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Overview
Vesimulus is a simulation package for molecular stochastic simulations of metabolic or regulatory biological 
systems. It was developed because there was no software available which could perform simulations of how 
the proteins of the bacterial photosynthetic apparatus work in detail [1, 2]. Its origins date back to 2005, 
when Florian Lauck set  up the very first  version during his bachelor thesis. Since then vesimulus was used to 
build up a consistent  dynamic model of the bacterial photosynthesis including a complete parameterization in 
another two bachelor theses by Sarah Blass and Xavier Mol and also as a tool and testbed to study how to 
bridge the gap in scales between computational approaches from the molecular and the systems biological 
regimes. For more details see reference [4].

The underlying "pools-and-protein" approach builds on the molecular biological descriptions of the 
considered enzymes by directly implementing the elementary binding, charge transfer, or conformational 
reactions as stochastic one-molecule-at-a-time processes [3]. From these, encapsulated protein objects are 
implemented. Then, at runtime, the required number of independently working copies is instantiated. These 
proteins are connected to the metabolite pools via standardized connectors to build up the biological system 
under consideration. On the software side we make use of the object orientation of C++ in that the pools and 
all types of proteins are independent  objects communicating via well defined methods. Thus the simulation is 
modular and can easily be extended by adding new classes for not yet considered protein types. The actual 
biological system, i.e., the stoichiometries and types of the proteins, the connecting pools and their sizes, the 
observable system parameters, and any dynamic changes during the simulation, is then read from a 
configuration file, which is parsed at runtime.

The rationale behind this design choice to hard code the proteins and only specify their numbers and 
connectivities at  runtime was that  the knowledge about  the detailed inner workings of a protein change 
relatively slowly while parameters like reaction rates, initial conditions, or illumination profiles may be 
different  at each run of the simulation. Consequently, this documentation is organized as follows. We start  by 
explaining the general concepts and how to set  up a simulation. This section introduces the propagation 
techniques and the basic properties of the protein, pool, and observable classes. The following section 
expands on these basics and explains how to implement a new protein class. However, you may skip this 
section and proceed directly to the "Examples and Tutorials" which gives a walk-through of some 
simulations and their analysis or even further to the references.
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Setting up a Simulation
Installing Vesimulus

The current version of the vesimulus engine including this documentation and the tutorial files can be 
downloaded from http://service.bioinformatik.uni-saarland.de/vesimulus. On this page 
you will also find updates to the simulation code and — hopefully soon — new proteins provided by us and 
other users.
Unpack the archive, check the Makefile for system specific setting, and compile by typing make. For this 
you need an ANSI C++ compiler (g++ works fine) and the Gnu Scientific Library (http://www.gnu.org/
software/gsl/) which is used for the random numbers. If everything works as planned you'll find an 
executable vesimulus in the build directory. You're set. A lot of documentation is included in the sources 
and can be read conveniently by running doxygen on the sources: type make doc and open the file doc/
html/index.html in your favorite web browser.

Defining the Simulation Setup

The simulation engine vesimulus knows about  all proteins that were supplied during compilation. To actually 
start  a simulation, you specify the length of the simulation (in seconds), the output  interval (also in seconds), 
the length of the integration time step (in milliseconds), and the name of a setup file which contains the 
information about  the proteins, the pools, the observables, and any changes during the simulation. These 
arguments are given on the commandline, like, e.g.:

$> ./vesimulus 10 1 10 fullVesicleTemplate.ves

This example specifies a simulation of a complete chromatophore vesicle that runs for 10 seconds at a time 
step of 10 ms and lists the pool occupancies and observables specified in the setup file to the terminal every 
second. An additional string argument is taken as the basename of an output file. Then, the console will only 
show an ASCII art  progress bar. If the second optional argument is present  (its value is ignored) then also the 
internal states of the proteins will be listed into a separate file for each copy of the proteins. With the above 
example setup, the following command

$> ./vesimulus 10 1 10 fullVesicleTemplate.ves fish dummy

will produce an output file called fish_pools.dat with the same text as was printed above to the terminal 
and —when the last  argument (here: "dummy") is also present—many files of the form 
fish_[ProteinType]_[index]_internals.dat listing the changes inside the proteins.

Thus, most of the simulation setup is defined in the setup file. It has the following structure. Except for 
empty or comment  lines, which are denoted by a hash sign (#) at  the beginning of the line, each line starts 
with a keyword which is protein: (note the trailing colon!) when a protein is to be defined, pool: for a 
pool, and, as you might guess, observable: for an observable. Additionally, the keyword change: 
indicates that  the concentration in a pool should be changed at  a certain time point. Generally, each object  (= 
protein, pool, or observable) is defined on a line on its own. Thus, when ten copies of a certain protein are 
required, ten definition lines occur in the setup file.
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The Pool Class

The most simple objects are the pools. These are passive containers of particles, which know their volume 
and the number of particles therein. Additionally, a pool can be defined as infinitely large. Then, the particle 
number does not change when proteins interact  with this pool. Examples are the pool modeling the incident 
light for photosynthesis simulations or the large reservoir of protons in the cytoplasm. Consequently, a pool 
is defined in the setup as shown in this example, where the last  keyword specifies whether the pool content is 
given in the output as particles, as concentration, or not at all (indicated by part, conc, or none, respectively).

#pool:
 name
 infinite?
 particles
 volume
output
pool: 
 Q 
 false
 
  15
 
 5.28e3
part
pool:
 QH2
 false
 
 185
 
 5.28e3
part

In this example the first  line is a comment. The other two specify a pool for quinones (Q) and one for quinols 
(QH2). Both pools have a finite volume ("false" in the third column) of 5.28e3 nm2 and are listed with their 
particle numbers. Initially, the Q pool contains 15 particles while the QH2 pool is initialized with 185. 

Note that there are no units implied. In our simulations the pools for the membrane bound Q and QH2 were 
assumed to be essentially two-dimensional. You have to make sure that the relevant  rate constants have 
consistent units! In this case an association rate from the 2D quinon pools onto a protein must have units of 
nm–2 s–1.

All pools in a simulation are identical from the program side. It  is only the proteins that they are connected to 
that give each pool distinct a biological identity.

The Protein Class

The proteins are the central active parts of a simulation as they process and produce metabolites. In a 
protein: definition line the next two tokens after the keyword specify the protein type (the currently 
known types are explained below) and a numerical index which is used to generate a unique label for this 
protein copy. The rest of the line is the information which is specific for that protein type. In the simulation 
setup, this part  is just passed on to the protein which has to do the parsing itself. This specific part  consists of 
pool names that  the protein is connected to, the respective association and dissociation constants, and any 
other parameters required to parametrize the protein.

At each time step during the simulation the central propagation loop calls the timestep() method of the 
proteins one after the other. This method, in turn, loops over all reactions of the respective protein. Each 
reaction then first  checks whether the conditions are fulfilled that  it might take place. For an association 
reaction this for example includes a test whether the binding site is empty, i.e., available for a new binding 
event, while for an electron transfer the donor has to be reduced and the acceptor oxidized. When this test is 
passed the actual reaction is considered.

For an association reaction  to a binding site the protein needs to know the (name of the) pool and the 
association constant. The association constant  kon is then handed to the pool (by calling the take_out(kon) 
method of the respective pool), which in turn determines the association probability Pon from its 
concentration ρ (particles per volume) and the time step Δt as

Pon = kon ρ Δt
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This probability is compared to a random number r from [0, 1] and when Pon ≤ r, the pools indicates that the 
take_out() was successful. The protein now has to adjust its registers indicating the states of the binding site 
and any potentially affected centers. An example of an association is this following (slightly reformatted) 
code snippet from the bacterial reaction center class that  handles the binding of an oxidized quinone to the 
Qb binding site. First, the condition that Qb be empty is checked (== false), then the pool is queried with 
the respective kon, and when the pool returns true, the status of the binding site is updated to occupied. 

// reaction that binds a Q to the RC, if Qb is empty
void ProteinRC::reaction1(Protein *p) {
    if (!bs_Q) {
        if (QPoolp->take_out(Q_kon)) {
            bs_Q = true;
            writeInternals();
        }
    }
}

By calling writeInternals() the changes (that a Q has bound) are written to the respective log file if desired. 
Otherwise this function just returns.

For reactions that are independent of any metabolite concentrations like dissociation, internal charge transfer, 
or conformational changes, a different strategy is used. When at  such a reaction the respective conditions are 
fulfilled, a waiting time is calculated from the rate and used to initialize a timer which then triggers the actual 
reaction. This is shown in the following code snippet that  handles the electron transfer from a bound 
cytochrome c2 to the special pair and the subsequent (slower) dissociation from the reaction center:

// Transfers an electron from c2 to special pair and unbinds c2,
// takes back the virtual proton from the HInternal pool.
// The e- transfer occurs before the c2 unbinding starts
void ProteinRC::reaction4(Protein *p)
{
    if(bs_C)
    {
        switch(timer_r4)
        {
            case 0:
                // initialize timer
                double t0 = 1.0/(c2ox_koff*delta_t);
                timer_r4 = static_cast<unsigned long int>(exp_ran(t0));
                // make sure that the reaction takes place even for very short t0
                if(timer_r4 == 0) { timer_r4 = 1; }

                // charge transfer c2 -> P
                HInternalPoolp->take(1L);
                reg_SP = 1;
                writeInternals();
                break;
            case 1:
                c2oxPoolp->put_back();
                bs_C = false;
                writeInternals();
                timer_r4 = 0;
                break;
            default: 
                timer_r4--;
        }
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    }
}

For such timer controlled reactions, a timer value of 0 indicates that the reaction was in its "rest state", i.e., 
not running. It can then be initialized and decremented in subsequent  calls. When implementing such 
functions take care that the conditions that triggered the reaction can not  be altered by some other reaction, 
or the timer would be stuck until the conditions become true again. This might lead to an unexpected 
behavior.

In this example a pool called HInternalPool is used to account  for the displacement of the charge of the 
electron during the photo-induced oxidation of the special pair, as this process contributes to the electric part 
of the transmembrane potential.

More details on the methods that  make up a protein class are described in the section on how to implement  a 
protein yourself further down.

The Observable Class

An observable is a system wide accessibly query function. With an observable for example an experimen-
tally accessible quantity like the transmembrane potential or the average oxidation state of all cytochrome c 
can be determined. Observables can be queried both from the proteins and the output routine of the 
simulation engine. They are not called from the central propagation loop itself.

Due to their nature as system wide "variables" there can only be one instance of any given observable in the 
simulation. Also, the observables are passive in the sense that  they do not  alter any pool occupancies or 
protein states.
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How to Write Your Own Protein/Observable
As an example for how to implement a new protein we will use a simple example of an enzyme that converts 
a substrate S into a product P. The first iteration will reproduce an effective Michaelis-Menten kinetics. In a 
second iteration we add ATP consumption. More specifically, ATP can only bind after the substrate has 
bound and is released independently from the product after the conversion has occurred.

The first  version of the new enzyme consequently needs two binding sites, bs_S for the substrate and and 
bs_P for the product, with their respective association and dissociation reactions A1 and D1 and the internal 
conversion reaction R1 (see the following figure). The more elaborate second version additionally needs 
binding sites for ATP and ADP, an association reaction A2 which depends on the state of bs_S, and a second 
dissociation reaction D2. 

bs_S bs_P

bs_ATP bs_ADP

A1

A1

D2

D1

R1
S P

ATP ADP + Pi

bs_S bs_P
A1 D1R1

S P

In the above figure the protein is indicated by the rectangle and the pools by the rounded rectangles. As can 
be seen, the first version needs three rate constants and the names of the substrate and the product  pool, i.e., a 
total of five parameters. The more complex second version requires five rates and four pool names. Note that 
here each reaction follows the simple mass action kinetics.

To implement our new protein, which will be called MMEnzyme (for Michaelis-Menten-Enzyme), we start 
from the supplied connector protein which takes particles out of a pool and releases them into another pool. 
So, go to the directory with the sources, copy proteinConnector.cpp and proteinConnector.h into 
proteinMMEnzyme.cpp and proteinMMEnzyme.h and open them in your favorite text editor.

To avoid name clashes, search and replace any occurrences of ProteinConnector by ProteinMMEnzyme. 
Don't  forget the #ifdef in the header file and the #include line in the source file. Also, chop out  (or replace) 
the description in the header file.

Note that  comments starting with //! or /*! are used by doxygen to generate a documentation from the 
sources.

Register the Protein/Observable

To register a new protein with the parser, a shell script  parses all header files for tags LABEL: and 
CLASSNAME: and constructs a part  of the source code for the parser from the information found there. 
Replace the information of the connector such that the first  lines of proteinMMEnzyme.h finally look like 
the following:

// Definitions for the automated inclusion into the parser
// LABEL:
 
 MMEnzyme
// CLASSNAME:
 ProteinMMEnzyme

Now issue a make clean; make. The new protein is now known to the simulation.
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Parameter Parsing
During setup the main parser reads the configuration file and instantiates a new copy of the MMEnzyme for 
every line that starts with protein: MMEnzyme. The next number after the protein type is used to create a 
unique label by appending it to the protein type. The rest of the line is passed on to the protein for parsing. 
We therefore need a method that extracts the protein specific parameters from the setup line. Assume the 
following line to define one copy of our new MMEnzyme:

protein:  MMEnzyme 1   Substrate  2e3   8   Product  120

This shall define that  the substrate is taken up from a pool called "Substrate" with a rate of 2 x 103 nm3s–1. 
The internal reaction has a speed of 8 s–1, and the dissociation of the product  into the pool "Product" takes 
place with a koff = 120 s–1. Consequently, the protein needs two pointers to the two pools and three variables 
to hold the rates. These are defined in the private section of the header file (note the doxygen related 
additions to the comments):

//! @name Pointers to the two pools and variables for the uptake constants
//@{
Pool *SubstratePoolp, *ProductPoolp;
double kon_S, koff_P, k_conv;
//@}

During setup additional variables are used to store the names of the pools. These are also defined in the 
private section of the header file:

//! @name Char[]s for the pool names (see length above)
//@{
char SubstratePool[MAX_POOLNAME_LENGTH], 
     ProductPool[MAX_POOLNAME_LENGTH];
//@}

Then, the binding sites have to be defined. As binding sites can either be empty or occupied, we use (by 
convention) Boolean variables for them:

// Defs of the internal registers and binding sites.
bool bs_S, bs_P;

Finally, we need two timers for the internal conversion from substrate to product and for the density 
independent dissociation of the product:

//! Timer variables for some of the reactions
unsigned long int timer_R1, timer_D1;

Now to the actual parsing. This is performed by the method parseLine(). Switch to the source file 
proteinMMEnzyme.cpp, locate this function, and identify the line where the setup line is parsed with 
sscanf(). Adapt  the format string and the target  variables, the sign test  for the rates, and the debug output. 
Then, parseLine() should look similar to the following screenshot:
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Check for Pools and Observables

When all the parsing and initialization is done for all proteins, pools, observables, and changes, then the 
proteins and pools can be connected. For this, the parser calls the method verify_pools() of the proteins 
(and of the observables, too, but this is a different  section of this document). During the pool setup, the 
parser collects a map with the pool names and the pointers to the respective pools. This map is now queried 
to convert  the stored pool names from the protein's setup line into the correct pointer. For each pool that  the 
protein needs to know, there is a section like the following (but without the line break in the error message):

if(!(Pools->count(string(SubstratePool)))) {
    cerr << "ProteinMMEnzyme::verify_pools: pool "<<SubstratePool<<" not defined" << 
endl;
    exit(-3);
}
SubstratePoolp = getPool(SubstratePool);

When a pool is not found, the simulation is terminated the hard way as there is no way to reliably guess what 
would have been the correct pool label in the setup file. This is left to the user to correct and try again.

If the protein also needs to access observables, a similar code fragment is used. Check, e.g., the BC1Dimer_2  
for how to test  for observables. Now the code used in the model setup phase is run and the actual simulation 
will start.

The Elementary Reactions
During the simulation the main loop calls the protein's timestep() method, which in turn calls all the 
functions of the protein. Before these can be called, they have to be defined and registered. Registration of 
the functions is done in the constructor.

For our simple MMEnzyme we need three functions which will be named reaction_A1, reaction_R1, and 
reaction_D1. For each of these the following code is used to add them to the protein's map of functions.
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void (Protein::*pr1)(Protein *) = (void(Protein::*)(Protein *))
                                  (&ProteinMMEnzyme::reaction_A1);
fu1.pfunction = pr1;
setFunction("A1", fu1);

The timers for the conversion and the dissociation reaction are also initialized to 0 in the constructor.

The corresponding reaction is defined further down in the source file. They also have to be declared in the 
header file. The biological condition is that the active center where the conversion takes place is empty. 
Here, the state of the molecule under conversion is encoded in the currently occupied binding site. In the 
protein function, we therefore have to check that both binding sites are empty. Then the substrate pool is 
queried and, when successful, bs_S is switched to true.

// A1: association of the substrate
void ProteinMMEnzyme::reaction_A1(Protein *p) {

 if(!bs_S && !bs_P) {

 
 if(SubstratePoolp->take_out(kon_S)) {

 
 
 bs_S = true;

 
 
 writeInternals();

 
 }

 }
}

The logging of the internal states via writeInternals() will be explained later. We don't have to change 
the particle number in the pool, this is handled by the pool's take_out(). The next step is the conversion of the 
substrate into the product. Here, we use a timer. To denote that  the conversion is running we flip the product 
binding site to occupied as soon as the timer is initialized. The substrate binding site is released only when 
the conversion is finished, i.e., when the timer is down to 1.

// R1: conversion of substrate in bs_S into product in bs_P
void ProteinMMEnzyme::reaction_R1(Protein *p) 
{
    if(bs_S) 
    {
        switch(timer_R1) 
        {
            case 0:  // initialize timer, start conversion
                double t0 = 1.0 / (k_conv * delta_t);
                timer_R1 = static_cast<unsigned long int>(exp_ran(t0));
                if(timer_R1 == 0) { timer_R1 = 1; }

                bs_P = true;
                writeInternals()
                break;


            case 1:   // conversion done
                bs_S = false;
                timer_R1 = 0;
                writeInternals();
                break;


            default:    // count down
                timer_R1--;
        }
    }
}
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When the rate constant is fast, i.e., the waiting time t0 is short, the exponentially distributed random number 
may become 0 and the timer is initialized such that nothing happens. To make sure that  the reaction takes 
place when a random waiting time was assigned, the timer is tested and set to a value of at least 1. 

Now we only need the last  reaction, the unbinding of the product. This can start  as soon as the conversion is 
over, i.e, when bs_S == false. The same timer structure is used with timer_D1:

// D1: dissociation of the final product
void ProteinMMEnzyme::reaction_D1(Protein *p) 
{
    if(!bs_S && bs_P) 
    {
        switch(timer_D1) 
        {
            case 0:  // initialize timer
                double t0 = 1.0 / (koff_P * delta_t);
                timer_D1 = static_cast<unsigned long int>(exp_ran(t0));
                if(timer_D1 == 0) { timer_D1 = 1; }
                break;
                
            case 1:   // release!
                bs_P = false;
                ProductPoolp->put_back();
                timer_D1 = 0;
                writeInternals();
                break;
                
            default:    // count down
                timer_D1--;
        }
    }
}

Now the product is released and both binding sites are empty again and the enzyme is ready to process the 
next  product molecule in its active site. An alternative implementation could have been with a single binding 
site plus a variable denoting the current  state of the substrate (substrate or product). R1 then would toggle 
that state-variable.

Output

To watch the MMEnzyme process its substrate we can observe how the numbers in the substrate and product 
pools change. Even more insight (and debugging) is gained when we monitor the occupation of the binding 
sites, too. For this, we need to fill in the two logging methods listInternals() and writeInternals().

During setup, listInternals() is called which creates a string containing a comment/header line with the names 
of the internal sites for the respective output file, while writeInternals() writes out  the actual values separated 
by tabs into the log file (the name of which was set during setup).

std::string ProteinMMEnzyme::listInternals() {
    return(string("#time\tbs_S\tbs_P"));
}

writeInternals() also contains the test whether the changes should actually be logged or not.

void ProteinMMEnzyme::writeInternals() {
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    if(outputInternals) {
        double realTime = timer * delta_t;
        internalsOutFile.open(internalFileName.c_str(), fstream::app);
        internalsOutFile << realTime << "\t" << bs_S << "\t" << bs_P << "\n";
        internalsOutFile.close();
    }
}

MMEnzyme V2.0

The protein defined above can now be extended as explained previously by adding binding sites for ATP and 
ADP together with the respective on- and off-reactions (and the respective pool variables etc). To distinguish 
between the two versions, the expanded form will be called MMEnzyme2 (both as class and as label for the 
setup). Then one can compare the two forms or even use them in the same simulation describing two 
different  proteins. One question could for example be under which conditions the ATP supply can be 
neglected to simplify the setup.

When in the real enzyme the ATP binding may only occur after the substrate has bound, then the 
corresponding test in the ATP binding reaction would be 

if(!bs_ATP && bs_S) { ...bind ATP... }

If the other reactions are encoded correctly, we don't  have to test  whether the ADP binding site is empty, 
because substrate binding would only occur after ADP has dissociated. Setting up these conditions for more 
complex biological scenarios can sometimes even reveal what  all is not yet known about a specific protein. 
However, one may implement different  formulations of the reaction conditions and check whether they 
behave differently under specific conditions, which can then be investigated in an experiment. 

Additionally, the main conversion reaction R1 in the expanded version of the enzyme would only start  when 
ATP has bound:

if(bs_S && !bs_P && bs_ATP) { ...perform R1... }
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Examples and Tutorials
For the following tutorials it  is assumed that you successfully compiled the simulation engine and that you 
walked through the previous section where the implementation of a new protein was explained on the  
"MMEnzyme". If you did not  do that yet then you can copy the two files proteinMMEnzyme.cpp and 
proteinMMEnzyme.h from the Tutorials folder into the main folder and recompile vesimulus (type make 
clean; make to register the new protein).

Characteristics of the MMEnzyme Model Protein

As a minimal setup to test the newly implemented MMEnzyme protein model, we need one enzyme and two 
pools, one for the substrate and one for the product. To initialize the enzyme we use the setup line quoted 
above. The two pools are set up as follows.

pool:
 Substrate
 true
 1000  1e5
 part
pool:
 Product  
 false
 0     1e5   part

Both pools have a volume of 105 nm3 and are listed in the output  with particle numbers. Initially, the product 
pool is empty, whereas the substrate pool is kept fixed at  1000 particles, i.e., at  a density of 10–2 nm–3 (have a 
look at the supplied file MMEnzyme.ves in the Tutorials folder). Now run the simulation with this one 
enzyme for ten seconds, an output interval of 1 second, and a time step of ten milliseconds:

$> ../vesimulus  10  1  10  MMEnzyme.ves

The console output  shows that  the one enzyme produces about  50 product molecules during the ten second 
long simulation. Rerun the simulation a few times to get a feeling for the variation of the total turnover.

Next we want  to verify that the enzyme actually follows a Michaelis-Menten kinetics for the steady state 
throughput with the substrate concentration. For this we can run the simulation for various initial values of 
the substrate pool and record the total turnover. Another option is to change the substrate level during the 
simulation. To do so, set  the initial particle number in the substrate pool to zero and add lines like the 
following at the end of the setup file:

change:    Substrate    10   0.0001
change:    Product      10   0
change:    Substrate    20   0.0002
change:    Product      20   0
   :
change:    Substrate   130   1.0
change:    Product     130   0

Continue to increase the concentration every ten seconds using concentrations of 0.0005, 0.001, 0.002, 
0.005, 0.01 … 10.0. Then run the simulation until 170 seconds with an output  interval of 10 seconds. The 
turnover is zero except  for the last ten seconds interval. This is because in the simulation code changes to the 
pool concentrations are performed before the output. To overcome this, set  the pools at 0.001, 10.001, 
20.001, etc seconds and watch the Michaelis-Menten characteristic unfold. Your setup file should now look 
like the following screenshot.
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Save the output into a file (commandline argument #5) and plot  the third vs. the second column with 
logarithmic axes. Can you fit a Michaelis-Menten characteristic through the data points? Of course, with 
only a single enzyme and the short intervals, the stochastic variations between subsequent  runs are 
enormous. You can improve the reproducibility by running longer steady state intervals or by increasing the 
number of proteins. Add another nine lines defining MMEnzyme proteins (each with a different index 
number) and rerun, re-plot, etc. The maximal total turnover should be about  750 product molecules per ten 
seconds and should decrease to half its value at about 350 substrate molecules in the pool.

Now comment out  all but one MMEnzyme proteins and rerun the simulation with logging of the protein 
internal states:

$> ../vesimulus  10  1  10  MMEnzyme.ves   fish  dummyArg

The former terminal output is found in fish_pools.dat and the occupation states of the two binding sites in 
fish_MMEnzyme_1_internals.dat. Examine this file to see that actually first  bs_S is occupied, then 
both bs_S and bs_P are on during the conversion. Finally, only bs_P = 1 indicates that  the product  is ready to 
be released. The relative timing of the events can be visualized nicely with the following command in  
Gnuplot (the "\" indicates that there should not be a line break — enter everything on one line).

> plot [0:2][0:1.4] "fish_MMEnzyme_1_internals.dat" u 1:2 w ste, \
               "fish_MMEnzyme_1_internals.dat" u 1:($3+0.1) w ste

You see that the conversion starts immediately when the substrate is bound (which is the implemented 
behavior) and that the enzyme spends most of its time converting substrate into product. From these files one 
can now extract, e.g., the total time that the enzyme has a converted product  attached or the average state that 
one or multiple enzymes are in (waiting, processing, releasing product, etc)
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A Minimal Pathway

With the MMEnzyme we can start  to build the first simple "pathways" where the product  of one processing 
stage is the substrate for the next  stage as shown in the figure below. In the example the substrate S is 
converted into the final product  P via two intermediates I1 and I2. In the sketch the enzymes are hidden 
behind the arrows and the pools "abbreviated" by the metabolites.

S I1 I2 P

To discern the enzymes of the three reactions we extend the protein type in the setup file by an additional tag 
separated from the protein type by an underscore, which is ignored by vesimulus during setup but  respected 
when creating the protein labels. When using extended protein types, the indices may repeat  for the different 
groups. We thus need a setup file with three (groups of) enzymes and four pools. Again, the first  substrate 
pool is assumed to be infinite. For simplicity, all three enzymes have the same kinetic parameters initially.  
The substrate pool is empty initially, then set  to an intermediate concentration after two seconds and reset  to 
empty five seconds later. Have a look at the supplied setup file miniPath.ves.

Now run this simulation with a time step of 10 milliseconds and an output  interval of one second. You see 
that the first  intermediate I1 is produced rather fast, but  that even after 50 seconds there is only a very small 
amount of I2 or P  because the uptake of I1 and I2 is so slow. Increase the association constants for the second 
and third stage such that within 50 seconds there is no I1 or I2 left (to within stochastic uncertainty). Also 
save the output into a file and plot the pool levels.

Bacterial Photosynthesis: A Single Flash

The following scenario reproduces an experiment  in which the transmembrane voltage and the cytochrome c 
oxidation state in the photosynthetic apparatus of the purple bacterium Rb. sphaeroides were monitored in 
response to a single strong flash (Barz et al., 1995). For this we implement a typical chromatophore vesicle 
with all its proteins in the dark adapted state. For more information, see [4]. The flash is modeled by a fast 
change of the "concentration" in the light  pool. Have a look at the supplied setup file Vesicle_a7.ves. It 
defines ten LHCs, which all get photons from the same pool "Light" but put the absorbed photons as excitons 
into a different  pool "E1" to "E10", each. Each LHC models the combined absorption of a dimeric LH1 with 
six associated (=closely coupled) auxiliary LH2. 

The dimeric core complexes of Rb. sphaeroides are then implemented by connecting two RCs to each of the 
exciton pools, i.e., we need 20 RCs. The last  column of the RC section defines a pool for "virtual" charges to 
account for the charge transfer that occurs when the electron is translocated from the special pair 
bacteriochlorophylls on the periplasmic side of the RC (= at  the inside of the vesicle) to the bound Qb quinon 
on the cytoplasmic side (= at the vesicle outside). The negative charge which is thus transferred across the 
membrane to the outside of the vesicle is here counted as a positive charge placed into the vesicle (hence the 
name H+Protein). When the special pair is later reduced, the corresponding charge is removed again from 
this virtual counter pool. Correspondingly, you find further down in the pool section that the H+Protein 
pool has a volume of 1 (without any units).

Next in the setup file come the dimeric cytochrome bc1 complexes. These are already implemented as dimers 
with two binding sites for quinones, quinols, and cytochrome c2, etc. The bc1 pump the protons against  the 
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transmembrane potential ΔΦ, therefore some of the internal reactions are slowed down exponentially with 
increasing ΔΦ. To get the actual value of ΔΦ, the bc1 query the observable DeltaPhi_ChemCap2, which 
returns the combined contributions from the proton gradient difference between inside and outside of the 
vesicle (= "chemical" part) and the "electrical" part  from the charges in the vesicle. By referencing a different 
observable it is then easy to investigate how the bc1 would behave when only the chemical or only the 
electrical part  are considered. These two forms for ΔΦ are called DeltaPhi_Chem2 and DeltaPhi_Cap2, 
respectively.

To complete the protein setup, a single ATPase and a (pseudo)protein describing a number of protonateable 
residues (protonateable) are added before the relevant observables are defined. The most  important one are 
the two forms of ΔΦ. While both chemical and electrical contribution affect  the reactions in the proteins, 
only the electrical part could be measured in the experiment via the spectral detuning of the 
bacteriochlorophylls of the LHCs. The other measured quantity was the oxidized fraction of the total 
cytochrome c content. The number of oxidized cytochrome c2, which shuffle the electrons through the 
vesicle interior, can directly be read from the number in the relevant pool. The number of oxidized c2 that are 
currently bound to the RCs is queried from the RCs via the observable RC_c2ox and the oxidation state of 
the c1 domains of the bc1 dimers is obtained via the observable bc1dimer2_c1ox. These two observables 
loop over all proteins and call the corresponding methods of the RCs and bc1s, respectively, which return the 
current state for each protein.

To connect  the proteins, a number of pools are required, which are defined in the following part of the setup 
file. Check the setup file for specific comments to each pool. Finally externally determined changes in the 
pool concentrations are listed. Here, for this single-flash experiment, the light intensity is switched on for 
100 µs after an initial "thermalization" phase of 30 ms which makes sure that  the simulation is really in a 
dark-adapted state.

Next we need to run the simulation. For such a fast  flash scenario a time step of 1 µs and an output  interval 
of  1 ms are required, whereas the total simulation time can be as short  as 300 ms. The corresponding 
command is thus

$> ../vesimulus  0.3  0.001  1  Vesicle_a7.ves

From the output you can see that at 0.03 seconds the Light is switched on shortly. Subsequently, a number of 
oxidized c2 show up transiently first  in the pool and then bound to the RCs. The oxidation "signal" is then 
seen for some more time in the bc1s before it decays back to its dark state level. From these three data 
columns the fraction of oxidized cytochrome c can be summed up and then compared to the experiment  (see  
the following figure from the original article). Correspondingly, the transmembrane potential increases very 
fast  during the first millisecond and then slower to reach its maximum within the next 10 ms before it  decays 
again. 
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FIGURE 6: Oxidation of exogenous cytochrome c by chromato- 
phores isolated from (A) PUFC/g, (B) PUFAX/g, or (C) SuplO2/ 
g. Chromatophores were suspended to a final RC concentration of 
approximately 0.5 p M  in 100 mM KCI, 50 mM MOPS (pH 7.0) 
containing 1OpM valinomycin, 5 p M  antimycin A, 1 mM ascorbate, 
and 1 mM KCN. The samples were subjected to 20 (A, B) or 25 
(C) single-turnover flashes fired 30 ms apart. Flash-induced 
absorption changes due to the oxidation of cyt c were measured at 
55 1 and 542 nm. In each panel, the upper trace shows oxidation of 
the endogenous cyt (c, + cz); the lower traces were obtained after 
addition of 6 p M  horse heart cyt c. The traces are averages of four 
measurements, and the instrument response time was 500 ps. 

vivo, semiaerobically grown cells were used to study the role 

of PufX in cyclic electron transfer. After single turnover 
flash excitation, the electrochromic carotenoid band shift was 

detected under anaerobic conditions. Figure 7A shows the 
rise and decay kinetics of the AA503-487 signals obtained with 
PUFC/g and PUFAWg cells. In order to facilitate compari- 

son of the kinetics, the traces in Figure 7A were normalized 
to the fast phase of the carotenoid band shift that resulted 
from charge separation in the RC. The rationale for this 

normalization was that the cellular concentration of photo- 
active RC was independent of PufX [see Figure 3 and 
Farchaus et al. (1990)l whereas the levels of LH2 carotenoids 
(which cause the carotenoid band shift; Holmes et al., 1980) 
were not. 

For PUFC/g, the flash-induced carotenoid signal observed 
in vivo (Figure 7A) was similar to the trace measured in 

vitro at Eh x 125 mV (Figure 5). Therefore, the anaerobic 
conditions used to study cyclic electron flow in vivo seemed 
to be characterized by an at least partially reduced quinone 
pool. In PUFC/g, the time constant of the slow phase (t112 
% 1.1 ms) was similar to published values (Cotton & 

Jackson, 1982). In anaerobically incubated PUFAX/g cells, 
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both the fast and the slow phases ( r 1 / 2  % 1.2 ms) of the 
carotenoid band shift were observed, demonstrating that PufX 

was not required in vivo for turnover of the cyt b c ~  complex 
following flash-induced charge separation in the RC. The 

decay rates of the carotenoid band shift ( t I l2  = 120 & 10 
ms) were also unchanged in the absence of PufX (Figure 
7A), excluding the possibility of a general nonspecific 

leakiness of the membrane in PUFAX/g. When the flash- 

induced carotenoid band shift was studied using anaerobically 
incubated cells of SuplOl/g or SuplO2/g, similar traces were 

observed (data not shown). 

The observation that single-flash excitation resulted in 

normal cyclic electron transfer in anaerobically incubated 
pujX- cells was confirmed when the photooxidation and 

rereduction of cyt c was studied in vivo (Figure 7B). Flash- 
induced redox reactions of total cyt c (cyt CI  + c2) were 
recorded by measuring absorption changes at 551 and 542 

nm (Prince & Dutton, 1977, 1978). As shown in Figure 7B, 

the amplitude of cyt c oxidation (normalized to cell density) 
was very similar for PUFC/g and PUFAWg cultures, 
demonstrating that PufX is not required for single-turnover 

oxidation of cyt c in vivo (data not shown). Similar results 
were obtained by monitoring the rereduction of photooxi- 
dized RC in vivo at 542 nm (data not shown). Figure 7B 
also shows that the rereduction kinetics of cyt c were similar 
in PUFC/g and PUFAWg, confirming the interpretation that 
the turnover of the cyt b c ~  complex was normal under the 
anaerobic conditions used here. In conclusion, the results 
shown in Figure 7 demonstrated that PufX was not required 
for a single tumover of the RC and the cyt bcl complex under 
anaerobic conditions. 

Repeat this simulation a few times to get a feeling for the stochastic variations of the observables. There are 
two things to notice. First, with the small numbers involved, the variations are very large and second, the 
simulation results look more like discrete changes than the continuous experimental traces. We thus have to 
run the simulation repeatedly and average over the simulation outputs before we can compare them to the 
experiments. Have a look at the supplied shell script  runner_a7.sh. It uses some temporary files ("fish*") to 
store and combine the simulation results and returns the averaged response in the file fish_*_avg.txt. Start it 
with the setup file, the working directory, and a basename for the output files as arguments:

$> ./runner_a7.sh  Vesicle_a7.ves  .  a7

To compare the simulation results to the experiment the simulation data has to be shifted by 30 ms and 
rescaled. In Gnuplot this can directly be done as follows for ΔΦ and the overall cytochrome c oxidation 
state, respectively (the actual scaling factors may vary a bit even after averaging over 40 simulation runs):

> plot [-0.01:0.25]  "fish_a7_avg.txt" u ($1-0.03):($2/180), "Barz95_a7_dPhi.txt"
> plot [-0.01:0.05]  "fish_a7_avg.txt" u ($1-0.03):($3/80),  "Barz95_a7_cox.txt"

You can see that  ΔΦ is reproduced quite well during the fast  transients of the first five to ten milliseconds 
and then decays slightly slower. The cytochrome c oxidation state, on the other hand, decays faster than in 
the experiment. One problem with the experiment  was that the actual time course of the flash light is not 
documented. The agreement  between simulation and experiment  can now, e.g., be improved by letting the 
flash bulb cool down slower. As a guess modify the changes: section of the input file as follows and re-run 
the simulations.

change:
 Light   0.03     1500
change:
 Light   0.0301   1000
change:
 Light   0.0302   700
change:
 Light   0.0303   400
change:
 Light   0.0304   250
change:
 Light   0.0305   100
change:
 Light   0.0306   0

Now the cytochrome c oxidation state does not decay that  fast any more. Note that this light  profile is only a 
guess (or a fit) to improve the agreement. Implementing the actual scoring of the simulation results vs. the 
experimental data is left as an exercise to the reader :-) When done, you can get rid of all fish_* files.
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Identifying the Bottleneck Reaction of a Protein

When all kinetic parameters for a certain protein have been obtained either directly from literature or from an 
optimization against experimental data, each of these parameters can be scanned individually to find out 
which of them, e.g., limits the steady state throughput. In the following example we consider one dimeric 
core complex of the bacterial photosynthetic apparatus under saturating light intensity. 

The RC takes up reduced cytochrome c2, oxidized quinones, and protons from the outside of the vesicle and 
produces oxidized c2 and quinol (QH2). To model steady state conditions the three input  pools are set  to 
infinite volume. Then the turnover of the RC can be directly observed from the increase of the particle 
numbers in the output  pools (this works because the unbinding reactions are insensitive to the product 
concentrations). Such a setup is defined in the configuration file oneRC.ves. A simulation of this setup for 
100 seconds at a time step of 10 µs reveals that the two RCs can oxidize about 2500 cytochrome c2 in 100 
seconds, i.e. that one RC has a turnover of about 12.5 c2 per second.

Now reduce for example the unbinding rate of the reduced QH2 by a factor of ten or hundred and re-run the 
simulation. This will result  in turnovers of about 7.5 and 1.5 oxidized c2 per second per RC. For a more 
thoroughly sampled characteristic we can again use a script which modifies the setup file and runs the 
simulation. Have a look at  miniScan.sh. It uses another script  confFile-variator.pl to create a 
modified copy (fish.ves) with—in this case—parameter 10 replaced by a sequence of values. The values of 
this sequence were chosen to be equidistant  on a logarithmic scale. Run the script miniScan.sh and save 
the output:

$> ./miniScan.sh | tee RCscan.txt

Now plot the resulting data with logarithmic scales and verify that it follows a Michaelis-Menten 
characteristic (again). You should find that the half of the maximal turnover is reached with koff(QH2) ≈ 6 s–1 
which is about  one order of magnitude slower than the optimized value. This optimized value is thus just  not 
throughput limiting. Can you identify which reaction limits the turnover in the current parametrization?

Similar scans could now be performed for the other proteins under steady state conditions or with the flash 
setup from above. Then one finds that for different dynamic scenarios different parameters are important

Connectivity Matters: Dimeric vs. Monomeric Core Complexes

A similar scan as performed before for the kinetic parameters of the core complexes can also be performed 
for varying light intensities. Copy miniScan.sh and adapt the arguments to the confFile-Variator.pl script. 
Replace the "protein" label by the label of the light  pool ("Light"), tell it to vary parameter 3, and scan light 
intensities of 0.1 to 1000 W/m2 and save the output:

$> ./miniScan.2.sh | tee lightScan_dimer.txt

Now add another LHC and a second exciton pool E2 in the setup file oneRC.ves. Each LHC now has an 
absorption cross section of half of the initial value, i.e., of only 3.11 W–1 m2 s–1. Each LHC is now connected 
to only one RC as shown in the setup file twoMonomers.ves. Now perform the same scan of the turnover 
vs. the light intensity and compare the two scenarios.
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When you again plot both characteristics you will see that the monomeric setup follows the familiar 
Michaelis-Menten kinetics while the dimeric setup has a higher turnover in the regime of intermediate light 
intensities of 1…10 W m–2. When the fluctuations are too large, increase the simulation time.
This advantage of the dimeric core complex vs. two monomers of up to 25% can be seen even better, when 
both simulation results are normalized against the Michaelis-Menten kinetics as shown in the following 
screen shot.

The different  turnovers at  intermediate light  intensities are due to the dead times of the RC upon arrical of an 
exciton. When two RCs are connected to a (larger) LHC then chances are higher that  two excitons that arrive 
shortly after the other will both be processed, whereas the second would be lost  in the monomeric scenario. 
In the bacteria there is additional coupling between adjacent  core complexes which would allow for an even 
more efficient  use of the captured photons at lower light intensities without the need for large antenna 
systems that  are useless in high light conditions. To investigate this effect you can also play with setups 
where one large LHC is connected to four, eight, or even more RCs.

Note that  this is a long-time steady state simulation where conventional wisdom would predict that stochastic 
effects can be ignored and a rate equation model will yield the same result. Indeed, a rate equation model 
predicts the Michaelis-Menten characteristic of the monomers but  cannot  capture the behavior of the more 
efficient dimers. Similar differences between the here presented molecular-stochastic modeling and a 
classical rate equation approach will be visible in, for example, signaling with its typically few receptors.
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Contact Information And Further Reading

The most up-to-date version of vesimulus and the documentation, lists of changes and fixed bugs, and 
(hopefully soon) models for more types of proteins can be found on our server at

http://service.bioinformatik.uni-saarland.de/vesimulus

If you have any questions, suggestions, etc, or if you are willing to share protein models set up by you with 
others please contact the main author by email:

tihamer.geyer@bioinformatik.uni-saarland.de

The reconstruction of the bacterial chromatophore vesicles is documented in the following two publications. 
This steady state reconstruction is compiled from a wide variety of published information..

[1] T. Geyer and V. Helms, "A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides 
and the position of the cytochrome bc1 complex", Biophys. J. 91 (2006) 921-6

[2] T. Geyer and V. Helms, "Reconstruction of a kinetic model of the chromatophore vesicles from 
Rhodobacter sphaeroides", Biophys. J. 91 (2006) 927-37

The molecular-stochastic pools-and-proteins model was introduced first in:

[3] T. Geyer, F. Lauck, and V. Helms, "Molecular stochastic simulations of chromatophore vesicles from 
Rb. sphaeroides", J. Biotech. 129 (2007) 212-28

Most  recently we could demonstrate how a molecular biological model (= vesimulus) with all the details 
included could be linked to a systems biological parameterization on macroscopic experiments:

[4] T. Geyer, X. Mol, S. Blaß, and V. Helms, "Bridging the gap: Linking Molecular Simulations and 
Systemic Descriptions of Cellular Compartments", PLoS ONE 5(11): e14070 (2010) doi:10.1371/
journal.pone.0014070

An online version of the chromatophore simulations which has successfully been used in classrooms to 
familiarize students with stochastic effects can be accessed at the following URL. There also documentation 
and tutorials can be found.

http://service.bioinformatik.uni-saarland.de/vesiweb 
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