
Softwarewerkzeuge der Bioinformatik
Prof. Dr. Volkhard Helms
PD Dr. Michael Hutter, Markus Hollander,
Andreas Denger, Marie Detzler, Larissa Fey

Winter semester 2021/2022

Saarland University
Department of Computational Biology

Project 3
Deadline: February 11, 2022

Machine Learning
In this project, you will apply what you have learned about machine learning in python in the
previous exercises, and perform your own analysis. You will analyze a microarray dataset con-
taining gene expression data from cancer patients, and from healthy patients for reference. First,
you will learn how to plot the data with the seaborn package, calculate the pairwise correlations
between the samples, and perform a hierarchical clustering. In the final exercise you will train and
optimize a machine learning pipeline on training data, and test its performance on an independent
test set.

Submit the finished notebook (the .ipynb file) to
andreas.denger@bioinformatik.uni-saarland.de. You can download a Jupyter Notebook
from Kaggle by clicking on File→Download.
The notebook has to contain all of the code that you used to solve the exercises. Use Markdown
cells (i.e. cells containing written text) to clarify which code cells belong to which exercise, and
to write notes, explanations and descriptions for the steps and results in your analysis.
Also write to the Email address above if you have any questions, or if you want schedule a meeting
on Microsoft Teams to go through parts of exercises you didn’t understand.

Exercise 3.1: Preparation (5 Points)
In the last tutorial, you have learned how to use kaggle.com to create and execute code in Jupyter
Notebooks. Find the gene expression dataset assigned to your group on the courses website, and
upload it to a new notebook.

(a) Visit kaggle.com and create a new notebook. Give it a name you can recognize, such as SWW
Project 3 Group X. If you close the notebook, you can find it again in your user account on
the top right of the start page.

(b) Upload the dataset that was assigned to your group to the notebook, using the +Add data
button on the top right. Afterwards, it should be in your input folder underneath the button.

(c) In exercises 2, 3, 9 and 10, you have already learned about the basics of Python programming,
such as data structures, loops and functions. Read the exercise sheets again, to refresh your
memory. Other important resources are the Python standard library reference, as well as the
references for numpy arrays, pandas dataframes, pandas series, seaborn and for scikit-learn.

andreas.denger@bioinformatik.uni-saarland.de
https://www.kaggle.com/
https://www-cbi.cs.uni-saarland.de/teaching/ws-2021-22/softwarewerkzeuge-der-bioinformatik-ws-21-22/
https://www.kaggle.com/
https://docs.python.org/3/library/index.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://seaborn.pydata.org/api.html
https://scikit-learn.org/stable/modules/classes.html


Exercise 3.2: Data exploration with pandas & seaborn (30 Points)
The pandas package provides the DataFrame and Series objects. DataFrames contain tabular
data, similar to an Excel sheet. Series are a type of list-like objects. Each column in a DataFrame
is a Series.
Seaborn is a package that is used for data visualization, mainly to create plots from DataFrames.

(a) Import the pandas package, load your data into a DataFrame and take a look at the data by
writing the name of the DataFrame on the last line of the cell, like you did in the tutorial.
On the top row you can see the names of the columns, on the left hand side are the names
of the rows.

(1) Assign the column called type to a new variable called labels. You can read a column
from the DataFrame by using square brackets containing the name of the column in
quotation marks. Documentation and examples can be found here.

(2) Create a new DataFrame called features that contains every column of your data,
except for samples and type. Hint: take a look at the drop() function in the DataFrame
reference, and its "axis" parameter.

(3) Print the labels-Series and features-DataFrame to see if everything worked. features
contains the genes as its columns, and the patients as its rows. labels assigns a label
(cancer, normal) to every row in features.

(4) Use the value_counts() function of the labels Series. Is your dataset balanced or im-
balanced? In a balanced dataset, each label has the same number of samples. This will
be important later.

(5) For the following exercises, we will need a transposed version of the features DataFrame.
Use the transpose() function of the DataFrame features, and assign the result to a
variable called features_t. Take a look at the contents of the transposed DataFrame.

(b) Next, calculate a pairwise correlation matrix for the patient samples, and visualize it with a
heatmap.

(1) The corr() method provided by the DataFrame object calculates the pairwise correlation
between every pair of columns in a DataFrame. The transposed DataFrame features_t
that you just created has the patient-samples as its columns. Call the corr() method
of features_t, and assign the result to a new variable called features_t_corr.

(2) Import the seaborn library. Call the heatmap() function on features_t_corr to create
a heatmap of the correlation matrix:

seaborn.heatmap(
data=features_t_corr,
xticklabels=labels,
yticklabels=labels

)

Interpret the plot. How do the labels relate to the pairwise correlations?

(c) Create a clustermap of features_t, just like you created the heatmap. Use labels as your
xticklabels, and set the yticklabels to False.

(1) The datasets of some groups contain more than 50.000 features. Calculating a clus-
termap of such a large dataset could take several hours. One way around that is to
randomly draw a subset of genes from the data, and create the plot with that. You
can use the sample() method with the n or the frac parameter to draw a number or a
percentage of genes from the data, respectively. The DataFrame features_t_sampled
contains 20% of the genes in features_t :

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html


features_t_sampled = features_t.sample(frac=0.2,random_state=1)

The random_state parameter assures repeatability by selecting the same random sam-
ples every time, depending on what value you assign to it.

(2) You can try different clustering methods with the method parameter of clustermap.
Try method="ward" to the function call of clustermap, and see if that leads to a better
clustering of the columns.

(3) Write a short interpretation of the plot into a Markdown cell.

Exercise 3.3: Machine learning with scikit-learn (40 Points)
In the last part of the project, you will train and evaluate a machine learning algorithm on the
data, using scikit-learn (also called sklearn). In the tutorial you already used a Support Vector
Machine (SVM) with a linear kernel, which tries to draw a hyperplane (e.g. a straight line in
two-dimensional space) between the classes. This time we will try a Radial Basis Function (RFB)
kernel (also called radial Gauss kernel), which can divide the data in non-linear ways.

(a) The matrix containing the features is called X in sklearn, the list containing the labels is
called y, and contains a different integer value for each label. Both X and y are numpy
arrays. Convert your pandas DataFrame and Series to numpy arrays, as you have learned
in exercise 10:

from sklearn.preprocessing import LabelEncoder
X = features.to_numpy()
label_enc = LabelEncoder()
y = label_enc.fit_transform(labels)

(b) The next step will be to split the data, into a training set and an independent test set:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=1,stratify=y)

The classifier will be optimized on the training set, and then evaluated using the test set.

(c) Read the Getting Started article on sklearn’s website to become familiar with the basic
concepts and functions. The website also contains an extensive User Guide, a reference
manual (API) for the functions, and many example applications to learn from.

(d) Use the make_pipeline function to create a pipeline containing a StandardScaler and a
SVC (sklearn.svm.SVC). Don’t forget to import the functions from their packages, see the
Getting Started guide for reference. If you found out in the last exercise that your dataset is
imbalanced, you should to set the class_weight parameter of the SVM to "balanced", that
will likely improve the accuracy. Print the pipeline to see if everything worked.

(e) Now you will optimize the classifier using the training dataset. For that, we are going to
use GridSearchCV. It takes an estimator, which can be a classifier or a pipeline, as well as a
grid of parameters. It will try each combination of parameters, and choose the combination
that performs the best.

(1) Create a GridSearchCV object with your pipeline as its first parameter, and the fol-
lowing parameter grid as its second parameter:

param_grid={
’svc__gamma’:[0.1, 1e−2, 1e−3, 1e−4],
’svc__C’:[1, 10, 100, 1000]

}

https://scikit-learn.org/stable/getting_started.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


This will try four different values for the gamma parameter, and four values for the
C parameter of the SVC object in the pipeline, so a total of 16 models will be tested.
Set the scoring parameter of GridSearchCV to "f1". The default option is "accuracy",
which can be biased for imbalanced datasets. Print the GridSearchCV object.

(2) Call the fit() method of the GridSearchCV object on the training data (X_train,
y_train). Print the best parameters that were found, as well as the best score.
Hint: You can find a similar approach using RandomizedSearchCV in the Getting
Started guide. Also look at the Attributes in the documentation of GridSearchCV.

(3) What do the parameters you found say about your model? Hint: look at the slides from
lecture 12, and the documentation for RBF kernels on the sklearn website.

(f) The GridSearchCV object now behaves like an estimator, and automatically uses the best
parameters chosen during parameter optimization. Call its score() function on the test data
(X_test, y_test) to receive an F1 score for your optimized pipeline.

(g) One thing that could negatively influence the performance of your pipeline is the large
number of features in the dataset (more than 20.000 genes). Use feature selection to select
the best k features with regards to their classification performance. The classifier is then
trained only on those. Create a SelectKBest object that only keeps the 20 best features:

from sklearn.feature_selection import SelectKBest
kbest = SelectKBest(k=20)

Make another pipeline that contains a StandardScaler, the kbest object, another Standard-
Scaler, and a SVC (don’t forget the class_weights parameter). Perform the training and
scoring with GridSearchCV again for this pipeline, and see if your score improves.

(h) The choice of training and test set can have a great influence on the final score. One
train_test_split might lead to a score of 1.00, another to 0.50. To account for this potential
bias, one can split the dataset into five subsets. Each subset is used for testing once, and the
other four together for training. Finally, you calculate the mean and the standard deviation
of the five test scores. Perform a cross validation with for your GridSearchCV object, with
"f1" as your scoring function. Print the mean and average score across the five runs:

from sklearn.model_selection import cross_val_score
res = cross_val_score(gsearch, X,y,scoring="f1", cv=5)
print(res)
print(f"{res.mean()}+−{res.std()}")

To get the last 5 points for the project, you have to achieve an average F1 score of at least
0.90. If your model did not achieve the score yet, try different values for k, gamma and C,
or read the documentation of SVC and see if you can find any other parameters to optimize
with grid search.

Exercise 3.4: Machine Learning Visualization (15 Points)
In addition to general purpose packages like seaborn, there are specialized packages for visualizing
machine learning data, such as yellowbrick.

(a) One way to visualize a dataset with more than two dimensions is to reduce the number of
dimensions to two. Two common methods for that are the Principal Component Analysis
(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). The latter is often used
for gene expression data.

(1) Create a PCA-plot of X, y from exercise 3 with yellowbrick. The classes for the param-
eter classes are still saved in label_enc from exercise 3.3:

https://www.scikit-yb.org/en/latest/api/features/pca.html


from yellowbrick.features import PCA
visualizer = PCA(scale=True, classes=label_enc.classes_, random_state=1)
visualizer.fit_transform(X, y)
visualizer.show()

(2) Create a t-SNE plot from the same dataset. Which advantages does t-SNE have,
compared to PCA?

(b) There are other types of plots that can display more than two dimensions, such as RadViz.
To keep things simple, we will reduce the number of dimensions to 20, and retrieve their
names from the dataframe we created in exercise 2:

kbest = SelectKBest(k=20)
X_selected = kbest.fit_transform(X,y)
feature_names_selected = features.columns[kbest.get_support()]

Create a RadViz plot of X_selected and y :

from yellowbrick.features import RadViz
visualizer = RadViz(classes = label_enc.classes_, features=feature_names_selected)
visualizer.fit_transform(X_selected, y)
visualizer.show()

Exercise 3.5: Project report (10 Points)
Turn the Jupyter Notebook you just created into a project report. Use Markdown cells to explain
the steps you took in your analysis of the dataset, and describe the results and plots.

You can find more information about your datasets here:

• Group 1: GSE41328

• Group 2: GSE60502

• Group 3: GSE57297

• Group 4: GSE22405

• Group 5: GSE12452

• Group 6: GSE7670

• Group 7: GSE16515

Hint: The page for the associated Platform (GPL. . . ) contains a table at the bottom with anno-
tations for your feature names from Task 3.4b, such as gene name, and gene symbol.

Finally, click on Run All in the notebook, wait for the calculations to finish, and download the
notebook (File→Download). Send the notebook file to the Email address above. Don’t forget to
include your names.

Have fun!

https://www.scikit-yb.org/en/latest/api/features/manifold.html
https://www.scikit-yb.org/en/latest/api/features/radviz.html#yellowbrick.features.radviz.RadialVisualizer
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41328
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60502
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57297
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22405
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7670
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16515

