina platforms.
For Ion Proton data, Samtools outperformed all other callers, including TVC, 
which is the Ion Proton’s own variant calling method. Interestingly, the best 
variant caller of each data set varies. This observation of variation in best 
performed pipelines across data sets clearly demonstrates a data-specific effect 
of benchmarking results. Therefore, benchmarking performance of each 
variant calling pipeline needs to be based on multiple data sets to avoid 
misleading conclusions. The tested variant pipelines showed larger 
performance difference in calling indels. For indel calls, GATK-HC with any 
aligner outperformed Freebayes and Samtools on both Illumina platforms, 
while Samtools performed best on Ion Proton data. Although TVC is the 
official variant caller for Ion Proton data, it performed no better than other 
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callers on both SNPs and indels. 
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The authors then assessed the concordance (overlap) among the four variant 
callers for each NGS platform.
For Illumina data sets, they observed ~92% of concordance among the variant 
calls by three variant callers (see GATK-HC ∩ Samtools ∩ Freebayes) based 
on the average score of data sets. Concordance levels among variant calling 
pipelines varied across the data sets (82~97% overlap of called variants). 
These results indicate that not only the variant calling pipelines but also the 
data sets affect concordance of the identified variants. Therefore, caution is 
advised in interpreting concordance levels based on a single data set. 
For Ion Proton data set, four callers showed 15.5% of overlap for the same 
quality score threshold (see GATK-HC ∩ Samtools ∩ Freebayes ∩ TVC). This 
low overlap among called variants is likely to originate from the high false 
positive rates for calling indel variants by Freebayes and Samtools.
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Concluding remarks by the authors.
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In the third application, we wanted to characterize the locations of SNPs found
in genomes. We used the largest public data source available, the 1000 
Genomes project which in fact sequenced the genomes of around 2500 
individuals from the countries marked on the map.
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We focused on the European super-population with ca. 500 individuals.
The reason was that we also analyzed in parallel the 500 parent genomes from
the „Genomes of the Netherland“ project. The results for both data sets were
very similar (data not shown). 
We felt that data for the European cohort from the 1000G project would be
more compatible with the GoNL data.
Also, we omitted the sex chromosomes X and Y because they appear to behave
differently from autosomes.
E.g. the International SNP Map Working Group 
(https://www.nature.com/articles/35057149) found that the sex chromosomes
have a lower diversity than autosomes. They suggested that the lower rate of 
polymorphism on the X chromosome may be explained by a lower effective 
population size, a lower mutation rate or by strong selection acting on the sex 
chromosomes in males.
Also, we filtered for genes annotated to have more than one allele, excluded
SNO and MIR genes, or erroneous genes.
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Link to Veeramachaneni et al. paper: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327103/
According to Veeramachaneni et al., it is believed that 3.2 billion bp of the 
human genome harbor ∼35,000 protein-coding genes. On average, one could 
expect one gene per 300,000 nucleotides (nt). 
Although the distribution of the genes in the human genome is not random, it 
is rather surprising that a large number of genes overlap in the mammalian 
genomes. 
Veeramachaneni et al. identified >774 gene pairs sharing a locus in the human 
genome and 542 in the mouse genome. 
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The origin of overlapping genes is not clear. Interestingly, the mutation rates in 
the overlap regions are similar to non-overlap regions.
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We wanted to analyze the location of SNPs with respect to certain genomic
regions, see slide 27.
However, a SNP in an overlapping region may belong to different regions with
respect to either of the two genes.
To avoid confusion, we excluded shorter genes that are located inside longer
genes and we randomly selected one of the genes showing staggered overlaps.
Since we had „enough“ data for our analysis, we rather prefered to analyze a 
„purified“ data set.
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The RefSeq annotation from NCBI is a very comprehensive, sophisticated and
reliable annotation source for the location of genes and exons.
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Based on the Refseq annotations, we analyzed the frequency of transition and 
transversion SNPs as well as indels in nine types (regions) of coding and non-
coding genomic elements in the human genome. 
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Considering 1000G data, median SNP densities were ∼ 8−9 SNPs per kb for 
each genomic element and all variant types.
Protein-coding regions are conserved with a median SNP density of about 7 
SNPs/kb for all SNP types. The boxplot for the 5’ UTR contains some outliers 
with a maximum SNP density of up to about 35 SNPs per kb for 1000G data. 
This effect is due to the short 5’ UTR length of 230 bp on average (median 180 
bp). 
Our findings of smaller SNP densities in genetically important gene regions 
such as coding exons or 5’ UTRs are compatible with purifying selection to 
preserve their functionality.
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Transitions refer to point mutations that change a purine nucleotide to another 
purine (A ↔ G), or a pyrimidine nucleotide to another pyrimidine (C ↔ T). 
Approximately two out of three single nucleotide polymorphisms (SNPs) are 
transitions. Transversions interchange a purine with a pyrimidine and are less
frequent. This was also observed by us.
Indels might have more severe effects on transcription factor binding sites 
than base exchanges. Hence, the low frequency of indels in CpG islands might 
be related to a strict conservation of functional sequences within this genomic 
(regulatory) element especially in CpG islands in the promoter regions of the 
mammalian genes.
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Alternative splicing is a promiment mechanism to enlarge the complexity of
gene regulation.
About 95% of all genes with more than one exon are alternatively spliced.
One important question is now whether (1) all these isoforms will be expressed
in one tissue, (2) only some of them, or (3) only one of them.
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Probably this issue has not been completely settled yet.
For the moment, it is safe to assume that there will exist one major protein
isoform in each tissue.
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Now we come to something that you may not have expected.
Sometimes, protein translation may start at a non-AUG codon. This is called
„alternative translation“.
Shown here is an alignment of the calcium channel protein TrpV6 from
different species.
The red colored sequence region on the right is annotated in databases as the
protein-coding region.
It is surprising to find that the sequence upstream of the translation start site is
highly conserved and extends 40 amino acids upstream.
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The group of Prof. Veit Flockerzi from Homburg discovered some years ago
that the TrpV6 protein is 40 amino acids longer than they and the rest of the
world previously thought.
In principle, this could have drastic consequences. Fortunately, for them, it
turned out that the biological properties of the TrpV6 channel that they
characterized for decades using a cloned version (that was 40 amino acids too
short) were practically the same as those of the full-length protein. 
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This slide explains the ribosome profiling protocol that was invented in the lab 
of Jonathan Weissman at Stanford.
In an operational cell, ribosomes will constantly bind to mRNA messenger
molecules and translate them into protein sequences.
To monitor the occupancy of ribosomes, one applies small chemical molecules
that act as ribosome inhibitors and stall the further processing of mRNAs.
One can imagine that the conformations of the ribosomes get „frozen“ in a 
particular state, such as stopping a video clip.
This situation is shown in the figure below the writing „a Ribosome profiling“.
The rest of the protocol is very similar to the ChIP-seq protocol.
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Which positions are considered as potential alternative translation initiation
sites (aTIS)?
In this example, AUG at position 273-275 (colored light grey) would be the
annotated translation start site in the database. All subsequent sequence is
translated into protein.
But there are many potential alternative start sites upstream of this AUG that
differ by one nuclotide. They are termed „near-cognate“ sites.
The first one is ACG at position 100-102 (colored red).
Let us assume that ribosome profiling detected two true start sites: CUG at 
position 153-155 (which means 120 positions upstream of the canonical start
site) and CUG at position 195-197 (78 upstream).
These are colored blue. It is actually not easy to detect experimentally if both
of them are used or if only the first one is used. We will ignore this
complication.
All other alternative sites upstream of the first aTIS and between the two are
assumed to be true negatives because they are apparently not used.
For the other aTIS candidates downstream of the second true positive aTIS
site, we cannot make a statement whether they are also used or not because
they are „overshadowed“ by the two aTIS sites upstream of them.
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These were the available suitable ribosome profiling data sets in 2015 when
we conducted this project.
The number of TNs is 7-12 fold larger than TPs. Therefore, we downsampled
the TNs by randomly selecting the same number of data points.
If one would not do this, a „successful“ classifier could alway predict
„negative“ and would achieve around 90% accuracy on an imbalanced test set, 
simply because there are about 10 fold more negatives in the full data set.
If one would balance the test set (50:50), then this classifier would fail
completely.
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This is the flowchart used to train a classifier that predicts which candidate
alternative start sites are used and which ones are not.
As true positives, we used the mRNA sequences detected in ribosome profiling
to be bound to ribosomes.
As true negatives, we used all remaining mRNA sequences that were not 
detected. 
Note that both steps include assumptions. There may be different reasons why
mRNAs appear to be bound although they are in fact not translated, and the
opposite.
Then, we compute a large number of features for the elements of both sets. 
These will be explained on the next slide in more detail.
We select the 50 (out of 1252) features showing the largest differences
between both datasets in order to avoid over-training, and also check for
correlation between them.
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These are possible features by which true translation start sites and false start
sites may potentially differ.
Obvious criteria are the length of the 5‘UTR region and its conservation.
If the considered codon is actually a false start and real translation starts in 
front of it, the annotated UTR may be too long. This matches the observation
that the 5‘UTR in front of false starts is much longer (675 nt) than in front of
true starts (414 nt). 
If a UTR regions is highly conserved, this also suggests that it may in fact be
translated. 
The k-mer counts are raw counts in a 99 nt upstream or downstream window
from the central codon.
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Support vector regression gave only slightly better results than standard linear 
regression. Hence, we used the robust linear regression for the Webserver 
version of PreTIS.
The accuracies for the mouse data set were slightly lower.
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Interestingly, when applying the trained human model to the mouse embryonic
stem cell data set from ribosome profiling, the results were almost as good as
with the model trained on mouse data.
On the one hand, this suggests that the mouse data set is maybe not so good.
On the other hand, this suggests that the translation code in human and mouse
is quite similar.
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As an example for the application of PreTIS, we show here the predictions for
the human gene GIMAP5.
The annotated start site is a AUG codon at position 0 (right of the shown
codons).
Listed are all alternative start sites upstream of the annotated translation start: 
AUGs and codons differing by one nt.
For each putative alternative start site, we show the „translation initiation
confidence“ predicted by PreTIS‘s linear regression model.
The predictions are color coded according to the confidence score.
AUG at position -203 is assigned the highest score.
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Here, we tested how the PreTIS prediction changes if one nt is exchanged to
an alternative nucleotide that could result e.g. from a SNP.
In the upper line, CUG at position -36, has a PreTIS score of 0.81 (see
previous slide).
The largest decrease to 0.64 would result from replacing G in position -12 by
C.
On the other hand, G at position +7 appears unfavorable. Replacing this by any
other nt increases the score to 0.86.
The second line considers CUG at position -44 with PreTIS score of 0.50, 
which stands for low confidence.
Some mutations, e.g. U->A at position -3 increase the score to a much better
value of 0.66.
In the last line, CUG at position -160 has a low score of 0.25. Most mutations
show practically no change, except for C->A in position -12 (0.47) and C-> A 
in position -3 (0.46).
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Wang et al. identified in 29 human tissues 117 aTIS peptides mapping to 89 
genes and 99 alternative translation start sites.
Fifty-­‐five of these aTIS peptides represent 5ʹ′ N-­‐terminal extensions of the 
original gene, 32 peptides represent novel (acetylated) N-­‐termini downstream 
of the canonical start site, 17 represent frame-­‐shifts potentially leading to an 
entirely new sequence, five peptides likely represent upstream ORFs (uORF) 
with a stop codon before the canonical start site and 8 peptides with mixed 
annotation.
One can validate the existence of aTIS peptides by comparing their spectra to
synthetic peptides.
Panel E shows an example for a peptide (ac)ATTQISKDELDELKEAFAK 
derived from the actin-­‐binding protein plastin-­‐3 (PLS3).
Note the lacking y1 peaks (very left) for the experimentally detected (shorter) 
peptide.
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For many bioinformatics analyses, we need to process the considered data set
and remove redundant sequences. 
Here, we briefly explain for which applications this is important and mention
how this can be done with tools such as CDhit or BlastClust.
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The Link given at the bottom of the slide links to a page explaining how
BlastClust works.
But BlastClust is apparently no longer included in the latest release of the
Blast program.
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Today, we addressed several points that may be relevant if you analyze
genomic data sets.
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