VI0 DGL-Modelle

19. Dezember 2013

nach einer Vorlesung von Dr. Tihamer Geyer

Aufstellen von Bilanzgleichungen

Dynamische Simulationen: Was ist das? Wozu?

Simulations-Tool: Copasi

Vereinfachte Kinetiken: MM, Inhibierung, Hill

kinetische Daten: KEGG, SABIO-RK

Wdh: über die Formel zur Formel

Ausschnitt aus http://www.genome.jp/dbget-bin/show_pathway?ec00230+3.6.1.9

i) biologisches Netzwerk

- ii) Metabolite identifizieren (incl. Konzentrationen)
- iii) Einzelreaktionen aufstellen, Reaktionsraten?
- iv) Reaktionen in DGLs übersetzen
- v) Anfangswerte einsetzen und simulieren
- vi) Ergebnisse analysieren

Massenwirkungsgesetz

Dynamische Simulationen

Zwei Anwendungsgebiete

zeitabhängiges Verhalten

Reaktionen des Systems auf Änderungen der äußeren Bedingungen (Randbedingungen)

 $\frac{d\vec{X}(t)}{dt}$

stationäre Zustände (steady state)

Suche nach Konzentrationen und Flüssen bei konstanten Randbedingungen

$$\frac{d\vec{X}(t)}{dt} = 0$$

Was lernt man aus dem Steady-State?

Konzentrationen = konst. => Zufluss = Abfluss

$$\frac{dA_2B(t)}{dt} = G_{A_2B} - L_{A_2B} = 0$$

Beispiel: $2A + B \leq A_2B$

 $\frac{dA_2B(t)}{dt} = k_a A^2 B - k_d A_2 B = 0$ => Gleichgewichts-Konzentrationen: $A_2 B = \frac{k_a}{k_d} A^2 B$

Steady state: + Bedingungen zwischen Konzentrationen und Raten => stationäre Betriebsmodi

- wie schnell wird der steady state erreicht?
- absolute Mengen / effektive Volumina

Statisches vs. dynamisches Gleichgewicht

jeweils:
$$\frac{d\vec{X}(t)}{dt} = 0$$

Infos aus zeitabhängigen Simulationen

Ganz einfach: A <=> B

 $\frac{dA(t)}{dt} = k_{ba}B - k_{ab}A$

Gleichgewicht:

A + B = const.

mit Anfangsbedingungen:

$$A(t=0) = A_0$$
$$B(t=0) = 0$$
$$B(t \to \infty) = \frac{k_{ab}}{k_{ab} + k_{ba}} A_0$$

=> Gleichgewichtsverteilungen

=> wie schnell wird ein "Signal" weitergegeben?

Länge von Reaktionspfaden

Vergleiche:

A => B

A => MI => M2 => M3 => M4 => M5 => B

 $A_0 = I$, $k = I s^{-I}$

=> Zwischenprodukte verzögern die Antwort => Vorsicht beim Weglassen von Zwischenschritten

Puffer: Al-Metabolismus

Al ist das dritthäufigste Element (8%) und das häufigste Metall in der Erdkruste. Normalerweise ist Al harmlos, kann aber auch zu Osteopathie, Anämie oder Enzephalopathie führen.

Experimente zur Al-Aufnahme und -Ausscheidung:

- orale Gabe von 100 ng ${}^{26}AI$ (T_{1/2} = 0.7 Myr)
- Blutproben nach 20 min, 40 min, ..., 46 d
- Tagesurin
- Messung der ²⁶Al-Menge

Messwerte: Blut- und Urinproben, Gewebeproben bei Ratten

=> zeitabhängige Verteilung und Speicherung in verschiedenen Geweben

=> Modellierung als Multi-Kompartment-Modell

Modellierung des AL-Metabolismus

- i) Al wird aufgenommen (oral oder intravenös), kommt ins Blut
- ii) Al verteilt sich vom Blut in das umliegende Gewebe/ Organe
- iii) dynamisches Gleichgewicht
 zwischen Blut und
 periphären Gewebe Speichern

iv) Blut wird über Leber/Niere ausgeschieden

Hohl, ..., Nolte, Ittel, Nucl. Inst. Meth. B 92 (1994) 478

Erhalte Übergangsraten zwischen (Lebensdauern) und Volumina der Kompartimente aus der Simulation durch Parameterfit => Hilfe für die physiologische Zuordnung

Unterschiedlich große Kompartimente

Teilchenaustausch durch Interface der Fläche Φ:

$$\frac{dN_{12}}{dt} = k_{12}\Phi\frac{N_1}{V_1} \qquad \frac{dN_{21}}{dt} = k_{21}\Phi\frac{N_2}{V_2}$$

Änderungen der Anzahlen (Gesamtanzahl bleibt erhalten):

$$\frac{dN_1}{dt} = -\frac{dN_{12}}{dt} + \frac{dN_{21}}{dt} \qquad \qquad \frac{dN_2}{dt} = -\frac{dN_1}{dt}$$

Änderungen der entsprechenden Dichten:

$$\frac{d}{dt}\frac{N_1}{V_1} = \frac{1}{V_1}\frac{dN_1}{dt} = \frac{\tilde{k}_{21}}{V_1}\frac{N_2}{V_2} - \frac{\tilde{k}_{12}}{V_1}\frac{N_1}{V_1} \qquad \qquad \frac{d}{dt}\frac{N_2}{V_2} = \frac{V_1}{V_2}\frac{d}{dt}\frac{N_1}{V_1}$$

=> Simulationen mit Teilchenzahlen, Dichten "on the fly"

Ergebnisse

acc. urine per. comp. 3 0.1 number of AI-26 atoms/ injected dose acc. stool 10-2 10-3 per. comp. 2 per. comp. 1 10-4 plasma Ð 10-5 0.1 1 10 1000 10000 100 time after administration [h] 2.3a

Drei Gewebetypen (Kompartimente) reichen, um die Messwerte zu beschreiben => schnelles, mittleres und langsames Kompartiment

Zeitabh. Verhalten bestimmt von Volumen *und* Austauschraten. ²⁶Al konnte nach mehr als zwei Jahren
immer noch im Blut nachgewiesen werden
=> Speicherung in den Knochen

Complex Pathway Simulator

Entwickelt in den Gruppen von Pedro Mendes (Virginia Bioinf. Inst.) und Ursula Kummer (EML HD)

"COPASI is a software application for simulation and analysis of biochemical networks."

http://www.copasi.org/

Copasi-Features

Current Features:

- Model:
 - · Chemical reaction network.
 - Arbitrary kinetic functions.
 - ODEs for compartments, species, and global quantities.
 - Assignments for compartments, species, and global quantities.
 - Initial assignments for compartments, species, and global quantities.
- Analysis:
 - Stochastic and deterministic time course simulation
 - Steady state analysis (including stability).
 - Metabolic control analysis/sensitivity analysis.
 - Elementary mode analysis .
 - Mass conservation analysis.
 - Time scale separation analysis
 - Calculation of Lyapunov exponents.
 - Parameter scans.
 - Optimization of arbitrary objective functions.
 - Parameter estimation using data from time course and/or steady state experiments simultaneously.
- Graphical User Interface (CopasiUI)
 - Sliders for interactive parameter changes.
 - Plots and Histograms.
- Command Line (CopasiSE) for batch processing.
- <u>SBML</u> import (L1V1+2, L2V1-3) and export (L1V2, L2V1-3).
- Loading of <u>Gepasi</u> files.
- Export to Berkeley Madonna, XPPAUT, and C source code of the ODE system generated from the model.
- Versions for MS Windows, Linux, Mac OS X, and Solaris SPARC.

We keep a list of currently known problems in COPASI.

By the Mendes group at VBI and Kummer group at EML Research.

00	G COPASI 4.5 (Build 30)	\odot
🗋 🖻 🖼 💷 🖛 🗸 🔤 ST	Concentrations 🛟	
Copasi	Model Annotation RDF Browser	
▼Model		
▼Biochemical	Model name MM explizit	
Compartments		
Species	Time unit S 🗧 🖨 Rate Law Interpretation determinist	+
Reactions		_
Global Quantities	Volume unit ml	
Parameter Overview	Quantity unit mmol	
Mathematical		
Differential Equations	Initial Current	
Matrices	Time (s) 0 nan	
Diagrams		_
▼Tasks	Show Markup	
▶ Steady–State		
▶ Stoichiometry		
Time Course		
Result		
Metabolic Control Analysis		
► Lyapunov Exponents		
Time Scale Separation Analysis		
Parameter Scan		
▶ Optimization		
Parameter Estimation		
▶ Sensitivities		
▶ Output		
Functions		
	Commit Revert)
		//

Enzyme: Michaelis-Menten-Kinetik

Reaktionsrate: V =

$$V = k_{off} ES$$

Steady state: k_c

$$_{on}E \cdot S = k_{off}ES$$

$$ES = \frac{k_{on} E \cdot S}{k_{off}} = \frac{E \cdot S}{K_M}$$

Die Gleichung

Effektiver Umsatz nach MM: $V = V_{max} \frac{S}{S + K_M}$

Vorteile:

 $V_{max} = k_{off} E_T$

- analytische Formel für den Umsatz
 - Interpretation der Kennlinie: V_{max} , K_M
 - Enzym kann ignoriert werden

Aber: weniger kinetische Informationen $k_{on}, k_{off}, E_T => V_{max}, K_M$

MM vs. explizite Modellierung

Wenn E verschiedene Substrate katalysiert => MM geht nicht

Zeitverhalten: MM-Kinetik vs. explizite Modellierung

=> Einschwingen

=> anderer Gesamtumsatz

Nochmal: explizit vs. MM

linearer Anstieg von S

00	G COPA	SI 4.5 (Build 30))		\Box
	Concentrations 📫]			
Copasi		Metabolite	Annotation	RDF Browser	
▼Model					
Biochemical	Metobolite Name	E			
▶Compartments					
▼Species	Compartment	compartment			Ŧ
E	Simulation Type	reactions			
ES	Simulation Type	Teactions]
5 T	Initial Concentration	1			Use Initial Expression
Peactions	(mmol/ml)	•			
Global Quantities	Concentration (mmol/ml)				7
Parameter Overview	Concentration (mmor/mi)	nan			
Mathematical	Rate (mmol/(ml*s))	nan			
Differential Equations	Transition Time (s)	0			
Matrices	mansition mile (s)	0			
Diagrams	Involved in Reactions	none			
▼Tasks					
▶ Steady-State					
▶ Stoichiometry					
Time Course					
Result					
Metabolic Control Analysis	l				
Lyapunov Exponents					
Time Scale Separation Analysis Deservator Scan					
Parameter Scan					
Parameter Estimation					
Sensitivities					
▶ Output					
▶ Functions	Commit	Revert		New	Delete

	6 COI	PASI 4.5 (Build 3	0)		\bigcirc
	Concentrations	•			
Copasi		Reaction	Annotation	RDF Browser	
▼Model					
■Biochemical ■	Name	R1			
▶Compartments					
▼Species	Chemical Equation	E + S = ES			
E		Reversible		Multi Compartment	
ES					
Es	Pate Law	Mass action (r	eversible)	A	New Pate Law
S	Kate Law	Mass action (i	eversible)	•	New Nate Law
Т	Flux (mmol/s)	0			
		-			
RI		Description	Name	Value	Unit
RZ Clahal Quantitian	Dave	-			
Global Quantities	Symbol Definition	Parameter	k1	📃 global	0.1 ml/(mmol*s)
- Mathematical		■	🔒 substra	te	mmol/ml
Differential Equations				E	
Matrices				5	
Diagrams				5	
Tasks		Parameter	k2	📄 global	0.01 1/s
▶ Steady-State			A product	•	mmol/ml
▶ Stoichiometry		- riodaet	produce	FS	······
Time Course					
Result					
▶Metabolic Control Analysis					
▶Lyapunov Exponents					
▶ Time Scale Separation Analysis					
Parameter Scan					
▶Optimization	Commit	Revert		New	Delete
▶ Parameter Estimation 🗸					

0 0	MM-explizit - COPASI 4.5 (Build 30) /Users//V10-DGLs_SMBL/MM-explizit.cps	\supset
🗋 🗃 🖬 🚳 🖛 🗸 🎼	S TS MRAW Concentrations	
Biochemical Compartments Species E ES S T Reactions R1 R2 Global Quantities S0 ton	Metabolite Annotation RDF Browser Metobolite Name S Compartment compartment Simulation Type assignment Expression (mmol/ml) <values[s0].initialvalue>*if(<time> It <values[ton].initialvalue>,1,0)</values[ton].initialvalue></time></values[s0].initialvalue>	
Parameter Overview Mathematical Differential Equations Matrices Diagrams Tasks Steady-State Stoichiometry Time Course Pocult	Initial Concentration (mmol/ml) 1 Use Initial Expression Concentration (mmol/ml) nan Rate (mmol/(ml*s)) nan Transition Time (s) nan Involved in Reactions R1: E + S = ES	
Metabolic Control Analysis Lyapunov Exponents Time Scale Separation Analysis Parameter Scan Optimization Parameter Estimation Sensitivities	vsis	

000	G MM-explizit - COPASI 4.5 (Build 30) /Users//V10-DGLs_SMBL/MM-explizit.cps	\Box
🗋 🖻 🖶 🔯 🕂 🗸 🎼	STS RAW	
▼Biochemical	Metabolite Annotation RDF Browser	
► Compartments	Metobolite Name S	
F		
ES	Compartment compartment	÷
S	Simulation Type assignment	
т	Simulation Type assignment	
Reactions	Expression (mmol/ml)	
R1		
R2	Values[S0] InitialValue	tialValue
▼Global Quantities	values[50].Initiaivalue	
SO	ito, eise	
ton Demonster Organism		
Mathematical	Initial Concentration	
Mathematical Differential Equations	(mmol/ml) ¹ Use	Initial Expression
Matrices		
Diagrams	Concentration (mmol/ml) nan	
Tasks	Rate (mmol /(ml*s)) nan	
▶ Steady-State		
▶ Stoichiometry	Transition Time (s) nan	
Time Course	Involved in Reactions R1: E + S = ES	
Result		
Metabolic Control Analysis		
▶ Lyapunov Exponents		
▶Time Scale Separation Analy	/sis	
Parameter Scan		
▶ Optimization		
► Parameter Estimation	Commit (Revert) (New) (Delete)
▶ Sensitivities	▼	

00	MM	-explizit - COPASI 4.5	6 (Build 30) /Users//	10-DGLs_SMBL	/MM-exp	lizit.cps	\Box
🗋 🖻 🔚 💿 📲 🧹 🖓	is MR	Concentrations	•				
▼Species	h						
E		Time Course	1			update mode	executable
ES						_ ·	0
S		Duration	1				
т		Duration	1				
Reactions		Interval Size	0.01		Intervals	100	
R1			Suppress Output B	efore 0			
R2			d a b b b b b b b b b b	•			
▼Global Quantities			Save Result in Men	nory			
50							
Barameter Overview		Integration Interval	0 to 1				
Mathematical		Output Interval	0 to 1				
Differential Equations							
Matrices		Method	Deterministic (LSODA)	÷		
Diagrams		N		1			
▼ Tasks		Method Parameter		Value			
▶ Steady-State			Integrate Reduced Model	0			
▶ Stoichiometry			Relative Tolerance	1e-06	5		
Time Course			Absolute Tolerance	1e-12	2		
Result			Adams Max Order	12	2		
Metabolic Control Analysis			BDF Max Order	5	5		
Lyapunov Exponents			Max Internal Steps	10000			
Time Scale Separation Analys	s						
Parameter Scan							
Optimization							
► Output	Ų						
► Functions	Ţ	(Run) (Rever	t)			(Report) (Output Assistant
						<u> </u>	

\varTheta 🔿 🔿 🌀 🌀	-explizit - COPASI 4.5	5 (Build 30) /Users//	V10-DGLs_SMBI	L/MM-explizit.cps	\Box
	Concentrations	Å			
=Spacing					
F	Time Course			undate mor	del 🗌 executable
ES	Time Course			upuate mot	
s o					
т	Duration	1			
Reactions	Interval Size	0.01		Intervals 100	
R1			lafora 0		
R2		Suppress Output b	erore U		
▼Global Quantities		🗹 Save Result in Mer	nory		
SO	· · · · · · · · · · · · · · · · · · ·				
ton	Integration Interval	0 to 1			
Parameter Overview	Output Interval	0 to 1			
Mathematical		0.001			
Matrices	Method	Deterministic (LSOD/	0	A	
Diagrams		Deterministic (2505)	7	· ·	
Tasks	Method Parameter		Value		
▶ Steady-State		Integrate Reduced Model	(D	
Stoichiometry		Relative Tolerance	1e-06	5	
Time Course		Absolute Tolerance	1e-12	2	
Result		Adams Max Order	12	2	
Metabolic Control Analysis		BDF Max Order		5	
▶ Lyapunov Exponents		Max Internal Steps	10000		
▶Time Scale Separation Analysis					
Parameter Scan					
Optimization					
Parameter Estimation					
► Sensitivities					
Cutput Functions	Run Rever			Report	Output Assistant
	Charles Chever	9		Report	output rissistant

00	MM	-explizit - COPASI 4.5	6 (Build 30) /Users//	/10-DGLs_SMBI	/MM-exp	lizit.cps	\bigcirc
	š MR	Concentrations	•				
▼Species	h						
E		Time Course				update mode	executable
ES						_ ·	
S		Duration	40				
т		Duration					
▼Reactions		Interval Size	0.02		Intervals	2000	
R1			Suppress Output B	efore 0			
R2							
V Global Quantities			Save Result in Men	nory			
ton		Internation Internal	0 + 10				
Parameter Overview		integration interval	0 to 40				
▼Mathematical		Output Interval	0 to 40				
Differential Equations							
Matrices		Method	Deterministic (LSODA)	÷		
Diagrams		Mathod Parameter					
▼Tasks		Methou Parameter		Value			
▶ Steady-State			Integrate Reduced Model	(
▶ Stoichiometry			Relative Tolerance	1e-06	5		
Time Course			Absolute Tolerance	1e-12	2		
Result			Adams Max Order	12	2		
Metabolic Control Analysis			BDF Max Order	5	5		
Lyapunov Exponents Time Scale Separation Analysis			Max Internal Steps	10000			
Parameter Scale	s			-			
Parameter Estimation							
► Sensitivities							
▶Output							
▶ Functions	Ŧ	(Run) (Rever	t)			(Report) (Output Assistant

Vereinfachte Kinetiken

kompetitive Inhibition: Inhibitor vs. Substrat

Kooperative Bindung: Hill-Kinetik

nicht-kompetitive Inhibition: Inhibitor verändert Enzym

Enzyme: Michaelis-Menten-Kinetik

$$V = k_{off} ES$$

Steady state: k_{on}

$$k_{on}E \cdot S = k_{off}ES$$

$$ES = \frac{k_{on} E \cdot S}{k_{off}} = \frac{E \cdot S}{K_M}$$

Gesamtmenge an Enzym ist konstant:

 $E_T = E + ES \implies ES = E_T \frac{S}{S + K_{M}}$

Umsatz: $V = V_{max} \frac{S}{S + K_M}$

Die Gleichung

Effektiver Umsatz nach MM: $V = V_{max} \frac{S}{S + K_M}$

Vorteile:

 $V_{max} = k_{off} E_T$

- analytische Formel für den Umsatz
 - Interpretation der Kennlinie: V_{max} , K_M
 - Enzym kann ignoriert werden

Aber: weniger kinetische Informationen $k_{on}, k_{off}, E_T => V_{max}, K_M$

MM vs. explizite Modellierung

Wenn E verschiedene Substrate katalysiert => MM geht nicht

Zeitverhalten: MM-Kinetik vs. explizite Modellierung

=> Einschwingen

=> anderer Gesamtumsatz

Nochmal: explizit vs. MM

linearer Anstieg von S

Kompetitive Hemmung

Zwei Pfade:

$$E + S => ES \qquad E + I => EI$$

=> I verdrängt S

S << I: weniger freies E verfügbar => weniger ES => V reduziert \tilde{V} = V reduziert

$$K_M = K_M \left(1 + I/K_I \right)$$

S >> I: S verdrängt I => Inhibition unterdrückt => V_{max} unverändert

$$V = V_{max} \frac{S}{S + K_M \left(1 + I/K_I\right)}$$

Nichtkompetitive Inhibition

Analytische Formeln

=>Wirkungsweise von I aus steady state

Anzahl Parameter:

- explizit: k_{on} , k_{off} , E_T , $k_{i,on}$, k'_{on} , k'_{on} , k'_{off}
- effektiv: V_{max}, K_M, K_i

Kooperativität: Hill-Kinetik

Archibald Hill (1913): "Bindung des ersten Metaboliten vereinfacht Bindung des/der nächsten." Wurde formuliert um die kooperative Bindung von Sauerstoff an Hämoglobin zu erklären (n = 2.8 ... 3.0)

Zum Vergleich: E + S <=> ES
$$K = \frac{E \cdot S}{ES}$$

$$Y = \frac{ES}{E + ES} = \frac{S}{S + K}$$
Anteil an besetzten
Bindungstaschen

Mehrere Substrat-Moleküle gleichzeitig: E + n S <=> ES_n

$$Y = \frac{S^{n'}}{S^{n'} + K^{n'}}$$

Hill-Koeffizient: $I \leq n' \leq n$

Wann effektive Kinetiken?

Pro:

- weniger Aufwand (Modell, Simulation, Parameter)
- analytische Lösungen für einfache Systeme
- korrekter Steady state

Contra:

- weniger Parameter
 - => weniger kinetische Informationen
- falsches dynamisches Verhalten

"Effektive Kinetiken brauchbar für langsame Signale"

"langsam" = Relaxationszeiten aller Zwischenschritte deutlich kürzer als Änderungen des Signals

Woher bekommt man die Daten?

- Experten fragen
- Originalartikel lesen
- lesen lassen:
 - => Student, HiWi
 - => Datenbanken

Pfade: KEGG

kinetische Daten: SABIO-RK

http://www.genome.jp/kegg/

http://sabio.villa-bosch.de/welcome_new.jsp?

KEGG-Pfade

KEGG-Pfade

KEGG-Pfade

Inside KEGG

KEGG	COMPOUND: C00092
Entry	C00092 Compound
Name	D-Glucose 6-phosphate; Glucose 6-phosphate; Robison ester
Formula	C6H13O9P
Mass	260.0297
Structure	HO-P-O HO HO HO HO HO HO HO HO HO HO HO HO HO
Reaction	R00299 R00303 R00725 R00771 R00834 R00835 R00836 R00837 R00838 R00839 R00840 R00850 R01139 R02168 R02185 R05767 R05804 R06043 R06044 R06112 R06113 R06115 R06125 R07324 R08125 R08404 R08617 R08639
Pathway	PATH: ko00500 Starch and sucrose metabolism PATH: ko00521 Streptomycin biosynthesis PATH: ko00562 Inositol phosphate metabolism PATH: map01062 Biosynthesis of terpenoids and steroids PATH: ko02020 Two-component system PATH: ko02060 Phosphotransferase system (PTS)
Enzyme	1.1.1.49 1.1.1.200 2.4.1.1 (E) 2.4.1.15 2.4.1.36 2.4.1.216 2.7.1.1 2.7.1.2 2.7.1.61 2.7.1.63 2.7.1.142 2.7.1.147 3.1.3.9 3.1.3.58 3.2.1.86 3.2.1.93 3.2.1.122 3.5 5.3.1.9 5.4.2.2 5.4.2.5 5.5.1.4

Inside KEGG

Inside KEGG

Raten: SABIO-RK

What is SABIO-RK? TOP

The SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics) is a web-based application based on the SABIO relational database that contains information about biochemical reactions, their kinetic equations with their parameters, and the experimental conditions under which these parameters were measured. It aims to support modellers in the setting-up of models of biochemical networks, but it is also useful for experimentalists or researchers with interest in biochemical reactions and their kinetics. Information about reactions and their kinetics can be exported in SBML (Systems Biology Mark-Up Language) format.

This project is sponsored by the <u>Klaus Tschira Foundation</u> and partially by the German BMBF (Bundesministerium fi¿1/2r Bildung und Forschung).

Data Provenance TOP

There are two main sources for the data contained in SABIO. Most of the reactions, their association with pathways and their enzymatic classification, is extracted from the <u>KEGG</u> (<u>KEGG: Kyoto Encyclopedia of Genes and Genomes</u>) & database. The other main source of data are publications. The reaction kinetics data are obtained by manual extraction from literature sources and curated.

Suche in SABIO-RK

r			Reaction Search
	Specify Search Criteria: Submit Sea	arch)	Reset Form
١	with Reactant(s)		[⊞][⊟]
[🚫 D-Glucose 6-phosphate		Join entries with AND or O R
i	in Pathway(s)		[=][=]
ł	having Enzyme(s)		[=][=]
[2.7.1.1:Hexokinase		Join entries with O AND or O OR
i	in Publication		[=][=]
I	related to Protein (UniProtID)		[=][=]
i	in Organism(s)		[🗉][🗉]
[🛞 Homo sapiens		Join entries with O AND or OR

Suche in SABIO-RK

46

Suche in SABIO-RK

Entry Nr. 2362		[🕀][∃]			C	Select	\square	
Organism:	Homo sapiens								
Tissue:	erythrocyte								
EC Class: 2.7.1.1	wildtype								
Substrates name location comment ATP - D-Glucose - Products - name location con ADP - D-Glucose 6-phosphate - Modifiers - Mg2+ - Hexokinase(Enzyme) - 2,3-Diphosphoglycerate -	nment effect com Modifier-Cofactor - Modifier-Catalyst - Modifier-Inhibitor -	ment protein co	mplex						
Enzyme (protein data) UniProt-ID name mol. weig subunit complex	ght (kDa) deviation (kl - -	Da) - -							
Kinetic Law type Uncompetitive inhibition		formula							
Parameters									
name species B ATP C Mg2+ I 2,3-Diphosphoglycerate Km_Mg Mg2+	type concentration concentration concentration Km	start value 1 0.25 0 0.0023	end value - 3 5 -	deviation - - -	unit o mM - mM - mM - M -	omment			
Km_Glu D-Glucose A D-Glucose	Km concentration	0.000093	- 1	-	M - mM -				
Experimental conditions start v pH temperature buffer: 50 mM Tris chloride, 1 mM	value en 8 23 NADP+, 0.1 mg glucos	d value	unit - 24 ° dehydrogenas	- - - - - - - - - - - - - -					

Zusammenfassung

Dynamische Simulationen:

- zeitliches Verhalten
- steady state = stationäre Lösung des DGL-Systems
- Puffergrößen und Reaktionsraten

Copasi:

• Simulation und Analyse chemischer Reaktionen

Vereinfachte Kinetiken:

- hilft im steady state, problematisch bei zeitabh. Prozessen
- Bsp: kinetische Isolierung von Signalpfaden

Simulationsparameter?

- KEGG Pfade
- SABIO-RK: hand-kurierte Reaktionsparameter

Nächste Woche: Modellierung größerer Systeme (ProMoT, SBML) Softwarewerkzeuge WS 13/14