
Vesimulus-Documentation

Tihamér Geyer

tihamer.geyer@bioinformatik.uni-saarland.de
Zentrum für Bioinformatik, Universität des Saarlandes, D–66041 Saarbrücken

V2.0.3, Nov. 2010

Overview 2

Setting up a Simulation 3
Installing Vesimulus 3
Defining the Simulation Setup 3
The Pool Class 4
The Protein Class 4
The Observable Class 6

How to Write Your Own Protein/Observable 7
Register the Protein/Observable 7
Parameter Parsing 8
Check for Pools and Observables 9
The Elementary Reactions 9
Output 11
MMEnzyme V2.0 12

Examples and Tutorials 13
Characteristics of the MMEnzyme Model Protein 13
A Minimal Pathway 15
Bacterial Photosynthesis: A Single Flash 15
Identifying the Bottleneck Reaction of a Protein 18
Connectivity Matters: Dimeric vs. Monomeric Core Complexes 18

Contact Information And Further Reading 20

1

Overview
Vesimulus is a simulation package for molecular stochastic simulations of metabolic or regulatory biological
systems. It was developed because there was no software available which could perform simulations of how
the proteins of the bacterial photosynthetic apparatus work in detail [1, 2]. Its origins date back to 2005,
when Florian Lauck set up the very first version during his bachelor thesis. Since then vesimulus was used to
build up a consistent dynamic model of the bacterial photosynthesis including a complete parameterization in
another two bachelor theses by Sarah Blass and Xavier Mol and also as a tool and testbed to study how to
bridge the gap in scales between computational approaches from the molecular and the systems biological
regimes. For more details see reference [4].

The underlying "pools-and-protein" approach builds on the molecular biological descriptions of the
considered enzymes by directly implementing the elementary binding, charge transfer, or conformational
reactions as stochastic one-molecule-at-a-time processes [3]. From these, encapsulated protein objects are
implemented. Then, at runtime, the required number of independently working copies is instantiated. These
proteins are connected to the metabolite pools via standardized connectors to build up the biological system
under consideration. On the software side we make use of the object orientation of C++ in that the pools and
all types of proteins are independent objects communicating via well defined methods. Thus the simulation is
modular and can easily be extended by adding new classes for not yet considered protein types. The actual
biological system, i.e., the stoichiometries and types of the proteins, the connecting pools and their sizes, the
observable system parameters, and any dynamic changes during the simulation, is then read from a
configuration file, which is parsed at runtime.

The rationale behind this design choice to hard code the proteins and only specify their numbers and
connectivities at runtime was that the knowledge about the detailed inner workings of a protein change
relatively slowly while parameters like reaction rates, initial conditions, or illumination profiles may be
different at each run of the simulation. Consequently, this documentation is organized as follows. We start by
explaining the general concepts and how to set up a simulation. This section introduces the propagation
techniques and the basic properties of the protein, pool, and observable classes. The following section
expands on these basics and explains how to implement a new protein class. However, you may skip this
section and proceed directly to the "Examples and Tutorials" which gives a walk-through of some
simulations and their analysis or even further to the references.

2

Setting up a Simulation
Installing Vesimulus

The current version of the vesimulus engine including this documentation and the tutorial files can be
downloaded from http://service.bioinformatik.uni-saarland.de/vesimulus. On this page
you will also find updates to the simulation code and — hopefully soon — new proteins provided by us and
other users.
Unpack the archive, check the Makefile for system specific setting, and compile by typing make. For this
you need an ANSI C++ compiler (g++ works fine) and the Gnu Scientific Library (http://www.gnu.org/
software/gsl/) which is used for the random numbers. If everything works as planned you'll find an
executable vesimulus in the build directory. You're set. A lot of documentation is included in the sources
and can be read conveniently by running doxygen on the sources: type make doc and open the file doc/
html/index.html in your favorite web browser.

Defining the Simulation Setup

The simulation engine vesimulus knows about all proteins that were supplied during compilation. To actually
start a simulation, you specify the length of the simulation (in seconds), the output interval (also in seconds),
the length of the integration time step (in milliseconds), and the name of a setup file which contains the
information about the proteins, the pools, the observables, and any changes during the simulation. These
arguments are given on the commandline, like, e.g.:

$> ./vesimulus 10 1 10 fullVesicleTemplate.ves

This example specifies a simulation of a complete chromatophore vesicle that runs for 10 seconds at a time
step of 10 ms and lists the pool occupancies and observables specified in the setup file to the terminal every
second. An additional string argument is taken as the basename of an output file. Then, the console will only
show an ASCII art progress bar. If the second optional argument is present (its value is ignored) then also the
internal states of the proteins will be listed into a separate file for each copy of the proteins. With the above
example setup, the following command

$> ./vesimulus 10 1 10 fullVesicleTemplate.ves fish dummy

will produce an output file called fish_pools.dat with the same text as was printed above to the terminal
and —when the last argument (here: "dummy") is also present—many files of the form
fish_[ProteinType]_[index]_internals.dat listing the changes inside the proteins.

Thus, most of the simulation setup is defined in the setup file. It has the following structure. Except for
empty or comment lines, which are denoted by a hash sign (#) at the beginning of the line, each line starts
with a keyword which is protein: (note the trailing colon!) when a protein is to be defined, pool: for a
pool, and, as you might guess, observable: for an observable. Additionally, the keyword change:
indicates that the concentration in a pool should be changed at a certain time point. Generally, each object (=
protein, pool, or observable) is defined on a line on its own. Thus, when ten copies of a certain protein are
required, ten definition lines occur in the setup file.

3

The Pool Class

The most simple objects are the pools. These are passive containers of particles, which know their volume
and the number of particles therein. Additionally, a pool can be defined as infinitely large. Then, the particle
number does not change when proteins interact with this pool. Examples are the pool modeling the incident
light for photosynthesis simulations or the large reservoir of protons in the cytoplasm. Consequently, a pool
is defined in the setup as shown in this example, where the last keyword specifies whether the pool content is
given in the output as particles, as concentration, or not at all (indicated by part, conc, or none, respectively).

#pool:
 name
 infinite?
 particles
 volume
output
pool:
 Q
 false

 15

 5.28e3
part
pool:
 QH2
 false

 185

 5.28e3
part

In this example the first line is a comment. The other two specify a pool for quinones (Q) and one for quinols
(QH2). Both pools have a finite volume ("false" in the third column) of 5.28e3 nm2 and are listed with their
particle numbers. Initially, the Q pool contains 15 particles while the QH2 pool is initialized with 185.

Note that there are no units implied. In our simulations the pools for the membrane bound Q and QH2 were
assumed to be essentially two-dimensional. You have to make sure that the relevant rate constants have
consistent units! In this case an association rate from the 2D quinon pools onto a protein must have units of
nm–2 s–1.

All pools in a simulation are identical from the program side. It is only the proteins that they are connected to
that give each pool distinct a biological identity.

The Protein Class

The proteins are the central active parts of a simulation as they process and produce metabolites. In a
protein: definition line the next two tokens after the keyword specify the protein type (the currently
known types are explained below) and a numerical index which is used to generate a unique label for this
protein copy. The rest of the line is the information which is specific for that protein type. In the simulation
setup, this part is just passed on to the protein which has to do the parsing itself. This specific part consists of
pool names that the protein is connected to, the respective association and dissociation constants, and any
other parameters required to parametrize the protein.

At each time step during the simulation the central propagation loop calls the timestep() method of the
proteins one after the other. This method, in turn, loops over all reactions of the respective protein. Each
reaction then first checks whether the conditions are fulfilled that it might take place. For an association
reaction this for example includes a test whether the binding site is empty, i.e., available for a new binding
event, while for an electron transfer the donor has to be reduced and the acceptor oxidized. When this test is
passed the actual reaction is considered.

For an association reaction to a binding site the protein needs to know the (name of the) pool and the
association constant. The association constant kon is then handed to the pool (by calling the take_out(kon)
method of the respective pool), which in turn determines the association probability Pon from its
concentration ρ (particles per volume) and the time step Δt as

Pon = kon ρ Δt

4

This probability is compared to a random number r from [0, 1] and when Pon ≤ r, the pools indicates that the
take_out() was successful. The protein now has to adjust its registers indicating the states of the binding site
and any potentially affected centers. An example of an association is this following (slightly reformatted)
code snippet from the bacterial reaction center class that handles the binding of an oxidized quinone to the
Qb binding site. First, the condition that Qb be empty is checked (== false), then the pool is queried with
the respective kon, and when the pool returns true, the status of the binding site is updated to occupied.

// reaction that binds a Q to the RC, if Qb is empty
void ProteinRC::reaction1(Protein *p) {
 if (!bs_Q) {
 if (QPoolp->take_out(Q_kon)) {
 bs_Q = true;
 writeInternals();
 }
 }
}

By calling writeInternals() the changes (that a Q has bound) are written to the respective log file if desired.
Otherwise this function just returns.

For reactions that are independent of any metabolite concentrations like dissociation, internal charge transfer,
or conformational changes, a different strategy is used. When at such a reaction the respective conditions are
fulfilled, a waiting time is calculated from the rate and used to initialize a timer which then triggers the actual
reaction. This is shown in the following code snippet that handles the electron transfer from a bound
cytochrome c2 to the special pair and the subsequent (slower) dissociation from the reaction center:

// Transfers an electron from c2 to special pair and unbinds c2,
// takes back the virtual proton from the HInternal pool.
// The e- transfer occurs before the c2 unbinding starts
void ProteinRC::reaction4(Protein *p)
{
 if(bs_C)
 {
 switch(timer_r4)
 {
 case 0:
 // initialize timer
 double t0 = 1.0/(c2ox_koff*delta_t);
 timer_r4 = static_cast<unsigned long int>(exp_ran(t0));
 // make sure that the reaction takes place even for very short t0
 if(timer_r4 == 0) { timer_r4 = 1; }

 // charge transfer c2 -> P
 HInternalPoolp->take(1L);
 reg_SP = 1;
 writeInternals();
 break;
 case 1:
 c2oxPoolp->put_back();
 bs_C = false;
 writeInternals();
 timer_r4 = 0;
 break;
 default:
 timer_r4--;
 }

5

 }
}

For such timer controlled reactions, a timer value of 0 indicates that the reaction was in its "rest state", i.e.,
not running. It can then be initialized and decremented in subsequent calls. When implementing such
functions take care that the conditions that triggered the reaction can not be altered by some other reaction,
or the timer would be stuck until the conditions become true again. This might lead to an unexpected
behavior.

In this example a pool called HInternalPool is used to account for the displacement of the charge of the
electron during the photo-induced oxidation of the special pair, as this process contributes to the electric part
of the transmembrane potential.

More details on the methods that make up a protein class are described in the section on how to implement a
protein yourself further down.

The Observable Class

An observable is a system wide accessibly query function. With an observable for example an experimen-
tally accessible quantity like the transmembrane potential or the average oxidation state of all cytochrome c
can be determined. Observables can be queried both from the proteins and the output routine of the
simulation engine. They are not called from the central propagation loop itself.

Due to their nature as system wide "variables" there can only be one instance of any given observable in the
simulation. Also, the observables are passive in the sense that they do not alter any pool occupancies or
protein states.

6

How to Write Your Own Protein/Observable
As an example for how to implement a new protein we will use a simple example of an enzyme that converts
a substrate S into a product P. The first iteration will reproduce an effective Michaelis-Menten kinetics. In a
second iteration we add ATP consumption. More specifically, ATP can only bind after the substrate has
bound and is released independently from the product after the conversion has occurred.

The first version of the new enzyme consequently needs two binding sites, bs_S for the substrate and and
bs_P for the product, with their respective association and dissociation reactions A1 and D1 and the internal
conversion reaction R1 (see the following figure). The more elaborate second version additionally needs
binding sites for ATP and ADP, an association reaction A2 which depends on the state of bs_S, and a second
dissociation reaction D2.

bs_S bs_P

bs_ATP bs_ADP

A1

A1

D2

D1

R1
S P

ATP ADP + Pi

bs_S bs_P
A1 D1R1

S P

In the above figure the protein is indicated by the rectangle and the pools by the rounded rectangles. As can
be seen, the first version needs three rate constants and the names of the substrate and the product pool, i.e., a
total of five parameters. The more complex second version requires five rates and four pool names. Note that
here each reaction follows the simple mass action kinetics.

To implement our new protein, which will be called MMEnzyme (for Michaelis-Menten-Enzyme), we start
from the supplied connector protein which takes particles out of a pool and releases them into another pool.
So, go to the directory with the sources, copy proteinConnector.cpp and proteinConnector.h into
proteinMMEnzyme.cpp and proteinMMEnzyme.h and open them in your favorite text editor.

To avoid name clashes, search and replace any occurrences of ProteinConnector by ProteinMMEnzyme.
Don't forget the #ifdef in the header file and the #include line in the source file. Also, chop out (or replace)
the description in the header file.

Note that comments starting with //! or /*! are used by doxygen to generate a documentation from the
sources.

Register the Protein/Observable

To register a new protein with the parser, a shell script parses all header files for tags LABEL: and
CLASSNAME: and constructs a part of the source code for the parser from the information found there.
Replace the information of the connector such that the first lines of proteinMMEnzyme.h finally look like
the following:

// Definitions for the automated inclusion into the parser
// LABEL:

 MMEnzyme
// CLASSNAME:
 ProteinMMEnzyme

Now issue a make clean; make. The new protein is now known to the simulation.

7

Parameter Parsing
During setup the main parser reads the configuration file and instantiates a new copy of the MMEnzyme for
every line that starts with protein: MMEnzyme. The next number after the protein type is used to create a
unique label by appending it to the protein type. The rest of the line is passed on to the protein for parsing.
We therefore need a method that extracts the protein specific parameters from the setup line. Assume the
following line to define one copy of our new MMEnzyme:

protein: MMEnzyme 1 Substrate 2e3 8 Product 120

This shall define that the substrate is taken up from a pool called "Substrate" with a rate of 2 x 103 nm3s–1.
The internal reaction has a speed of 8 s–1, and the dissociation of the product into the pool "Product" takes
place with a koff = 120 s–1. Consequently, the protein needs two pointers to the two pools and three variables
to hold the rates. These are defined in the private section of the header file (note the doxygen related
additions to the comments):

//! @name Pointers to the two pools and variables for the uptake constants
//@{
Pool *SubstratePoolp, *ProductPoolp;
double kon_S, koff_P, k_conv;
//@}

During setup additional variables are used to store the names of the pools. These are also defined in the
private section of the header file:

//! @name Char[]s for the pool names (see length above)
//@{
char SubstratePool[MAX_POOLNAME_LENGTH],
 ProductPool[MAX_POOLNAME_LENGTH];
//@}

Then, the binding sites have to be defined. As binding sites can either be empty or occupied, we use (by
convention) Boolean variables for them:

// Defs of the internal registers and binding sites.
bool bs_S, bs_P;

Finally, we need two timers for the internal conversion from substrate to product and for the density
independent dissociation of the product:

//! Timer variables for some of the reactions
unsigned long int timer_R1, timer_D1;

Now to the actual parsing. This is performed by the method parseLine(). Switch to the source file
proteinMMEnzyme.cpp, locate this function, and identify the line where the setup line is parsed with
sscanf(). Adapt the format string and the target variables, the sign test for the rates, and the debug output.
Then, parseLine() should look similar to the following screenshot:

8

Check for Pools and Observables

When all the parsing and initialization is done for all proteins, pools, observables, and changes, then the
proteins and pools can be connected. For this, the parser calls the method verify_pools() of the proteins
(and of the observables, too, but this is a different section of this document). During the pool setup, the
parser collects a map with the pool names and the pointers to the respective pools. This map is now queried
to convert the stored pool names from the protein's setup line into the correct pointer. For each pool that the
protein needs to know, there is a section like the following (but without the line break in the error message):

if(!(Pools->count(string(SubstratePool)))) {
 cerr << "ProteinMMEnzyme::verify_pools: pool "<<SubstratePool<<" not defined" <<
endl;
 exit(-3);
}
SubstratePoolp = getPool(SubstratePool);

When a pool is not found, the simulation is terminated the hard way as there is no way to reliably guess what
would have been the correct pool label in the setup file. This is left to the user to correct and try again.

If the protein also needs to access observables, a similar code fragment is used. Check, e.g., the BC1Dimer_2
for how to test for observables. Now the code used in the model setup phase is run and the actual simulation
will start.

The Elementary Reactions
During the simulation the main loop calls the protein's timestep() method, which in turn calls all the
functions of the protein. Before these can be called, they have to be defined and registered. Registration of
the functions is done in the constructor.

For our simple MMEnzyme we need three functions which will be named reaction_A1, reaction_R1, and
reaction_D1. For each of these the following code is used to add them to the protein's map of functions.

9

void (Protein::*pr1)(Protein *) = (void(Protein::*)(Protein *))
 (&ProteinMMEnzyme::reaction_A1);
fu1.pfunction = pr1;
setFunction("A1", fu1);

The timers for the conversion and the dissociation reaction are also initialized to 0 in the constructor.

The corresponding reaction is defined further down in the source file. They also have to be declared in the
header file. The biological condition is that the active center where the conversion takes place is empty.
Here, the state of the molecule under conversion is encoded in the currently occupied binding site. In the
protein function, we therefore have to check that both binding sites are empty. Then the substrate pool is
queried and, when successful, bs_S is switched to true.

// A1: association of the substrate
void ProteinMMEnzyme::reaction_A1(Protein *p) {

 if(!bs_S && !bs_P) {

 if(SubstratePoolp->take_out(kon_S)) {

 bs_S = true;

 writeInternals();

 }

 }
}

The logging of the internal states via writeInternals() will be explained later. We don't have to change
the particle number in the pool, this is handled by the pool's take_out(). The next step is the conversion of the
substrate into the product. Here, we use a timer. To denote that the conversion is running we flip the product
binding site to occupied as soon as the timer is initialized. The substrate binding site is released only when
the conversion is finished, i.e., when the timer is down to 1.

// R1: conversion of substrate in bs_S into product in bs_P
void ProteinMMEnzyme::reaction_R1(Protein *p)
{
 if(bs_S)
 {
 switch(timer_R1)
 {
 case 0: // initialize timer, start conversion
 double t0 = 1.0 / (k_conv * delta_t);
 timer_R1 = static_cast<unsigned long int>(exp_ran(t0));
 if(timer_R1 == 0) { timer_R1 = 1; }

 bs_P = true;
 writeInternals()
 break;

 case 1: // conversion done
 bs_S = false;
 timer_R1 = 0;
 writeInternals();
 break;

 default: // count down
 timer_R1--;
 }
 }
}

10

When the rate constant is fast, i.e., the waiting time t0 is short, the exponentially distributed random number
may become 0 and the timer is initialized such that nothing happens. To make sure that the reaction takes
place when a random waiting time was assigned, the timer is tested and set to a value of at least 1.

Now we only need the last reaction, the unbinding of the product. This can start as soon as the conversion is
over, i.e, when bs_S == false. The same timer structure is used with timer_D1:

// D1: dissociation of the final product
void ProteinMMEnzyme::reaction_D1(Protein *p)
{
 if(!bs_S && bs_P)
 {
 switch(timer_D1)
 {
 case 0: // initialize timer
 double t0 = 1.0 / (koff_P * delta_t);
 timer_D1 = static_cast<unsigned long int>(exp_ran(t0));
 if(timer_D1 == 0) { timer_D1 = 1; }
 break;

 case 1: // release!
 bs_P = false;
 ProductPoolp->put_back();
 timer_D1 = 0;
 writeInternals();
 break;

 default: // count down
 timer_D1--;
 }
 }
}

Now the product is released and both binding sites are empty again and the enzyme is ready to process the
next product molecule in its active site. An alternative implementation could have been with a single binding
site plus a variable denoting the current state of the substrate (substrate or product). R1 then would toggle
that state-variable.

Output

To watch the MMEnzyme process its substrate we can observe how the numbers in the substrate and product
pools change. Even more insight (and debugging) is gained when we monitor the occupation of the binding
sites, too. For this, we need to fill in the two logging methods listInternals() and writeInternals().

During setup, listInternals() is called which creates a string containing a comment/header line with the names
of the internal sites for the respective output file, while writeInternals() writes out the actual values separated
by tabs into the log file (the name of which was set during setup).

std::string ProteinMMEnzyme::listInternals() {
 return(string("#time\tbs_S\tbs_P"));
}

writeInternals() also contains the test whether the changes should actually be logged or not.

void ProteinMMEnzyme::writeInternals() {

11

 if(outputInternals) {
 double realTime = timer * delta_t;
 internalsOutFile.open(internalFileName.c_str(), fstream::app);
 internalsOutFile << realTime << "\t" << bs_S << "\t" << bs_P << "\n";
 internalsOutFile.close();
 }
}

MMEnzyme V2.0

The protein defined above can now be extended as explained previously by adding binding sites for ATP and
ADP together with the respective on- and off-reactions (and the respective pool variables etc). To distinguish
between the two versions, the expanded form will be called MMEnzyme2 (both as class and as label for the
setup). Then one can compare the two forms or even use them in the same simulation describing two
different proteins. One question could for example be under which conditions the ATP supply can be
neglected to simplify the setup.

When in the real enzyme the ATP binding may only occur after the substrate has bound, then the
corresponding test in the ATP binding reaction would be

if(!bs_ATP && bs_S) { ...bind ATP... }

If the other reactions are encoded correctly, we don't have to test whether the ADP binding site is empty,
because substrate binding would only occur after ADP has dissociated. Setting up these conditions for more
complex biological scenarios can sometimes even reveal what all is not yet known about a specific protein.
However, one may implement different formulations of the reaction conditions and check whether they
behave differently under specific conditions, which can then be investigated in an experiment.

Additionally, the main conversion reaction R1 in the expanded version of the enzyme would only start when
ATP has bound:

if(bs_S && !bs_P && bs_ATP) { ...perform R1... }

12

Examples and Tutorials
For the following tutorials it is assumed that you successfully compiled the simulation engine and that you
walked through the previous section where the implementation of a new protein was explained on the
"MMEnzyme". If you did not do that yet then you can copy the two files proteinMMEnzyme.cpp and
proteinMMEnzyme.h from the Tutorials folder into the main folder and recompile vesimulus (type make
clean; make to register the new protein).

Characteristics of the MMEnzyme Model Protein

As a minimal setup to test the newly implemented MMEnzyme protein model, we need one enzyme and two
pools, one for the substrate and one for the product. To initialize the enzyme we use the setup line quoted
above. The two pools are set up as follows.

pool:
 Substrate
 true
 1000 1e5
 part
pool:
 Product
 false
 0 1e5 part

Both pools have a volume of 105 nm3 and are listed in the output with particle numbers. Initially, the product
pool is empty, whereas the substrate pool is kept fixed at 1000 particles, i.e., at a density of 10–2 nm–3 (have a
look at the supplied file MMEnzyme.ves in the Tutorials folder). Now run the simulation with this one
enzyme for ten seconds, an output interval of 1 second, and a time step of ten milliseconds:

$> ../vesimulus 10 1 10 MMEnzyme.ves

The console output shows that the one enzyme produces about 50 product molecules during the ten second
long simulation. Rerun the simulation a few times to get a feeling for the variation of the total turnover.

Next we want to verify that the enzyme actually follows a Michaelis-Menten kinetics for the steady state
throughput with the substrate concentration. For this we can run the simulation for various initial values of
the substrate pool and record the total turnover. Another option is to change the substrate level during the
simulation. To do so, set the initial particle number in the substrate pool to zero and add lines like the
following at the end of the setup file:

change: Substrate 10 0.0001
change: Product 10 0
change: Substrate 20 0.0002
change: Product 20 0
 :
change: Substrate 130 1.0
change: Product 130 0

Continue to increase the concentration every ten seconds using concentrations of 0.0005, 0.001, 0.002,
0.005, 0.01 … 10.0. Then run the simulation until 170 seconds with an output interval of 10 seconds. The
turnover is zero except for the last ten seconds interval. This is because in the simulation code changes to the
pool concentrations are performed before the output. To overcome this, set the pools at 0.001, 10.001,
20.001, etc seconds and watch the Michaelis-Menten characteristic unfold. Your setup file should now look
like the following screenshot.

13

Save the output into a file (commandline argument #5) and plot the third vs. the second column with
logarithmic axes. Can you fit a Michaelis-Menten characteristic through the data points? Of course, with
only a single enzyme and the short intervals, the stochastic variations between subsequent runs are
enormous. You can improve the reproducibility by running longer steady state intervals or by increasing the
number of proteins. Add another nine lines defining MMEnzyme proteins (each with a different index
number) and rerun, re-plot, etc. The maximal total turnover should be about 750 product molecules per ten
seconds and should decrease to half its value at about 350 substrate molecules in the pool.

Now comment out all but one MMEnzyme proteins and rerun the simulation with logging of the protein
internal states:

$> ../vesimulus 10 1 10 MMEnzyme.ves fish dummyArg

The former terminal output is found in fish_pools.dat and the occupation states of the two binding sites in
fish_MMEnzyme_1_internals.dat. Examine this file to see that actually first bs_S is occupied, then
both bs_S and bs_P are on during the conversion. Finally, only bs_P = 1 indicates that the product is ready to
be released. The relative timing of the events can be visualized nicely with the following command in
Gnuplot (the "\" indicates that there should not be a line break — enter everything on one line).

> plot [0:2][0:1.4] "fish_MMEnzyme_1_internals.dat" u 1:2 w ste, \
 "fish_MMEnzyme_1_internals.dat" u 1:($3+0.1) w ste

You see that the conversion starts immediately when the substrate is bound (which is the implemented
behavior) and that the enzyme spends most of its time converting substrate into product. From these files one
can now extract, e.g., the total time that the enzyme has a converted product attached or the average state that
one or multiple enzymes are in (waiting, processing, releasing product, etc)

14

A Minimal Pathway

With the MMEnzyme we can start to build the first simple "pathways" where the product of one processing
stage is the substrate for the next stage as shown in the figure below. In the example the substrate S is
converted into the final product P via two intermediates I1 and I2. In the sketch the enzymes are hidden
behind the arrows and the pools "abbreviated" by the metabolites.

S I1 I2 P

To discern the enzymes of the three reactions we extend the protein type in the setup file by an additional tag
separated from the protein type by an underscore, which is ignored by vesimulus during setup but respected
when creating the protein labels. When using extended protein types, the indices may repeat for the different
groups. We thus need a setup file with three (groups of) enzymes and four pools. Again, the first substrate
pool is assumed to be infinite. For simplicity, all three enzymes have the same kinetic parameters initially.
The substrate pool is empty initially, then set to an intermediate concentration after two seconds and reset to
empty five seconds later. Have a look at the supplied setup file miniPath.ves.

Now run this simulation with a time step of 10 milliseconds and an output interval of one second. You see
that the first intermediate I1 is produced rather fast, but that even after 50 seconds there is only a very small
amount of I2 or P because the uptake of I1 and I2 is so slow. Increase the association constants for the second
and third stage such that within 50 seconds there is no I1 or I2 left (to within stochastic uncertainty). Also
save the output into a file and plot the pool levels.

Bacterial Photosynthesis: A Single Flash

The following scenario reproduces an experiment in which the transmembrane voltage and the cytochrome c
oxidation state in the photosynthetic apparatus of the purple bacterium Rb. sphaeroides were monitored in
response to a single strong flash (Barz et al., 1995). For this we implement a typical chromatophore vesicle
with all its proteins in the dark adapted state. For more information, see [4]. The flash is modeled by a fast
change of the "concentration" in the light pool. Have a look at the supplied setup file Vesicle_a7.ves. It
defines ten LHCs, which all get photons from the same pool "Light" but put the absorbed photons as excitons
into a different pool "E1" to "E10", each. Each LHC models the combined absorption of a dimeric LH1 with
six associated (=closely coupled) auxiliary LH2.

The dimeric core complexes of Rb. sphaeroides are then implemented by connecting two RCs to each of the
exciton pools, i.e., we need 20 RCs. The last column of the RC section defines a pool for "virtual" charges to
account for the charge transfer that occurs when the electron is translocated from the special pair
bacteriochlorophylls on the periplasmic side of the RC (= at the inside of the vesicle) to the bound Qb quinon
on the cytoplasmic side (= at the vesicle outside). The negative charge which is thus transferred across the
membrane to the outside of the vesicle is here counted as a positive charge placed into the vesicle (hence the
name H+Protein). When the special pair is later reduced, the corresponding charge is removed again from
this virtual counter pool. Correspondingly, you find further down in the pool section that the H+Protein
pool has a volume of 1 (without any units).

Next in the setup file come the dimeric cytochrome bc1 complexes. These are already implemented as dimers
with two binding sites for quinones, quinols, and cytochrome c2, etc. The bc1 pump the protons against the

15

transmembrane potential ΔΦ, therefore some of the internal reactions are slowed down exponentially with
increasing ΔΦ. To get the actual value of ΔΦ, the bc1 query the observable DeltaPhi_ChemCap2, which
returns the combined contributions from the proton gradient difference between inside and outside of the
vesicle (= "chemical" part) and the "electrical" part from the charges in the vesicle. By referencing a different
observable it is then easy to investigate how the bc1 would behave when only the chemical or only the
electrical part are considered. These two forms for ΔΦ are called DeltaPhi_Chem2 and DeltaPhi_Cap2,
respectively.

To complete the protein setup, a single ATPase and a (pseudo)protein describing a number of protonateable
residues (protonateable) are added before the relevant observables are defined. The most important one are
the two forms of ΔΦ. While both chemical and electrical contribution affect the reactions in the proteins,
only the electrical part could be measured in the experiment via the spectral detuning of the
bacteriochlorophylls of the LHCs. The other measured quantity was the oxidized fraction of the total
cytochrome c content. The number of oxidized cytochrome c2, which shuffle the electrons through the
vesicle interior, can directly be read from the number in the relevant pool. The number of oxidized c2 that are
currently bound to the RCs is queried from the RCs via the observable RC_c2ox and the oxidation state of
the c1 domains of the bc1 dimers is obtained via the observable bc1dimer2_c1ox. These two observables
loop over all proteins and call the corresponding methods of the RCs and bc1s, respectively, which return the
current state for each protein.

To connect the proteins, a number of pools are required, which are defined in the following part of the setup
file. Check the setup file for specific comments to each pool. Finally externally determined changes in the
pool concentrations are listed. Here, for this single-flash experiment, the light intensity is switched on for
100 µs after an initial "thermalization" phase of 30 ms which makes sure that the simulation is really in a
dark-adapted state.

Next we need to run the simulation. For such a fast flash scenario a time step of 1 µs and an output interval
of 1 ms are required, whereas the total simulation time can be as short as 300 ms. The corresponding
command is thus

$> ../vesimulus 0.3 0.001 1 Vesicle_a7.ves

From the output you can see that at 0.03 seconds the Light is switched on shortly. Subsequently, a number of
oxidized c2 show up transiently first in the pool and then bound to the RCs. The oxidation "signal" is then
seen for some more time in the bc1s before it decays back to its dark state level. From these three data
columns the fraction of oxidized cytochrome c can be summed up and then compared to the experiment (see
the following figure from the original article). Correspondingly, the transmembrane potential increases very
fast during the first millisecond and then slower to reach its maximum within the next 10 ms before it decays
again.

16

15242 Biochemistry, Vol. 34, No. 46, 1995

r)
0 0 -

x -20.

-
2 -40-
Lo
I -60-
c

g -80-
a a -100.

Barz et al.

c .

Sup102/g + 6pM cyt c

2.0 , I

flash! 0 PUFAX/g

r, 0 0.

I1 * I
CV * -10.
Lo

I
7

g -20.
Q: 1 PUFC/g + 6 pM cyt c
a

-80 I

, -"
0 200 400 600 800 1000

time (ms)

FIGURE 6: Oxidation of exogenous cytochrome c by chromato-
phores isolated from (A) PUFC/g, (B) PUFAX/g, or (C) SuplO2/
g. Chromatophores were suspended to a final RC concentration of
approximately 0.5 p M in 100 mM KCI, 50 mM MOPS (pH 7.0)
containing 1OpM valinomycin, 5 p M antimycin A, 1 mM ascorbate,
and 1 mM KCN. The samples were subjected to 20 (A, B) or 25
(C) single-turnover flashes fired 30 ms apart. Flash-induced
absorption changes due to the oxidation of cyt c were measured at
55 1 and 542 nm. In each panel, the upper trace shows oxidation of
the endogenous cyt (c, + cz); the lower traces were obtained after
addition of 6 p M horse heart cyt c. The traces are averages of four
measurements, and the instrument response time was 500 ps.

vivo, semiaerobically grown cells were used to study the role

of PufX in cyclic electron transfer. After single turnover
flash excitation, the electrochromic carotenoid band shift was

detected under anaerobic conditions. Figure 7A shows the
rise and decay kinetics of the AA503-487 signals obtained with
PUFC/g and PUFAWg cells. In order to facilitate compari-

son of the kinetics, the traces in Figure 7A were normalized
to the fast phase of the carotenoid band shift that resulted
from charge separation in the RC. The rationale for this

normalization was that the cellular concentration of photo-
active RC was independent of PufX [see Figure 3 and
Farchaus et al. (1990)l whereas the levels of LH2 carotenoids
(which cause the carotenoid band shift; Holmes et al., 1980)
were not.

For PUFC/g, the flash-induced carotenoid signal observed
in vivo (Figure 7A) was similar to the trace measured in

vitro at Eh x 125 mV (Figure 5). Therefore, the anaerobic
conditions used to study cyclic electron flow in vivo seemed
to be characterized by an at least partially reduced quinone
pool. In PUFC/g, the time constant of the slow phase (t112
% 1.1 ms) was similar to published values (Cotton &

Jackson, 1982). In anaerobically incubated PUFAX/g cells,

-5 0 5 10 40 80 120 160 200
time [ms]

0.0 * I

both the fast and the slow phases (r 1 / 2 % 1.2 ms) of the
carotenoid band shift were observed, demonstrating that PufX

was not required in vivo for turnover of the cyt b c ~ complex
following flash-induced charge separation in the RC. The

decay rates of the carotenoid band shift (t I l2 = 120 & 10
ms) were also unchanged in the absence of PufX (Figure
7A), excluding the possibility of a general nonspecific

leakiness of the membrane in PUFAX/g. When the flash-

induced carotenoid band shift was studied using anaerobically
incubated cells of SuplOl/g or SuplO2/g, similar traces were

observed (data not shown).

The observation that single-flash excitation resulted in

normal cyclic electron transfer in anaerobically incubated
pujX- cells was confirmed when the photooxidation and

rereduction of cyt c was studied in vivo (Figure 7B). Flash-
induced redox reactions of total cyt c (cyt CI + c2) were
recorded by measuring absorption changes at 551 and 542

nm (Prince & Dutton, 1977, 1978). As shown in Figure 7B,

the amplitude of cyt c oxidation (normalized to cell density)
was very similar for PUFC/g and PUFAWg cultures,
demonstrating that PufX is not required for single-turnover

oxidation of cyt c in vivo (data not shown). Similar results
were obtained by monitoring the rereduction of photooxi-
dized RC in vivo at 542 nm (data not shown). Figure 7B
also shows that the rereduction kinetics of cyt c were similar
in PUFC/g and PUFAWg, confirming the interpretation that
the turnover of the cyt b c ~ complex was normal under the
anaerobic conditions used here. In conclusion, the results
shown in Figure 7 demonstrated that PufX was not required
for a single tumover of the RC and the cyt bcl complex under
anaerobic conditions.

Repeat this simulation a few times to get a feeling for the stochastic variations of the observables. There are
two things to notice. First, with the small numbers involved, the variations are very large and second, the
simulation results look more like discrete changes than the continuous experimental traces. We thus have to
run the simulation repeatedly and average over the simulation outputs before we can compare them to the
experiments. Have a look at the supplied shell script runner_a7.sh. It uses some temporary files ("fish*") to
store and combine the simulation results and returns the averaged response in the file fish_*_avg.txt. Start it
with the setup file, the working directory, and a basename for the output files as arguments:

$> ./runner_a7.sh Vesicle_a7.ves . a7

To compare the simulation results to the experiment the simulation data has to be shifted by 30 ms and
rescaled. In Gnuplot this can directly be done as follows for ΔΦ and the overall cytochrome c oxidation
state, respectively (the actual scaling factors may vary a bit even after averaging over 40 simulation runs):

> plot [-0.01:0.25] "fish_a7_avg.txt" u ($1-0.03):($2/180), "Barz95_a7_dPhi.txt"
> plot [-0.01:0.05] "fish_a7_avg.txt" u ($1-0.03):($3/80), "Barz95_a7_cox.txt"

You can see that ΔΦ is reproduced quite well during the fast transients of the first five to ten milliseconds
and then decays slightly slower. The cytochrome c oxidation state, on the other hand, decays faster than in
the experiment. One problem with the experiment was that the actual time course of the flash light is not
documented. The agreement between simulation and experiment can now, e.g., be improved by letting the
flash bulb cool down slower. As a guess modify the changes: section of the input file as follows and re-run
the simulations.

change:
 Light 0.03 1500
change:
 Light 0.0301 1000
change:
 Light 0.0302 700
change:
 Light 0.0303 400
change:
 Light 0.0304 250
change:
 Light 0.0305 100
change:
 Light 0.0306 0

Now the cytochrome c oxidation state does not decay that fast any more. Note that this light profile is only a
guess (or a fit) to improve the agreement. Implementing the actual scoring of the simulation results vs. the
experimental data is left as an exercise to the reader :-) When done, you can get rid of all fish_* files.

17

Identifying the Bottleneck Reaction of a Protein

When all kinetic parameters for a certain protein have been obtained either directly from literature or from an
optimization against experimental data, each of these parameters can be scanned individually to find out
which of them, e.g., limits the steady state throughput. In the following example we consider one dimeric
core complex of the bacterial photosynthetic apparatus under saturating light intensity.

The RC takes up reduced cytochrome c2, oxidized quinones, and protons from the outside of the vesicle and
produces oxidized c2 and quinol (QH2). To model steady state conditions the three input pools are set to
infinite volume. Then the turnover of the RC can be directly observed from the increase of the particle
numbers in the output pools (this works because the unbinding reactions are insensitive to the product
concentrations). Such a setup is defined in the configuration file oneRC.ves. A simulation of this setup for
100 seconds at a time step of 10 µs reveals that the two RCs can oxidize about 2500 cytochrome c2 in 100
seconds, i.e. that one RC has a turnover of about 12.5 c2 per second.

Now reduce for example the unbinding rate of the reduced QH2 by a factor of ten or hundred and re-run the
simulation. This will result in turnovers of about 7.5 and 1.5 oxidized c2 per second per RC. For a more
thoroughly sampled characteristic we can again use a script which modifies the setup file and runs the
simulation. Have a look at miniScan.sh. It uses another script confFile-variator.pl to create a
modified copy (fish.ves) with—in this case—parameter 10 replaced by a sequence of values. The values of
this sequence were chosen to be equidistant on a logarithmic scale. Run the script miniScan.sh and save
the output:

$> ./miniScan.sh | tee RCscan.txt

Now plot the resulting data with logarithmic scales and verify that it follows a Michaelis-Menten
characteristic (again). You should find that the half of the maximal turnover is reached with koff(QH2) ≈ 6 s–1
which is about one order of magnitude slower than the optimized value. This optimized value is thus just not
throughput limiting. Can you identify which reaction limits the turnover in the current parametrization?

Similar scans could now be performed for the other proteins under steady state conditions or with the flash
setup from above. Then one finds that for different dynamic scenarios different parameters are important

Connectivity Matters: Dimeric vs. Monomeric Core Complexes

A similar scan as performed before for the kinetic parameters of the core complexes can also be performed
for varying light intensities. Copy miniScan.sh and adapt the arguments to the confFile-Variator.pl script.
Replace the "protein" label by the label of the light pool ("Light"), tell it to vary parameter 3, and scan light
intensities of 0.1 to 1000 W/m2 and save the output:

$> ./miniScan.2.sh | tee lightScan_dimer.txt

Now add another LHC and a second exciton pool E2 in the setup file oneRC.ves. Each LHC now has an
absorption cross section of half of the initial value, i.e., of only 3.11 W–1 m2 s–1. Each LHC is now connected
to only one RC as shown in the setup file twoMonomers.ves. Now perform the same scan of the turnover
vs. the light intensity and compare the two scenarios.

18

When you again plot both characteristics you will see that the monomeric setup follows the familiar
Michaelis-Menten kinetics while the dimeric setup has a higher turnover in the regime of intermediate light
intensities of 1…10 W m–2. When the fluctuations are too large, increase the simulation time.
This advantage of the dimeric core complex vs. two monomers of up to 25% can be seen even better, when
both simulation results are normalized against the Michaelis-Menten kinetics as shown in the following
screen shot.

The different turnovers at intermediate light intensities are due to the dead times of the RC upon arrical of an
exciton. When two RCs are connected to a (larger) LHC then chances are higher that two excitons that arrive
shortly after the other will both be processed, whereas the second would be lost in the monomeric scenario.
In the bacteria there is additional coupling between adjacent core complexes which would allow for an even
more efficient use of the captured photons at lower light intensities without the need for large antenna
systems that are useless in high light conditions. To investigate this effect you can also play with setups
where one large LHC is connected to four, eight, or even more RCs.

Note that this is a long-time steady state simulation where conventional wisdom would predict that stochastic
effects can be ignored and a rate equation model will yield the same result. Indeed, a rate equation model
predicts the Michaelis-Menten characteristic of the monomers but cannot capture the behavior of the more
efficient dimers. Similar differences between the here presented molecular-stochastic modeling and a
classical rate equation approach will be visible in, for example, signaling with its typically few receptors.

19

Contact Information And Further Reading

The most up-to-date version of vesimulus and the documentation, lists of changes and fixed bugs, and
(hopefully soon) models for more types of proteins can be found on our server at

http://service.bioinformatik.uni-saarland.de/vesimulus

If you have any questions, suggestions, etc, or if you are willing to share protein models set up by you with
others please contact the main author by email:

tihamer.geyer@bioinformatik.uni-saarland.de

The reconstruction of the bacterial chromatophore vesicles is documented in the following two publications.
This steady state reconstruction is compiled from a wide variety of published information..

[1] T. Geyer and V. Helms, "A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides
and the position of the cytochrome bc1 complex", Biophys. J. 91 (2006) 921-6

[2] T. Geyer and V. Helms, "Reconstruction of a kinetic model of the chromatophore vesicles from
Rhodobacter sphaeroides", Biophys. J. 91 (2006) 927-37

The molecular-stochastic pools-and-proteins model was introduced first in:

[3] T. Geyer, F. Lauck, and V. Helms, "Molecular stochastic simulations of chromatophore vesicles from
Rb. sphaeroides", J. Biotech. 129 (2007) 212-28

Most recently we could demonstrate how a molecular biological model (= vesimulus) with all the details
included could be linked to a systems biological parameterization on macroscopic experiments:

[4] T. Geyer, X. Mol, S. Blaß, and V. Helms, "Bridging the gap: Linking Molecular Simulations and
Systemic Descriptions of Cellular Compartments", PLoS ONE 5(11): e14070 (2010) doi:10.1371/
journal.pone.0014070

An online version of the chromatophore simulations which has successfully been used in classrooms to
familiarize students with stochastic effects can be accessed at the following URL. There also documentation
and tutorials can be found.

http://service.bioinformatik.uni-saarland.de/vesiweb

20

