V7 Modellierung von biomolekularen Komplexen

- Protein-Protein-Docking
- Protein-DNA-Komplexe

Beispiel eines Protein-DNA-Komplexes

PDB-Struktur 1TUP: tumor suppressor **p53**

Durch Röntgenkristallographie bestimmter Protein-DNA-Komplex in der PDB-Datenbank.

Lila (links): p53-Protein Blau/roter DNA-Doppelstrang (rechts)

The protective action of the wild-type p53 gene helps to suppress tumors in humans. The p53 gene is the most commonly mutated gene in human cancer, and these mutations may actively promote tumor growth.

www.sciencemag.org (1993)

7. Vorlesung WS 17/18

spezifische Bindung / Kristallkontakt

Nikola Pavletich, Sloan Kettering

Cancer Center

RESEARCH ARTICLE ===

Crystal Structure of a p53 Tumor Suppressor–DNA Complex: Understanding Tumorigenic Mutations

Yunje Cho, Svetlana Gorina, Philip D. Jeffrey, Nikola P. Pavletich

Fig. 3. Schematic ribbon drawing of the asymmetric unit, which contains three p53 core domain molecules and one DNA duplex. Two of the core domains bind DNA (blue); one (vellow) interacts extensively with a consensus binding site, and the other (red) binds at a nonconsensus site at the interface of DNA fragments related by crystallographic symmetry (a portion of the symmetry-related DNA fragment is shown in green). The third core domain molecule (purple) does not bind DNA, but makes protein-protein contacts stabilizing crystal packing. The zinc atoms are shown as white spheres.

Science 265, 346-355 (1994)

Konservierte Bereiche sind am Interface angereichert

colored as in (A). (C) Topological diagram of the secondary structure elements of the core domain defined according to the criteria of Kabsch and Sander (45). The residues at the start and the end of each secondary structure element are indicated. The conserved regions are colored according to (A), and the boundaries of the two β sheets that make up the β sandwich are shaded.

Science 265, 346-355 (1994)

Kontakt-Residuen

Links: Protein – DNA-Kontakte enthalten viele Arginin- und Lysin-Reste

Rechts: die 6 am häufigsten bei **Krebs** mutierten Aminosäuren (gelb) in p53 liegen alle am Interface!

Softwarewerkzeuge

Science 265, 346-355 (1994)

Modellierung von Protein-DNA-Komplexen

Eine besondere Herausforderung bei der Modellierung von

Protein-DNA-Kontakten ist die Tatsache, dass beide Bindungspartner flexibel sind.

Wichtigstes Prinzip:

- Elektrostatische Komplementarität – DNA ist stark negativ geladen,

Proteinoberfläche muss entsprechend positiv geladen sein

Protein-Protein Interaktionen

Sínd wichtig für viele zelluläre Prozesse

Eine biologische Zelle enthält zu jedem Zeitpunkt ca. 10⁹ Proteinkopien aus etwa 5000 verschiedenen Proteinen.

Im Mittel bildet jedes Protein etwa 6 Interaktionen.

Etwa die Hälfte aller Proteine bildet stabile oder transiente Komplexe

Charakterisierung der Protein-Protein-Assoziation:

thermodynamische Stabilität : Bindungskonstante k_D Kinetische Ratenkonstante für Assoziation: k_{on}

driving forces der Protein-Protein-Wechselwirkung:

- lang-reichweitige elektrostatische Anziehung
- Feste Assoziation durch hydrophoben Effekt

Protein-Protein-Assoziation

Vor der Komplexbildung muss die kritische Energiebarriere für die **Desolvation** überwunden werden sowie **Konformationsänderungen** der

Seitenketten stattfinden

Gezeigt ist die Oberfläche der f**reien Enthalpie** für die Protein-Protein-Assoziation.

Diese ähnelt der trichterförmigen Energielandschaft der Proteinfaltung.

Brooks, Gruebele, Onuchic, Wolynes, PNAS 95, 11037 (1998)

Eigenschaften von Protein-Protein-Interfaces

 Table 2. Properties of protein—protein interfaces

	Ductoin quetoin	Homodimers ^b		W/~ 1-	Create 1	permanente Komplexe
Parameter	complexes ^a	Bahadur	Dey	dimers ^c	packing ^d	
Number in dataset	70	122	276	19	188	-> sehr große Schnittsteller
BSA (Å ²)	1910	3900	3700	1620	570, 1510	are Cor Antoli on unnoloron
(S.D.)	(760)	(2200)	(2160)	(670)	(520)	groiser Antell an unpolaren
Amino acids per interface	57	104	100	50	48	A
BSA ($Å^2$) per amino acid	34	38	37	32	32	Aminosauren
Composition (BSA %)						
Non-polar	58	65	65	62	58	
Neutral polar	28	23	22	25	25	
Charged	14	12	13	13	17	
						BSA: buried surface area
						S.D. standard deviation
Chain segments ^f	5.6	3.4	3.2	5.8	6.3	
H bonds	50	5 4	5-2	5.0	0.5	
<i>num</i> (number per	10	19	18	7	5	
interface)	- •	- /			0	Artifizielle Kristallkontakte
BSA per bond (Å ²)	190	210	209	230	280	
Water molecules ^g						enthalten einen wesentlich
Number per interface	20	44			23	
Number per 1000 Å ²	10	11			15	kleineren Anteil an konser-
Bridging H bonds	6	13			6	
Residue conservation ^h						vierten Residuen
% in core	55	60			40	
s in core and rim	0.65 and 0.80	0.63 and 0.77			0.98 and 0.99	(400) according EE (00)

Janin et al. Quart Rev Biophys 41, 133-180 (2008)

Homodimere sind meist

Fläche von Protein-Protein-Interfaces

haben recht kleine Schnittstellen. Ihre Funktion benötigt nur eine transiente = kurzlebige Bindung.

Dies wird durch die kleine Größe der Schnittstelle unterstützt.

Janin et al. Quart Rev Biophys 41, 133-180 (2008) Softwarewerkzeuge 10

7. Vorlesung WS 17/18

Protein-Protein-Komplexe

Die bekannten Strukturen von Protein-Protein-Interaktionen des Menschen (bekannte experimentelle Strukturen plus Homologie-Modelle) decken nur etwa 4% der geschätzten Anzahl von etwa 300.000 Protein-Protein-Interaktionen zwischen menschlichen Proteinen ab.

Quelle: Proteins, 81, 2192–2200 (2013)

Idee: versuche, die Strukturen von PP-Komplexen durch **Docking** zu modellieren.

Berechne die Komplementarität der Oberflächen zwischen beiden starren Proteinen in allen möglichen Orientierungen (alle erlaubten Translationen + Rotationen), Suche in 6 Freiheitsgraden

Proteins, 81, 2192–2200 (2013)

Workflow für Protein-Protein-Docking

(1) Docking von starren Proteinen
mit Katchalski-Kazir-Algorithmus
z.B. FTDock-Program, verwendet FFT,
Optimale Lösung hat maximales **a** x **b**

Next, to distinguish between the surface and the interior of each molecule, we retain the value of 1 for the grid points along a thin surface layer only and assign other values to the internal grid points. The resulting functions thus become

 $\overline{a}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the molecule} \\ \rho & \text{inside the molecule} \\ 0 & \text{outside the molecule,} \end{cases}$ [2a]

and

 $\overline{b}_{l,m,n} = \begin{cases} 1 & \text{on the surface of the molecule} \\ \delta & \text{inside the molecule} \\ 0 & \text{outside the molecule,} \end{cases}$ [2b]

where the surface is defined here as a boundary layer of finite width between the inside and the outside of the molecule. The parameters ρ and δ describe the value of the points inside the molecules, and all points outside are set to zero. Two-

Typical values: $\rho = -15$, $\delta = 1$ => penalty for overlap of volumes

7. Vorlesung WS 17/18

Proc. Natl. Acad. Sci. USA Vol. 89, pp. 2195-2199, March 1992 Biophysics

Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques

(protein-protein interaction/surface complementarity/macromolecular complex prediction/molecular docking)

Ephraim Katchalski-Katzir ‡ , Isaac Shariv, Miriam Eisenstein, Asher A. Friesem, Claude Aflalo $\|$, and Ilya A. Vakser †

Departments of [†]Membrane Research and Biophysics, [§]Electronics, [§]Structural Biology, and [®]Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel

2D cross sections at I = 46 (N = 90)

a) no contact b) limited contact c) overlap (black area) d) good geometric match

Softwarewerkzeuge

Proteins, 81, 2192–2200 (2013)

Workflow für Protein-Protein-Docking

(2) Wende Zdock-Scoring-Funktion auf die FTDock-Ergebnisse an-> wähle 1000-2000 Kandidaten-Modelle mit dem besten Score aus.

Zdock Scoring-Funktion: statistisches Paar-Potential zwischen Kontaktresiduen $(\rightarrow \text{DOPE in V6})$, Oberflächenkomplementarität und Elektrostatik

(3) Bewerte Zdock-Lösungen noch einmal mit pyDOCK-Scoring-Funktion:

-**Desolvationsenergie** proportional zur Abnahme der gesamten Solvent-accessible surface area (-> Hydrophober Effekt in V5)

- Coulomb-Elektrostatik und van-der-Waals-Wechselwirkungen zwischen Kontakt-Residuen

7. Vorlesung WS 17/18

Softwarewerkzeuge

Proteins, 81, 2192–2200 (2013)

Ergebnis in CAPRI5-Wettbewerb

Table I

Results of Our pyDock Protocol for All Protein-Protein Targets of the Last CAPRI Edition

		Predictors		Scorers			
Target	Туре	Submission rank ^a	Quality ^b	Successful groups ^c	Submission rank ^a	Quality ^b	Successful groups ^c
T46	HH	_	_	2 (40)	_	_	8 (16)
T47	HU	1	***	25 (29)	2 ^d	***	13 (14)
T48	UU	3	*	14 (32)	No scorers	No scorers	No scorers
T49	UU	4	*	14 (33)	6	×	7 (13)
T50	UH	1	**	18 (40)	4	**	12 (17)
T51	DHD	_		3 (46)	_	_	5 (13)
T53	UH	3 ^e	**	20 (42)	1	**	11 (13)
T54	UH	_	_	4 (41)	_	_	0 (13)
T58	UU	5	**	11 (23)	No scorers	No scorers	No scorers

U, unbound; H, homology-based model; D, domain.

^aRank of the best model within our submission to CAPRI.

^bQuality of our best model according to CAPRI criteria.

^cNumber of successful groups for each target; in brackets, total number of participants.

^dModel Rank 1 had medium accuracy (**).

^eModel Rank 1 had acceptable accuracy (*).

HH: Docking von 2 Homologie-Modellen für die beiden Proteine

UU: Docking der Kristallstrukturen der ungebundenen (freien / apo) Strukturen der Proteine

(ist natürlich zuverlässiger als HH)

Protein-Protein-Komplexe

Beste Docking-Modelle für die Targets T47, T48, T49, T50, T53, T57, und T58.

Rezeptorstruktur ist jeweils überlagert und weiss gefärbt.

Rot/blau: beste Dockingpositionen für das zweite Protein.

In grün ist (falls bekannt) die experimentelle Struktur gezeigt.

Dies sind die Erfolgsfälle.

Proteins, 81, 2192–2200 (2013)

Komposition von Protein-Protein-Bindungsschnittstellen

Bindungsschnittstelle einer Untereinheit des homodimerischen Proteins

2-Phospho-d-Glycerat Hydrolase (PDB ID code 1ebh).

"core" (rot) und "rim" (blau) Regionen

(a) Verglichen mit der gesamten Proteinoberfläche enthält die zentrale Region der Schnittstelle (Interface-core) viel mehr aromatische Aminosäuren, aber deutlich weniger geladene Aminosäuren.

Der Rand ("rim") der Schnittstelle ist recht ähnlich zur Gesamtoberfläche.

а

Janin et al. Quart Rev Biophys 41, 133-180 (2008) Softwarewerkzeuge

Entropy

Komposition von Bindungsschnittstellen

Kristallkontakt: Bindungsschnittstelle zweier Proteine im Kristall, ist oft nur eine artifizielle Interaktion durch Kristallisationsprozess.

http://pymolwiki.org

(b) Artifizielle Kristallkontakte haben(zu) wenig hydrophobe Aminosäurenam Interface.

(c) An Interfaces mit negativ
geladener DNA gibt es viel weniger
negative Glu- und Asp-Residuen als
bei PP-Kontakten. Dafür mehr
positive Arg-Residuen.
7. Vorlesung WS 17/18

Janin et al. Quart Rev Biophys 41, 133-180 (2008) Softwarewerkzeuge 17

Protein-Nukleinsäure-Komplexe

				Eher arößere
Average value	Protein/RNA ^a	Protein/DNA ^b	Protein/protein ^c	Kontaktflächen
Number of complexes	81	75	70	
BSA (Å ²)				
Mean	2530	3100	1910	
S.D.	(1210)	(1050)	(760)	Hoher Anteil an
Protein/nucleic acid	1210/1320	1540/1560	_	
Number of amino acids/nucleotides	43/18	48/18	57	positiv geladenen
BSA ($Å^2$) per amino acid/nucleotide	28/75	33/72	34	Aminosäuron
Composition (protein/nucleic acid, BSA %)				Ammosauren.
Non-polar	55/33	52/41	58	
Neutral polar	21/41	24/16	28	
Charged (negative)	4/26	2/43	5	
Charged (positive)	20/0	23/0	9	
$f_{\rm bu}$ (% buried atoms, protein/nucleic acid)	29/29	24/28	34	
L_D (packing index, protein/nucleic acid)	37/43	39/46	42	
H bonds				
$n_{\rm HB}$ (number per interface)	20	22	10	
BSA per bond ($Å^2$)	125	145	190	
Water molecules				
Number per interface	32	21	20	
Number per 1000 $Å^2$	13	7	10	
Bridging H bonds	11		6	

 Table 3. Properties of protein-nucleic acid interfaces

Janin et al. Quart Rev Biophys 41, 133-180 (2008) Softwarewerkzeuge 18

Assoziationspfad für PP-Bindung

Schritte bei Protein-Protein-Assoziation:

- Zufällige Diffusion (1)
- Elektrostatische Anziehung (2)
- Bildung von Encounter-Komplex (3)
- Dissoziation oder Bildung des endgültigen Komplexes via Übergangszustand (TS) (4)

Mögliches Energieprofil als Funktion des Abstands beider Proteine.

Bei der Bindung müssen die Schnittstellen desolvatisiert werden.

Dies könnte energetisch aufwändig sein.

7. Vorlesung WS 17/18

Barnase:Barstar

- Barnase: eine Ribonuklease, die außerhalb der Zelle aktiv ist.
 Barstar: ihr intrazellulärer Inhibitor;
 - beide Proteine haben Durchmesser ~ 30 Å
- Sehr gut charakterisiertes Modellsystem f
 ür elektrostatisch gesteuerte diffusive Ann
 äherung zweier Proteine
- Interaktion zwischen Barnase und Barstar gehört zu den stärksten bekannten Interaktionen

zwischen Proteinen

sehr schnelle Assoziations rate:

 $10^8 - 10^9 \text{ M}^{-1} \text{ s}^{-1}$ bei 50 mM ionischer Stärke

Färbung gemäß elektrostatischem Potential auf Proteinoberfläche.

Experiment: untersuche Protein-Protein-Assoziation mit atomistischen MD-Simulationen

Schiebe Barnase:Barstar-

Kristallkomplex um 1.3 – 2.0 nm auseinander + rotiere Barstar um bis zu 45°

9 MD-Simulationen über mehrere 100 ns Dauer.

5 Simulationen näherten sich Kristallkomplex bis auf

1.2 – 3.5 Å innerhalb von 100 ns **RMSD= 1.2** Å

Ahmad et al., Nature Comm. 2, 261 (2011)

Spontanec associatio barnase:ba in all-atom

7. Vorlesung WS 17/18

hmad et al. , Nature comm. 2, 261 (2011)

Schnelle Ausbildung von Kontakten zwischen Proteinen

23

Die vier anderen Assoziationspfaden

Prinzipiell ähnliche Pfade, dennoch individueller Verlauf.

Entspricht dem Unterschied zwischen verschiedenen Einzelmolekülexperimenten.

Ahmad et al., Nature Comm. 2, 261 (2011)

Energetik der Assoziation hydrophiler Proteine

¹ Energetics of Hydrophilic Protein–Protein Association and the Role ² of Water

- ³ Ozlem Ulucan, Tanushree Jaitly, and Volkhard Helms*
- 4 Center for Bioinformatics, Saarland University, Saarbruecken, Germany

Energetik der Assoziation hydrophiler Proteine

Table 1. Some Global and Interface Properties of the Three Protein–Protein Complexes^a

	BN-BS	CC-CYP	EIN-HPr
no. of amino acids in protein I	110	108	249
no. of amino acids in protein II	89	296	85
area of binding interface (Å ²)	778	570	1002
no. of interface residues in protein I	16	13	33
no. of interface residues in protein II	14	10	24
no. of H-bonds across interface	14	4	6
no. of salt-bridges across interface	12	2	5
total charge of protein I [e]	+2	-7	-19
total charge of protein II [e]	-6	+6	-2
total charge of interface I [e]	+3	+5	-5
total charge of interface II [e]	-4	-2	+4
binding constant	$1.3 \times 10^{-14} \text{ M}^{-1b}$	$6 \times 10^{-7} \text{ M}^{-1c}$	$3.1 \times 10^{-6} \text{ M}^{-1d}$

Energetik der Assoziation hydrophiler Proteine

Führe Simulationen bei festen Abständen beider Proteine durch, wobei ein Protein durch ein Federpotential festgehalten wird.

Messe die mittlere Auslenkung vom Nullpunkt des Federpotentials -> Anziehende bzw. abstoßende Wechselwirkung.

Energieprofil ist "downhill".

Es gibt keine Energiebarriere bei nahen Abständen.

3 Protein-Protein-Systeme verhalten sich sehr ähnlich.

7. Vorlesung WS 17/18

Wo können Liganden an einem PP-Interface binden?

Aus ABC database (<u>http://service.bioinformatik.uni-saarland.de/ABCSquareWeb/</u>) wurde Datensatz mit 175 redundanten Paaren von P_1P_2 : P_3L -Komplexen extrahiert, die am Interface überlappen.

- P₁ und P₃ müssen mindestens 40% Sequenzidentität haben sowie
- Mindestens 2 gemeinsame Interface-Residuen

Walter Helms,

7. Vorlesung WS 17/18

Softwarewerkzeuge

PLoS ONE (2013) 8, e58583

Beispiel für PP : PL-Paar - Trypsin

trypsin : BPTI

trypsin:benzamidin

Softwarewerkzeuge

PLoS ONE (2013) 8, e58583

Walter Helms,

Konservierung am Interface

Hohe Konservierung

niedrige Konservierung (Consurf)

-> Überlapp-Residuen sind stärker konserviert als Nicht-Überlapp-Resduen (p < 2.2e-16)

Walter Helms,

PLoS ONE (2013) 8, e58583

Softwarewerkzeuge

30

Protrusion / dt. Hervorstehen

Überlapp-Residuen haben kleinere Protrusion-Indices (p < 2.2e-16), sind also stärker begraben/verdeckt.

7. Vorlesung WS 17/18

Softwarewerkzeuge

Walter Helms,

PLoS ONE (2013) 8, e58583

31

Bedeutung von Features in Random forest classifier

Features für Interface-Residuen sind: -**Konservierungsscore** (,cons1' ist die Konservierung der zentralen Residue, ,cons2' etc die der nächsten Nachbarn -**hot spots** (vorhergesagte Residuen, die mindestens 2 kcal/mol zur Bindungs-affinität beitragen) -**protrusion index** (,protru') -**surface fraction** -**contact density** (,density')

Die Genauigkeit der Klassifizierung einzelner Residuen in Überlapp/ Nicht-Überlapp-Residuen ist 67%.

um wieviel wird die Klassifizierung schlechter, wenn für das jeweilige Feature Zufallswerte verwendet werden?

Walter Helms,

7. Vorlesung WS 17/18

Softwarewerkzeuge

PLoS ONE (2013) 8, e58583

Kombiniere Vorhersagen für Residuen innerhalb von Patch

Konstruktion eines Patches

Starker Anteil von vorhergesagten Überlapp-Residuen in einem Patch erhöht die Wahrscheinlichkeit von True Positive-Vorhersagen

Walter Helms,

7. Vorlesung WS 17/18

Softwarewerkzeuge

PLoS ONE (2013) 8, e58583

In gesamter PDB: 54809 Interface-Patches

Biological process	Frequency	P-value
signal transduction	39	3.212e-01
blood coagulation	32	4.789e-05
positive regulation of cell proliferation	20	1.515e-02
platelet activation	20	1.224e-02
transcription, DNA-dependent	19	2.092e-02
protein phosphorylation	18	1.0
transcription from RNA polymerase II promoter	17	7.883e-01
apoptosis	16	3.573e-03
proteolysis	16	3.558e-06
protein homotetramerization	16	2.805e-01

Anreicherung von GO biological process -Ausdrücken

2 der 8 Apoptose-Komplexe enthalten kleine Moleküle an den vorhergesagten Patches

PDB + chain	Protein name	Term frequency
1PQ1A	Apoptosis regulator Bcl-X	9
1RE1B	Caspase-3	9
10LGA	Tumor suppressor P53	7
2C2ZB	Caspase-8 P10 subunit	7
2TNFB	Tumor necrosis factor alpha	5
1DU3D	apo21/TRAIL	3
1BH5B	Glyoxalase I	3
1PYOD	Caspase-2	3

7. Vorlesung WS 17/18

Modellstudie: Apoptose

PLoS ONE (2013) 8, e58583

Können Liganden an Protein-Protein-Schnittstellen binden?

- Interfaces zu flach
 → Bindungstaschen?
- **Figure 1.8:** Ligand-induced conformational changes in enzyme active sites and protein-protein interaction interfaces: the binding sites of Biotin on the enzyme Streptavidin (a, b) and of the SMPPII DIZ on the protein MDM2 (c, d). (a) and (b) possess an almost identical binding site, whereas the pockets in (c) and (d) show noticeable differences.
- Interfaces zu groß (~1500 Ų)
 - \rightarrow können kleine Moleküle Interaktion inhibieren?
- Interfaces besitzen keine ausgeprägten Features
 → kann Spezifität erreicht werden?
- Natürliche Liganden sind Proteine; Interfaces werden von verschiedenen Abschnitten der Proteinkette gebildet
 - \rightarrow Liganden mimic?

H. Yin, A.D. Hamilton: Strategies for Targeting Protein-Protein Interactions with Synthetic Agents (Angew. Chem. Int. Ed. 2005, 44, 4130-4163)

Taschen-Detektion mit PASS-Algorithmus

a. PASS uses three-point geometry to coat the protein with an initial layer of spherical probes. b. These probes are filtered to eliminate those that (i) clash with the protein, (ii) are not sufficiently buried, and (iii) lie within 1Å of a more buried probe. c. A new layer of spheres (white) is accreted onto a scaffold consisting of all previously-identified probes (shaded). d. The probes are filtered as described in step b. e. Accrete a new layer of spheres onto the existing probes, as in step c. f. Accretion and filtering (steps e and d) are repeated until a layer is encountered in which no newly-found probes survive the filters. This leaves the final set of probe spheres. g. Probe weights (PW) are computed for each sphere and active site points (ASPs) are identified from amongst the final probes. h. The final PASS visualization is produced. By default, the final probe spheres are first smoothed, leaving only clusters of four or more.

G.P. Brady, P.F.W. Stouten: Fast Prediction of Protein Binding Pockets with PASS, J. Comp. Aid. Mol. Des. (2000) 14, 383-401

7. Vorlesung WS 17/18

Proteinoberflächen verhalten sich wie Flüssigkeit!

Schnappschüsse aus einer MD-Simulation des MDM2-Proteins

Rote Kugeln: mit PASS-Algorithmus bestimmte Taschen.

Schnappschüsse folgen in Abständen von 100 Pikosekunden.

Taschen-Detektions-Protokoll

Transient Pockets on Protein Surfaces Involved in Protein-Protein Interaction

Susanne Eyrisch and Volkhard Helms*

Center for Bioinformatics, Building C7 1, P.O. Box 151150, D-66041 Saarbruecken, Germany

			av	erage vo	olume (Å	³)		
	frequ < j	ency, 1%	frequ 1-1	ency, 10%	frequ 10-	ency, 50%	frequ >5	ency, 0%
system	run 1	run 2	run 1	run 2	run 1	run 2	run 1	run 2
BCL-XL	361.4	340.2	405.1	384.4	451.5	469.9	527.7	423.8
IL-2	346.2	365.3	338.2	399.7	355.1	401.0	452.7	398.9
MDM2	335.5	354.3	400.7	365.3	422.3	405.9	468.7	639.1

Table 1. Average Volumes of the Pockets According to Their Frequency for the Two Independent Runs

Beobachtung:

- Manche Taschen öffnen sehr selten, manche sehr oft.
- Ähnliche Statistik für die 3 Systeme

Polarität der Taschen

Durchschnittliche Polarität einer Tasche wird aus dem Anteil der polaren Atome unter ihren pocket-lining atoms berechnet:

Taschen-Polarität ist gut reproduzierbar (run 1 vs. run 2).

Transiente Taschen sind leicht polarer als die native Bindungstasche des Liganden (grün).

7. Vorlesung WS 17/18

Docking an Bcl-X_L

(a) BCL-XL (native binding mode)

(b) BCL-X_L (docking pose)

Eyrisch, Helms, J.Med.Chem. (2007) 50, 3457-3464

Docking an IL-2

(c) IL-2 (native binding mode)

(d) IL-2 (docking pose)

Eyrisch, Helms, J.Med.Chem. (2007) 50, 3457-3464

Docking an MDM2

(e) MDM2 (native binding mode)

(f) MDM2 (docking pose)

Eyrisch, Helms, J.Med.Chem. (2007) 50, 3457-3464

Docking ranks und scores

	redocking			apo-docking			snapshot-decking ^b		
system	rmsd (Å)	score (kcal/mol)	ranke	rmsd (A)	score (kcal/mol)	rank ^a	rmsd (A)	score (kcal/mol)	rank ^c (%)
BCL-XL-N3B	0.9	-10.5	2	3.3	-6.2	5	1.4	-8.7	4.7
IL-2-FRH	1.1	-10.8	1	2.9	-6.2	1	1.5	-6.6	20.6
MDM2-DIZ	1.1	-13.1	2	3.4	-6.7	5	1.9	-11.5	1.1

Table 5. Best Docking Results for Redocking into Complex Structure, Docking into Apo Structure, and Docking into MD Snapshots

⁴ Rank of docking solution among 10 docking runs. ³ Docking into all MD snapshots (grid center coincident with center of mass of superimposed ligand). ⁴ Relative rank defined as the rank of this solution after sorting all results by increasing docking score in relation to the total number of docking results. ⁴ Docking into transient pockets (grid center coincident with center of mass of transient pocket).

Interpretation

- Redocking in Kristallstruktur der Komplexe funktioniert sehr gut:
- ca. 1.0 Å RMSD, Rang 1-2
- Docking in MD-Schnappschüsse erreicht geringste Abweichung von 1.4 –
 1.9 Å RMSD
- Score ca. 2-4 kcal/mol schlechter, nativer Bindungsmodus wird in den
- 1 20% besten Treffern gerankt.