Leistungspunkte/Credit points: 5 (V2/U1)
This course is taught in English language.

The material (from books and original literature) are provided online at the

course website:
http://gepard.bioinformatik.uni-saarland.de/teaching/ss-2014/stl-bioinformatics-mathcellnet-ss14

Topics to be covered:

This course will enter into details of selected topics on the topology of
biological networks.
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We will handout 6 bi-weekly assignments.
Groups of up to two students can hand in a solved assignment.

Send your solutions by e-mail to the responsible tutors :
Maryam Nazarieh (#1 - #3) and Thorsten Will (#4 - #6)
until the time+date indicated on the assignment sheet.

The weekly tutorial on Tuesday 12.45 am — 1.30 pm (same room) will discuss

the assignment solutions.
On demand, the tutors may also give some advice for solving the new assignments.
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The successful participation in the lecture course (,Schein®)
will be certified upon fulfilling

- Schein condition 1 (> 50% of the points for the assignments)

- and upon passing the final written exam at the end of the semester
The grade on your ,Schein® equals that of your final exam.

Everybody who took the final exam (and passed it or did not pass it)
and those who have missed the final exam

can take the re-exam at the beginning of WS14/15.

The better grade counts! But there will no second re-exam.
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Lecture material

Lectures 1-6 follow this book by Mark Newman / Oxford Univ Press

- Chapter 7: measures and metrics
- Chapter 11: matrix algorithms and graph partitioning
- Chapter 17: epidemics on networks

Chapter 7-10/12 follow this book by Daphne Koller & Nir Friedman /MIT ress

- Chapter X:
- ChapterY:
- Chapter Z:

PROBABILISTIC GRAPHICAL MODELS

You can find both books in the CS library.

Lectures 11/13-15 introduce modern methods

to reconstruct gene-regulatory networks
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Network <=> Graph

Formal definition:
A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

G=(V, E)

undirected graph directed graph

If E=V? => fully connected graph
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Subgraph: Weighted graph:

G'=(V', E') isasubsetof G=(V, E) Weights assigned to the edges
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Path = sequence of connected vertices
start vertex => internal vertices => end vertex

Two paths are independent (internally vertex-disjoint),
if they have no internal vertices in common.

Vertices u and v are connected, if there exists a path from uto v.
otherwise they are disconnected

Trail = path, in which all edges are distinct

Length of a path = number of vertices || sum of the edge weights

There is an infinite number of paths
connecting the green to the red vertex.

The shortest paths have length = 2.

Four trails go from the green to the red
vertex.

Two of them are independent.
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Degree k of a vertex = number of edges at this vertex
Directed graph => distinguish kin and kout

Degree distribution P(k) = fraction of nodes with k connections

k‘O T 2 3 4 Pkn) | 1/7 5/7 0  1/7
P(k)‘ 0 3/7 1T 1T 217 Pkow) | 217 317 117 17
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Graph Representation: e.g. by adjacency matrix

Adjacency matrix is a N x N matrix

with entries Muy

M.y = weight when edge between u and v exists,
0 otherwise

— symmetric for undirected graphs

+ fast O(1) lookup of edges
— large memory requirements
— adding or removing nodes is expensive

Note: very convenient in programming
languages that support sparse multi-
dimensional arrays

=> Perl
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Measures and Metrics

“ Which are the most important or central vertices in a network? “

Examples of
A) Degree B) Closeness
centrality, centrality,

D) Eigenvector
centrality,

C) Betweenness
centrality,

E) Katz centrality,

www.wikipedia.org
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http://en.wikipedia.org/wiki/File:Centrality.svg

Perhaps the simplest centrality measure in a network is the
degree centrality that is simply equal to the degree of each vertex.

E.g. in a social network, individuals that have many connections

to others might have

- more influence,

- more access to information,

- or more prestige than those individuals who have fewer connections.

A natural extension of the simple degree centrality is eigenvector centrality.

SS 2014 - lecture 1 Mathematics of Biological Networks
11



Let us start by defining the centrality of vertex x; as the sum of the centralities
of all its neighbors:
.X'i, = Z AUX]
J

where A; is an element of the adjacency matrix.
(This equation system must be solved recursively until convergence.)

We can also write this expression in matrix notation as
x’=A X where x is the vector with elements X; .

Repeating this process to make better estimates gives after t steps
the following vector of centralities:

x(t) = At x(0)
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Now let us write x(0) as a linear combination of the eigenvectors v, of the
(quadratic) adjacency matrix’

x(0) = X; qv; with suitable constants c;
t t ki]t
Thenx(t) = A Y civi = Xici ki vi = kg X ¢ lk_ll \4
where the k; are the eigenvalues of A and k; is the largest of them.
(remember A x = A x from linear algebra for each eigenvector x)

Since k; / k, <1 foralli=j, allterms in the sum decay exponentially as t
becomes large.

In the limit t — oo, we get x(t) = ¢, k! v,

' Remember from linear algebra that a quadratic matrix with full rank can be diagonalized.
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This limiting vector of the eigenvector centralities is simply proportional
to the leading eigenvector of the adjacency matrix.

Equivalently, we could say that the centrality x satisfies

Ax=k X
This is the eigenvector centrality first proposed by Bonacich (1987).
The centrality x; of vertex i is proportional to the sum of the centralities of
its neighbors:

_ -1
X = k1 Z]AUX]

This has the nice property that the centrality can be large either because a vertex
has many neighbors or because it has important neighbors (or both).
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The eigenvector centrality works best for undirected networks.

For directed networks, certain complications can arise.

In the figure on the right, -
vertex A will have eigenvector il
centrality zero. )

Hence, vertex B will also have
centrality zero.
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One solution to the issues of the Eigenvector Centrality is the following:

We simply give each vertex a small amount of centrality “for free”,
regardless of its position in the network or the centrality of its neighbors.

— we define x; = a);A;jx; +p where o and (3 are positive constants.

In matrix terms, this can be written as X=o0Ax + 1

where 1 is the vector (1,1,1,...) T . By rearranging for x we find
IX-aAx=01 (where we used | x = x)
(I-aA)x=p1
(I-ca A" (l-aA)x=(I1-aA)1B1

x=B(l-aA)l1

When setting =1, we get the Katz centrality (1953) x=(I-a A)'1
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The Katz centrality differs from the ordinary eigenvector centrality by having
a free parameter o, which governs the balance between the eigenvector term and
the constant term.

However, inverting a matrix on a computer has a complexity of O(n?) for a graph with
n vertices.

This becomes prohibitively expensive for networks with more than 1000 nodes or so.
It is more efficient to make an initial guess of x and then repeat

xX'=oAx + 3 1
many times. This will converge to a value close to the correct centrality.

A good test for convergence is to make two different initial guesses and run this until
the resulting centrality vectors agree within some small threshold.
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The Katz centrality also has one feature that can be undesirable.

If a vertex with high Katz centrality has edges pointing to many other vertices,
then all those vertices also get high centrality.

E.g. if a Wikipedia page points to my webpage, my webpage will get a centrality
comparable to Wikipedia!

But Wikipedia of course also points to many other websites, so that its
contribution to my webpage “should” be relatively small because my page is
only one of millions of others.

-> we will define a variation of the Katz centrality in which the centrality | derive
from my network neighbors is proportional to their centrality divided by their
out-degree.
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This centrality is defined by

= a Z Al] out + ﬁ
At first, this seems problematic if the network contains vertices with zero outdegree.

However, this can easily be fixed by setting k°“' = 1 for all such vertices.

In matrix terms, this equation becomes
x=oaAD'x+p31

where 1 is the vector (1,1,1,...)" and D the diagonal matrix with D; = max(k°“, 1)
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By rearranging we find that

x=B(l-aaAD")1
Because 3 plays the same unimportant role as before, we will set 3 = 1.
Then we get x= (-0 AD'")"1=D(D-aA)'1

This centrality measure is commonly known as PageRank,
using the term used by Google.

PageRank is one of the ingredients used by Google to determine the ranking of
the answers to your queries.

o is a free parameter and should be chosen less than 1. (Google uses 0.85).
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So far we have considered measures that assign high centrality to a vertex if
those vertices that point to it have high centrality too.

However, in some networks it is appropriate also to accord a vertex high
centrality if it points to others with high centrality.

E.g. a review article pointing at many important papers in one research field
may be a useful source of information.

Authorities are nodes that contain useful information on a topic of interest.
Hubs are nodes that tell us where the best authorities can be found.

An authority may also be a hub, and vice versa.

SS 2014 - lecture 1 Mathematics of Biological Networks
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Kleinberg developed this into a centrality algorithm called
Hyperlink-induced topic search (HITS).

The HITS algorithm gives each vertex iin a network an authority centrality Xx;
and a hub centrality y; .

A vertex with high authority centrality is pointed to by many hubs, i.e. by many
other vertices with high hub centrality.

A vertex with high hub centrality points to many vertices with high authority
centrality.

Thus, an important scientific paper (in the authority sense) would be one that is
cited in many important reviews (in the hub sense).

An important review is one that cites many important papers.

SS 2014 - lecture 1 Mathematics of Biological Networks
22



Kleinberg defined the authority centrality of a vertex to be proportional to the
sum of the hub centralities of the vertices that point to it

x; = a X;Aijy; where a is a constant.

Similarly the hub centrality of a vertex is proportional to the sum of the
authority centralities of the vertices it points to:

y; = B X;Ajix; with another constant 3

Note that the indices of the matrix element A; are swapped around in this
second equation.

These equations can be writtenasx=oa Ay and y = At x

Or, combining the two, A At x = A X, AtAy=Ly
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An entirely different measure of centrality is provided by the closeness
centrality.

Suppose dj is the length of a geodesic path (i.e. the shortest path) from a
vertex i/ to another vertex .
Here, length means the number of edges along the path.

Then, the mean geodesic distance from /, averaged over all vertices jin the
network is

1
l; =;Zjdij

The mean distance /; is not a centrality measure in the same sense as the other
centrality measures.

It gives low values for more central vertices and high values for less central
ones.
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The inverse of /. is called the closeness centrality C,

It has become popular in recent years to rank film actors according to their
closeness centrality in the network of who has appeared in films with who else.

Using data from www.imdb.com the largest component of the network includes
more than 98 % of about half a million actors.
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The highest closeness centrality of any actor is
0.4143 for Christopher Lee.

The second highest centrality has
Donald Pleasence (0.4138).

The lowest value has the Iranian actress Leia Zanganeh (0.1154).
— the closeness centrality values are crammed in a very small interval [0,0.4143]

Other centrality measures including degree centrality and eigenvector centrality
typically don‘t suffer from this problem. They have a wider dynamic range.

Pictures from wikipedia
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Gene-regulatory networks (GRNSs)

Biological regulation
via proteins and metabolites

<=> Projected gene-regulatory network

Eeil N o

Remember:
genes do not interact directly
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Centrality Analysis Methods for Biological Networks
and Their Application to Gene Regulatory Networks

Dirk Koschotzki'? and Falk Schreiber’?

Gene Regulation and Systems Biology 2008:2 193-201 m‘
Authors analyzed centralities within the gene regulatory ’
network (GRN) of Escherichia coli. Falk Schreiber

The GRN network was constructed based on the transcriptional regulatory
interactions of genes in RegulonDB, Version 5.5 (Salgado et al. (2006)).

Genes are represented by vertices and transcriptional regulatory interactions
between genes are modelled as edges, a common approach to model GRNs.

The interactions between genes represent transcriptional control of transcription
factors on the transcription of regulated genes.

The resulting network consisted of 1250 vertices and 2515 edges.
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Several motifs (overrepresented subgraphs) have been identified in all kinds of
biological networks.

The best studied motif is the feed-forward loop (FFL) motif. Its functional
properties have been analyzed in detail theoretically and experimentally
especially in gene regulatory networks (Shen-Orr et al. (2002).

Different motifs occurring in a human cellular signalling network were analysed
by Awan et al. (2007).

They discovered that genes which are related to cancer are enriched in the
target vertices of several motifs and that cell mobility genes are enriched in the
source vertices of maotifs.
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Given: a graph G, a motif M and
the corresponding motif match set MS;.

Define the motif-based centrality C,, that assigns
to every vertex vthe number of matches
the vertex v occurs in.

E.g. the vertex V01 in the graph shown in Fig. 2
occurs in 2 matches of the FFL motif shown
in Fig. 3. Therefore C,,(V01) = 2.
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v08

v09
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N
-
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Figure 3. The FFL motif with roles.
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Figure 2. An example graph used to explain different centrality

Gene Regulation and Systems Biology 2008:2 193-201
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Two extensions of this motif-based centrality exist:

- motif-based centrality with roles and \‘
- motif-based centrality with classes. /

C

Vertices of motifs may represent different functions. Figure 3. The FFL ot it rae.
E.g. in the gene regulatory network context 3 different functions of the vertices
of the feed forward loop (FFL) motif can be identified:

(1) the vertex at the top is the master regulator, this vertex regulates the other
two vertices;

(2) the vertex on the right side is the intermediate regulator, it is regulated by
the master regulator and itself regulates together with the master regulator
the vertex at the bottom

SS 2014 - lecture 1 Mathematics of Biological Networks
31



(3) the vertex at the bottom of the drawing is regulated by both other vertices
and is therefore called the regulated vertex.

Such different functions of vertices within motifs are called roles and 3 roles
can be assigned to the vertices of the FFL motif.

The motif-based centrality with roles C,,, restricts the number of counted
matches to those matches where the vertex occurs in the match with the role
under consideration.
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Using the previously introduced concepts we can extend the motif-based
centrality method further.

By assigning the same role to similar vertices of a group of similar motifs we
can establish a centrality based on a class (or group) of motifs.

Consider, for example, a group of chains
(see Fig. 4), where all vertices at the start
of such chains have a similar characteristic - - B
(no incoming edges) and all vertices at the
end have another similar characteristic
(no outgoing edges).

Figure 4. Several motifs of the chain motif class.
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For gene regulatory networks several motif classes are known.

For example, the regulatory chain motif class, as in the example above,
consists of a set of chains of 3 or more regulators in which one regulator
regulates another regulator, which in turn regulates a third one and so forth.

In the motif class single input motif (SIM) a set of vertices is exclusively
regulated by a single vertex.

The motif-based centrality with classes C,, . therefore is the sum of motif-based
centralities with roles C,,. for the same role in similar or related motifs.
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These two centrality measures are related to the closeness centrality.

Given the distance matrix D = (dist(i,j)) between all vertices,
one can define the reverse distance matrix

RD; = diameter(G) +1 - D; where diameter(G) is the highest
distance value of the graph.

On the basis of this, the radiality is defined as

. Yizj RDjj

Craa(i) = ::l]—l :
. o . ~ _ JizjRDij
and integration is defined as Cine () =———

A vertex with high radiality value can easily reach other vertices.
A vertex with a high integration value is easily reachable from other vertices.
Both measures are shortest-pathway based measures.
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Comparison of centrality measures
chains: motif-based centrality for the chain class

fflA, ffIB, fflC: motif-based centralities for the FFL motif with roles

Table 1. The centrality values that are discussed in this paper computed for the example graph in Figure 2.

ideg odeg par parR kat katR spb int rad chains FIA ffiB ffiCc fflSum
v01 0.00 3.00 0.04 019 0.00 37.64 0.00 0.00 2.18 47.00 2.00 0.00 0.00 2.00 vO1l
w02 1.00 1.00 0.05 0.07 0.95 12.32 0.00 036 145 15.00 0.00 1.00 0.00 1.00 / \
V03 1.00 1.00 0.08 0.o7 0.95 12.32 000 0.36 145 15.00 0.00 1.00 0.00 1.00 V02 V03
w04 3.00 1.00 012 0186 4 66 11.97 2400 1.09 1.82 14.00 0.00 0.00 2.00 2.00
w05 1.00 200 0.14 0186 537 11 .60 2800 1.18 2.09 13.00 1.00 0.00 0.00 1.00 \\ z ’/
V06 1.00 1.00 0.10 0.08 B.05 546 0.00 1.18 1.73 6.00 000 1.00 0.00 1.00 V04l
Vo7 2.00 5.00 0.18 014 12.75 475 3000 155 1.82 5.00 0.00 0.00 1.00 1.00
w08 1.00 0.00 0.07 003 13.07 0.0o 000 1.36 0.00 0.00 0.00 0.00 0.00 0.00 v
w09 1.00 0.00 0.07 0.03 1307 0.0o 000 1.36 0.00 0.00 0.00 0.00 0.00 0.00 VOS5
v10 1.00 0.00 0.07 0.03 13.07 0.0o0 o.0o0 1.36 0.00 0.00 0.00 0.00 0.00 0.00
w11 1.00 0.00 0.07 003 13 07 0no ooo 1.36 000 0.00 0.00 0.00 0.00 0.00
w12 1.00 0.00 0.07 003 13.07 0.00 0.0o0 1.36 0.00 0.00 0.00 0.00 0.00 0.00 voe
Abbreviations: chains: moti-based centrality for the chain class, filA, 1B and fIC: motif-based centrality forthe FFL motifwith roles (different roles A, B, C, see Figure 3); fflSurm: mofi-based ~
centrality for the FFL molif without roles, ideq: in-degree, int: integration; kat: Kalz slatus index; kalR: Katz status index for the reversed graph, odeq: out-degree, par. PageRank, parR: PageR- VO?]
ank farthe reversed graph; rad radiality, spb: shorlest-path betweenness ‘// \\
v

v08 v09 v10 vlil vl2

Figure 2. An example graph used to explain different centralit

ideqg: in-degree kat: Katz status index, katR: reversed g.
odeg: out-degree spb: shortest-path betweenness
par. PageRank int: integration

parR: PageRank for the reversed graph rad: radiality

Gene Regulation and Systems Biology 2008:2 193-201
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Background: Hierarchical GRN of E.coli

Largest WCC: 325 operons
(3/4 of the complete network)

WCC = weakly connected component (ignore
directions of regulation)

® IHF T CspA Lowest level: operons that code for TFs with only auto-
B | ; o regulation, or no TFs
o =,-fi’,?“,9‘”’ R Next layer: delete nodes of lower layer, identify TFs that do
4 i{,,. ‘- I.;"“ not regulate other operons in this layer (only lower layers)

Continue ...

Network with all regulatory
— edges pointing downwards

—> a few global regulators (¢) control all the details

Ma et al., BMC Bioinformatics 5 (2004) 199
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Most central genes in E. coli GRN

Table 2. Names ofthe top 25 genes (top 2% of all genes) according to 8 best centrality measures, i.e. centralities
which find a high number of global regulators within the top 2% of all genes. Global regulators according to
Martinez- Antonio and Collado-Vides (2003) are highlighted in bold face. Note that in few cases were genes with
the same centrality value occur they are ranked in alphabetical order. For each centrality the last row of the table
shows the number of global regulators identified within the top 2% of all genes.

position odeg park katR spb rad chains ffiA fflSum
1 crp cIp crmp hns cIp crp crp crp
2 fir ihfAB fnr gadX ihfAB ihfAB fnr fnr
3 InfAB mr arcA flhD fnr arcA ihfAB arcA
4 fis arcA ihfAB fur arcA fnr arcA fis
5 arcA phoB fis gadE fis fis fis narl
8 narl fexA hns fis gadE evgA modE irfAB
7 mns CpPpxR gadE Ip hns ydeQ 50xS hns
8 fur soxR gadX resAB fur gadt fns fur
9 Ip fis CcspA soxS sox8S soxR cpxR gadX
10 glnG evgA evgA fnr evgA sSoxS fhiA hyiR
1 narP cysB ydeQ CSpPA ycleQ forkR gadt matA
12 cpPxR argr forR caiF oxyR gadlWV rob flhD
13 pfoB phoFP gadlW purR gadX cspE gadX nagC
14 frur fur cspE narl CcSpA CSpA galR s0xS
15 modE allR soxS marA narL gadX fur modEt
16 fHiA ginG SOxR metJ modE mns gntR tdeA
17 fexA sdaR rob malT SoxR oxyR oxyR yiad
18 firD irpR marA arcA fork fur tdcR guti
19 gadt agaR marR ginG gadlW modE qutlf ompR
20 folllysd gadE oxyR ompR cspE narl nagC sHR
21 soxS soxS fur Nac ip Ip nart gals
22 argR hns modE oxyR ginG ginG onipR idnR
23 cysB ip gutid hupAB phoB ompR sHiR caifF
24 marA iyrR sriR argF narP phoB argf chbR
25 nagC forR nart dnal ompR cpxR cysB cpxR
#global 13 12 12 11 14 15 12 11
regs.

Abbreviations; see Table 1.

Gene Regulation and Systems Biology 2008:2 193-201
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Table 3. Kendall's correlation coefficients for the centralities used in the analysis of the E. cofi network.
odeg parR katR spb rad chains fflA fflSum

odeg 1 0.97 0.93 0.49 0.98 0.98 0.47 0.17
parR 0.97 1 0.92 0.48 0.96 0.96 0.46 0.16
katR 0.93 0.92 1 0.47 0.95 0.95 0.46 0.14
spb 0.49 0.48 0.47 1 0.49 0.49 0.43 0.22
rad 0.98 0.96 0.95 0.49 1 1 0.48 0.18
chains 0.98 0.96 0.95 0.49 1 1 0.48 0.18
fflA 0.47 0.46 0.46 0.43 0.48 0.48 1 0.29
fflSum 0.17 0.16 0.14 0.22 0.18 0.18 0.29 1

Abbreviations: see Table 1.

Some centralities correlate with values above 0.9 to other centralities (out-
degree, PageRank, Katz status index, radiality, motif-based centrality with

chain classes (chains)).

These high coefficients can be easily explained:

1101 out of 1250 vertices have an out-degree of zero. All these vertices are
assigned the same centrality of nearly zero for Katz, PageRank, and the value
zero for the radiality and chains.

Gene Regulation and Systems Biology 2008:2 193-201
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Table 4 shows the pairwise correlation coefficients for the centrality values of the
vertices which have a non-zero out-degree.

. : Table 4. Kendall's correlation coefficient for the dataset
These coefficients show a different with the zero out-degree vertices removed.

picture: all 5.centrallt|es rank the remaining odeg rad KkalR parR  chains
149 genes differently. odeg 1 075 07 052 072
Only the centrality radiality and Katz status rad 0.75 1 094 051 096
_ _ _ _ katR 07 094 1 0.48 097
index achieve a considerable high parR 052 051 0.48 1 0.5
chains 072 096 097 05 1

correlation to each other and to chains.

In conclusion, the centralities applied to the GRN rank the genes quite differently.

The motif-based centrality with chain classes is able to rank the highest number
(15) of interesting genes (18 global regulators identified by Martinez-Antonio and
Collado-Vides (2003)) within the top 2% of all genes.
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The analysis of network topology is of interest in many different disciplines,
e.g. social networks.

There exist different sorts of networks for biological cells:

Protein-protein interaction networks, gene-regulatory networks, metabolic
networks, ...

For the gene regulatory network of E. coli motif-based centrality outperforms
other methods in terms of identifying the key regulatory genes.
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