
Softwarewerkzeuge der Bioinformatik

Prof. Dr. Volkhard Helms
PD Dr. Michael Hutter, Markus Hollander,
Andreas Denger, Marie Detzler, Larissa Fey

Winter semester 2020/2021

Saarland University
Department of Computational Biology

Tutorial 10
February 4, 2021

Data visualization & Machine Learning

In this tutorial, you will learn about some of the basics of Data Science. You will manipulate and
visualize data with pandas, and finally create your own machine learning model with the scikit-
learn library. The third project, which will be given out later today, will build on the methods
described in this tutorial, and go into more detail.
The code that is used in this tutorial is available in a text file on the website, so it can be easily
copied. Pasting text that was copied from a PDF can introduce unwanted symbols or line-breaks.

Exercise 10.1: Preparation

For this exercise, we are going to use the website kaggle.com. Kaggle is a social network for data
scientists that allows for easy collaboration, and sharing of datasets and analyses. They also host
coding competitions that award up to seven figure prize money for the best analysis of a given
dataset.
Most importantly, it allows us to run our own calculations in the cloud, without installing any
additional software.

(a) Visit kaggle.com and create a user account. You can either sign up with a Google-Account or
with your email address and a password. In the latter case, you will receive a confirmation
email. Open your email inbox and click the included link in order to verify your email
address.

(b) Log in to your account. Now it is time to create the first notebook. On the left hand side
of the website, you will find the option Code (with the symbol <>). Click on that option,
and select + New Notebook. Choose Python as the language, and Notebook as the type.
These should be the default options. Click on create. You can click on the name of the
notebook on the top left in order to change it. Change the name to something you will
recognize, for example SWW Tutorial 10.

(c) Your notebook is now saved in your user account. You can access it from the start page
by clicking on your profile picture in the top right, selecting Your Profile and then the tab
Code.

Exercise 10.2: Getting familiar with Jupyter Notebooks

What you are looking at now is a Jupyter Notebook. A notebook is comprised of cells. A cell can
either be a Code cell, which contains Python code, or a Markdown cell, which contains written
text, for example to explain what you are doing in your analysis. You can add new code cells by
pressing the + icon on top, you can execute the contents of a cell by selecting it and pressing the
arrow/triangle next to the plus, or you can run all cells from top to bottom by pressing Run All.

(a) Your notebook will already contain a cell. Select it and press the trashcan icon on its top
right to delete it, so we can start from scratch.

https://www.kaggle.com/
https://www.kaggle.com/

(b) Type 2+2 into the empty cell, and click on the arrow button.
The result will show up under the cell.

(c) Create a new code cell with the + icon, type print(”Hello World”) into the cell, and execute
it. The string Hello World should now be printed underneath the cell.

(d) You can assign values to variables. Those values are saved in the environment of the note-
book, and can be recalled later. Write a=5 into an empty code cell, and execute it. Open a
new cell, and simply write a. That will show you the value of variable a after its execution.
If the last line of a cell returns or contains a value then that value will be printed underneath
the cell.

(e) Create, edit, execute and delete a few cells, until you feel familiar with Jupyter Notebooks.
Here are a few useful keyboard shortcuts:

� CTRL+Enter (Command+Enter on Mac) executes the currently selected cell.

� Shift+Enter executes the current cell moves the cursor to the next cell. If there is no
next cell, it creates a new, empty cell underneath.

� Pressing ESC lets you enter command mode. In this mode you can move around the
notebook with the arrow keys and use additional shortcuts, such as c and v for copy
and paste, a and b for adding new cells above or below the current cell, or dd to delete
a cell. You can go back to edit mode by pressing Enter.

Exercise 10.3: Loading the dataset

In this exercise, we will analyze a Non-Small-Cell Lung Carcinoma (NSCLC) dataset with the
GEO accession GSE74706. It contains samples of cancer patients, and samples from healthy
patients for reference. The website Cumida collects Microarray data from GEO, and prepares it
for machine learning analysis. By using their version of the dataset, you don’t need to do any
preprocessing before starting the analysis.

(a) Click on +Add data on the top right. ChooseUpload in the top right of the window, next
to the X. Select the second icon from the top on the left. Enter lungcancer as the title of
your dataset. Copy the following URL and paste it under Remote Files:

https://sbcb.inf.ufrgs.br/data/cumida/Genes/Lung/GSE74706/Lung GSE74706.csv

Click on +Add Remote Files, then on Create. Uploading the data will take about 1-2
minutes.

Alternatively, you can download the dataset through the link, and upload it to the notebook
manually.

(b) Now, we will load the dataset into a a DataFrame, a data structure that is provided by the
pandas package for Python. A DataFrame is essentially a table with rows and columns,
similar to an Excel sheet or a SQL database. A reference can be found here.

(1) First, you have to find out the location of the document you just uploaded on the server.
On the top right, there is a dropdown menu containing the input and output data. You
will find the dataset under input → lungcancer → Lung GSE74706.csv. Here, you can
copy the path to the file.

(2) This cell will read the .csv file into a DataFrame called lungcancer df :

import pandas as pd
f i l e p a t h = ” . . / input / lungcancer3 /Lung GSE74706 . csv ”
lungcance r d f = pd . r ead c sv (f i l e p a t h)

(3) Create a new cell, simply write lungcancer df into it, and execute the cell. Now you
can see the table underneath. How many rows and columns does it have?

https://towardsdatascience.com/jypyter-notebook-shortcuts-bf0101a98330
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74706
https://sbcb.inf.ufrgs.br/cumida
https://pandas.pydata.org/docs/reference/frame.html

(c) Next, we will clean up the data a bit. The first step is to save the labels (i.e. whether a
sample is a normal- or a cancer sample) in a separate list. Next, any column that doesn’t
contain the gene expression of a gene is removed. That makes the data easier to work with.
Create a cell that looks like this:

l a b e l s d f = lungcance r d f [” type ”]
f e a t u r e s d f = lungcance r d f . drop ([” type ” , ” samples ”] , a x i s =1)

(d) Finally, we calculate a few statistics on the data to get an overview.

(1) Count how often each label occurs:

l a b e l s d f . va lue count s ()

How many normal and NSCLC (lung cancer) samples are present in the dataset?

(2) Calculate statistics on the gene expression data:

f e a t u r e s d f .T. d e s c r i b e ()

A normalized dataset has the property that the mean values and standard deviations
(std) of the samples are very close to each other. Is the dataset sufficiently normalized
or is a normalization step necessary?

(3) Create a histogram from the average expression of the genes:

f e a t u r e s d f . mean () . h i s t ()

Shortly describe what you see on the plot.

Exercise 10.4: Linear Support Vector Machine

Our goal is to write a machine learning program that is trained on samples from known cancer
patients and healthy control samples. Once it has learned the differences in gene expression, it
will be able to tell if a previously unknown sample is taken from a tumor or from healthy tissue,
from its gene expression alone.

(a) First, create a cell that imports all the functions and libraries that you are going to need:

import numpy as np
from s k l e a rn . svm import LinearSVC
from s k l e a rn . decomposit ion import PCA
from s k l e a rn . p r e p r o c e s s i n g import s c a l e
from mlxtend . p l o t t i n g import p l o t d e c i s i o n r e g i o n s

(b) The machine learning packages we are going to use want the data to be in a specific format.
The DataFrames have to be converted to numpy arrays, which is another commonly used
data structure, and the labels of the samples (i.e. normal and NSCLC) have to be converted
to numbers (0 and 1). It is a convention to call the variable containing the samples and
features X, and the list of corresponding labels y:

X = f e a t u r e s d f . to numpy ()
y = np . where (l a b e l s d f == ”normal” , 0 , 1)

(c) Currently, the table with the genes (X) has 29148 dimensions per sample, i.e. one for each
gene. In order to create a plot that shows what the algorithm is doing, you need to reduce
the number of dimensions from 29148 to two. For that, you are going to use one of the
most commonly used methods for dimensionality reduction: Principal Component Analysis
(PCA). PCA works best if the features are standardized, which is what the scale function
does:

pca = PCA(n components=2)
X std = s c a l e (X)
X pc2 = pca . f i t t r a n s f o r m (X std)

(d) Now, you are going to train the machine learning algorithm. A linear support vector machine
(SVM) tries to find an optimal hyperplane that separates the data into two areas, based on
the samples it is trained on. In this case, the SVM will draw a line, i.e. a hyperplane in
two-dimensional space. SVMs assume that the data is standardized, so we need to use scale
again, the training function is called fit.

X pc2 = s c a l e (X pc2)
svm = LinearSVC ()
svm . f i t (X pc2 , y)

(e) Finally, create a plot of the trained SVM and the dataset:

p l o t d e c i s i o n r e g i o n s (X=X pc2 , y=y , c l f=svm)

Interpret the plot. What do the axes stand for? Does a linear SVM work well in this case?

Have fun!

