
V10: Bayesian Parameter Estimation 

  
Although the MLE approach seems plausible,  
it can be overly simplistic in many cases. 
 
Assume again that we perform the thumbtack experiment  
and get 3 heads out of 10 → assuming  = 0.3 is then quite reasonable. 
 
But what if we do the same experiment with a standard coin,  
and also get 3 heads? 
 
Intuitively, we would probably not conclude that the parameter of the coin is 0.3. 
 
Why not? 
 
Because we have a lot more experience with tossing coins, 
we have a lot more prior knowledge about their behavior. 
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Joint probabilistic model 

  
In the Bayesian approach, we encode our prior knowledge  
about  with a probability distribution. 
 
This distribution represents how likely we are a priori  
to believe the different choices of parameters  
 
Then we can create a joint distribution over the parameter  and  
the data cases X[1], …, X[M] that we are about to observe. 
 
This joint distribution captures our assumptions about the experiment. 
 
As long as we don‘t know , the tosses are not marginally independent 
because each toss tells us something about . 
 
One  is known, we assume that the tosses are conditionally independent given . 
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Joint probabilistic model 

  
We can describe these assumptions using the probabilistic model below. 
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Joint probabilistic model 

  
Having determined the model structure,  
it remains to specify the local probability models in this network. 
 
We begin by considering the probability P(X[m] |  ) : 
 

𝑃 𝑥 𝑚  | 𝜃 = ( 𝜃 𝑖𝑓 𝑥 𝑚 = 𝑥+
1 − 𝜃 𝑖𝑓 𝑥 𝑚 = 𝑥. 

 
We also need to describe the prior distribution over   , P(). 
 
This is a continuous density over the interval [0,1]. 
There are several possible choices for this.  
 
Let us first consider how to use it. 
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Joint probabilistic model 

  
The network structure implies that the joint distribution  
of a particular data set and  factorizes as 
 

𝑃 𝑥 1 ,… , 𝑥 𝑀 , 𝜃 = 𝑃 𝑥 1 ,… , 𝑥 𝑀 |𝜃 𝑃 𝜃  

= 𝑃 𝜃 2𝑃 𝑥 𝑚 |𝜃
3

45+
 

= 𝑃 𝜃 𝜃3 + 1 − 𝜃 3 .  
 
where M[1] is the number of heads in the data, 
           M[0] is the number of tails, and  
           P( x[1], …, x[M] | ) is simply the likelihood function L( : D). 
 
This network specifies a joint probability model over parameters and data. 
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Posterior distribution 

  
There are several ways in which we can use this network. 
 
For example, we can take an observed data set D of M outcomes,  
and use it to instantiate the values of x[1], …, x[M]. 
 
We can then compute the posterior distribution over : 

𝑃 𝜃|𝑥 1 , … , 𝑥 𝑀 = 𝑃 𝑥 1 ,… , 𝑥 𝑀 |𝜃 𝑃 𝜃
𝑃 𝑥 1 ,… , 𝑥 𝑀  

 
The first term in the numerator is the likelihood, 
the second term is the prior over the parameters. 
 
The denominator is a normalizing factor  
so that the product is a proper density function [0,1]. 
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Prediction 

  
Let us consider the value of the next coin toss x[M+1]  
given the observations of the first M tosses.  
Since  is unknown, we will consider all its possible values and integrate over them 
  

𝑃 𝑥 𝑀 + 1  | 𝑥 1 ,… , 𝑥 𝑀  

= 7𝑃 𝑥 𝑀 + 1  | 𝜃, 𝑥 1 , … , 𝑥 𝑀 𝑃 𝜃 | 𝑥 1 ,… , 𝑥 𝑀  𝑑𝜃 

= 7𝑃 𝑥 𝑀 + 1 |𝜃 𝑃 𝜃|𝑥 1 , … , 𝑥 𝑀 𝑑𝜃 

 
When going from the second to the third line,  
we used the conditional indepencies implied by the meta-network. 
 
→ we are integrating the posterior over   
to predict the probability of heads for the next toss. 
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Prediction: revisit thumbtack example 

  
Assume that our prior is uniform (constant) over  in the interval [0,1].  
 
Then 𝑃 𝜃|𝑥 1 , … , 𝑥 𝑀  is proportional to the likelihood 
𝑃 𝑥 1 ,… , 𝑥 𝑀  | 𝜃 = 𝜃3 + 1 − 𝜃 3 .  . 
 
Plugging this into the integral, we need to compute 

𝑃 𝑋 𝑀 + 1 = 𝑥+|𝑥 1 , … , 𝑥 𝑀 = 1
𝑃 𝑥 1 ,… , 𝑥 𝑀 7𝜃 ∙ 𝜃3 + 1 − 𝜃 3 . 𝑑𝜃 

                            = ⋯ = 3 + <+
3 + <3 . <+  

 
This so-called Bayesian estimator is quite similar to the MLE prediction  
except that it adds one „imaginary“ sample to each count. 
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Priors: Beta distribution 

  
When using nonuniform priors, the challenge is to pick  
a continuous distribution that can be written in a compact form  
(e.g. using an analytical formula), 
and that can be updated efficiently as we get new data. 
 
An appropriate prior is the Beta distribution. 
 
Definition: a Beta distribution is parametrized by two real and positive 
hyperparameters 1, 0 and defined as: 

𝜃~𝐵𝑒𝑡𝑎 𝛼+, 𝛼.   if   𝑝 𝜃 = 𝛾𝜃GHI+ 1 − 𝜃 GJI+ 
 

The normalization constant is defined as: 𝛾 = K GH<GJ
K GH K GJ

 
 

where Γ 𝑥 = ∫ 𝑡NI+𝑒IO𝑑𝑡P
.    is the Gamma function. 
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Beta distribution 

  
The parameters 1 and 0 correspond intuitively to the number of imaginary  
heads and tails that we have „seen“ before starting the experiment. 
 
These are examples of beta functions 
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Gamma function 

  
The Gamma function is simply a continuous generalization of factorials. 
 
It satisfies (1) = 1 and (x + 1) = x (x). 
 
Hence (n + 1) = n! 
 
Beta distributions have properties  
that make them particularly useful for parameter estimation. 
 
Assume our distribution P() is Beta(1,0) and consider a single coin toss X. 
 
Let us compute the marginal probability over X, based on P(). 
 
We need to integrate out . 
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Properties of Beta functions 

  𝑃 𝑋 1 = 𝑥+ = 7 𝑃 𝑋 1 = 𝑥+|𝜃 ∙ 𝑃 𝜃 𝑑𝜃
+

.
 

= 7 𝜃 ∙ 𝑃 𝜃 𝑑𝜃
+

.
 

= 7 𝜃 ∙ 𝛾𝜃GHI+ 1 − 𝜃 GJI+𝑑𝜃
+

.
 

= 7 Γ 𝛼+ + 𝛼.
Γ 𝛼+ Γ 𝛼.

𝜃GH 1 − 𝜃 GJI+𝑑𝜃
+

.
 

= ⋯ = 𝛼+
𝛼+ + 𝛼.

 

 
This finding matches our inituition that the Beta prior indicates  
that we have seen 1 (imaginary) heads and 0 (imaginary) tails.  
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Properties of Beta distributions 

  
As we get more observations, i.e. M[1] heads and M[0] tails it follows that 
 

𝑃 𝜃|𝑥 1 ,… , 𝑥 𝑀 ∝ 𝑃 𝑥 1 ,… , 𝑥 𝑀 |𝜃 𝑃 𝜃  
∝ 𝜃3 + 1 − 𝜃 3 . ∙ 𝜃GHI+ 1 − 𝜃 GJI+ 

= 𝜃GH<3 + I+ 1 − 𝜃 GJ<3 . I+ 
 
which is precisely Beta(1+ M[1], 0+ M[0]). 
 
This result illustrates a key property of the Beta distribution: 
 
If the prior is a Beta distribution, then the posterior distribution,  
that is, the prior conditioned on the evidence, is also a Beta distribution. 
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Priors 

  
An immediate consequence is that we can compute  
the probabilities over the next toss: 

𝑃 𝑋 𝑀 + 1 = 𝑥+|𝑥 1 , … , 𝑥 𝑀 = 𝛼+ + 𝑀 1
𝛼 +𝑀  

 
where  = 1 + 0   and M = M1 + M0  
 
In this case, our posterior Beta distribution tells us  
that we have seen 1 + M[1] (imaginary) heads and 0 + M[0] tails. 
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Effect of Priors 

  
Let us compare the effect of Beta(2,2) vs. Beta(10,10)  
on the probability over the next coin toss. 
 

Both priors predict that the probability of heads in the first toss is GH
GH<GJ

= 0.5 .  
 
How do different priors (Beta(10,10) is more narrow) affect further convergence? 
 
Suppose we observe 3 heads in 10 tosses. 

Using the first prior, our estimate is U<VW<+. ≈ 0.36 

Using the second prior gives +.<VU.<+. ≈ 0.43 

 
But when we obtain much more data, the effect of the prior almost disappears. 
If we obtain 1000 tosses of which 300 are heads,  

both U<V..W<+... and +.<V..U.<+... give values close to 0.3 
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Priors and Posteriors 

  
Let us assume a general learning problem  
where we observe a training set D that contains M IID samples  
of a random variable X from an unknown distribution P*(X). 
 
We also assume that we have a parametric model P( | )  
where we can choose parameters from a parameter space . 
 
The MLE approach attempted to find the parameters 𝜃\  in   
that are „best“ given the data. 
 
The Bayesian approach, on the other hand, does not attempt 
to find a single best estimate. 
 
Instead, one quantifies the subjective probability for different 
values of  after seeing the evidence. 
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Priors and Posteriors 

  
We need to describe a joint distribution P(D, ) over the data and the parameters. 
 
We can easily write 

𝑃 𝐷, 𝜃 = 𝑃 𝐷|𝜃 𝑃 𝜃  
 
The first term on the right is the likelihood function  
(see V8 – example on predicting PP complexes). 
 
The second term is the prior distribution over the possible values in .  
 
It captures our initial uncertainty about the parameters.  
 
It can also capture our previous experience before we start the experiment. 
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Priors and Posteriors 

  
Once we have specified the likelihood function and the prior,  
we can use the data to derive the posterior distribution  
over the parameters using Bayes rule: 

𝑃 𝜃|𝐷 = 𝑃 𝐷|𝜃 𝑃 𝜃
𝑃 𝐷  

 
The term P(D) is the marginal likelihood of the data  

  𝑃 𝐷 = ∫ 𝑃 𝐷|𝜃 𝑃 𝜃 𝑑𝜃^  
what is the integration of the likelihood  
over all possible parameter assignments. 
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Priors and Posteriors 

  
Let us reconsider the example of a multinomial distribution (MD). 
 
We need to describe our uncertainty about the parameters of MD. 
 
The parameter space contains all nonnegative vectors Θ = 𝜃+, … , 𝜃`   
such that  ∑ 𝜃bb = 1. 
 
As we saw previously, the likelihood function is 𝐿 𝜃: 𝐷 = ∏ 𝜃b3 b

b  
 
Since the posterior is a product of the prior and the likelihood, 
it is natural to require that the prior also have a form similar 
to the likelihood. 
 
One such prior is the Dirichlet distribution which generalizes  
the Beta distribution. 
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Dirichlet distribution 

  
A Dirichlet distribution is specified by a set of hyperparameters 1, … K so that 

𝜃~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼+,… , 𝛼`   if  𝑃 𝜃 ∝2𝜃bGjI+
b

 

 
We use  to denote ∑ 𝛼kk .  
If we use a Dirichlet prior, then the posterior is also Dirichlet: 
 
Proposition: If P() is 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼+,… , 𝛼`  then P( | D) is  
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼+ + 𝑀 1 ,… , 𝛼` + 𝑀 𝐾 ,  
where M[K] is the number of occurrences of xk.  
 
Priors such as the Dirichlet are useful since they ensure that the posterior has a 
nice compact description and uses the same representation as the prior. 
 
We will see on 2 examples the effects of priors on posterior estimates. 
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Effect of Beta prior on convergence of posterior estimates 

  

For a given data set size M, we assume that D contains 0.2 M heads and 0.8 M tails.  
As the amount of real data grows, our estimate converges to the true underlying 
distribution, regardless of the starting point. 
(Left): effect of varying prior means 1´, 0´ for a fixed prior strength . 
(Right): effect of varying prior strength for a fixed prior mean 1´ = 0´= 0.5 

 
21 

SS 2014 - lecture 10 Mathematics of Biological Networks 



Convergence of parameter estimate 

  

Effect of different priors on smoothing the parameter estimates. 
 
Below the graph is shown the particular sequence of tosses. 
Solid line: MLE estimate 
Dashed lines: Bayesian estimates with different strengths and uniform prior means. 
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Dotted line: Beta(10,10) 
Small-dash line: Beta(5,5) 
Large-dash line: Beta (1,1) 
 
→ Beta(10,10) has longer „memory“ 
about initial conditions 



  Imprinting effects during hematopoietic differentiation? 
• One of the most well studied developmental systems  
• Mature cell line models 
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Rathinam and Flavell 2008 

SS 2014 - lecture 10 Mathematics of Biological Networks 

Mohamed Hamed 
(unpublished) 



Blood lineages 
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Lineage Developmental cell line  
B cell LTHSC   STHSC  LMPPGMLPCLPPREPROBBLPMZB 
NK cell LTHSC   STHSC  LMPPGMLPCLPMNK 
T cell LTHSC   STHSC  LMPPCLPETPTHY-DPTHY-SPTCELL 
Erythrocytes LTHSC   STHSC  MPPCMP PMEP MEP PROE ERY 
Monocytes LTHSC   STHSC  MPPCMPPGMPGMPMONOMACRO 

or DENDRITIC 
Megakaryocytes LTHSC   STHSC  MPPCMPPMEPMEPMKPMKE 
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Motivation I 
• Identify cellular events that drive cell differentiation and reprogramming 

 
• Construct gene-regulatory network (GRN) that governs  
 - transitions between the different states along the    
    developmental cell lines and  
 - pausing at specific states. 

 
• Do imprinted genes play a role in regulating differentiation?. 
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Motivation II 
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Berg, Lin et al. (2011) 

during the earliest phases of hematopoietic 
development, imprinted genes may have 
distinct roles 

Real-time PCR analysis of imprinted gene expression in hematopoietic cells 

Imprinted genes drastically 
down-regulated in 
differentiated cells. 
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Imprinted genes 
• violate the usual rule of inheritance  
• bi-allelic genes :  
 gene copy (allele) encoding hemoglobin from dad  
 gene copy (allele) encoding hemoglobin from mom 
 Child: expresses equal amounts of the 2 types of hemoglobin 
 
• mono-allelic (imprinted) genes : one allele silenced by DNA methylation 
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     Imprinted genes cluster in the genome 
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    Parental conflict hypothesis = “battle of the 
sexes” 

Paternally expressed genes                  Maternally expressed 
genes 
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embryonic 
growth in 
placenta 

embryonicg
growth in 
placenta 
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       Mouse Pluripotency network (Plurinet) 
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Pluripotency network in 
mouse 
 
G. Fuellen et al. (2010) 
 
based on 177 publications 
 
274 genes 
574 stimulations / 
inhibitions/ and 
interactions 
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Gene regulatory network around Oc4  
controls pluripotency 

  Tightly interwoven network of 9 
transcription factors keeps ES cells in 
pluripotent state. 
 
6632 human genes have binding site in 
their promoter region for at least one of 
these 9 TFs. 
 
Many genes have multiple motifs. 
 
800 genes bind ≥ 4 TFs. 
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   Gene expression profiles       imprinted             pluri     hematopoiesis 
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(1) long and short-term hematopoietic 
stem cells  
 

(2) Intermediate progenitor populations 
such as Lymphoid primed multipotent 
progenitor (LMPP), common lymphoid 
progenitor (CLP), and granulocyte–
monocyte progenitor (GMP), and  
 

(3) Terminally differentiated blood 
progeny such as NK cells and 
granulocyte- monocyte (GM). 
 

All 3 gene sets contain genes that are 
upregulated either in (1), (2) or (3) stages 
 

a b c 
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   Lineage-specific marker genes  
from all 3 gene sets cluster together 
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red : maternally expressed imprinted genes 
blue : paternally expressed imprinted genes 
cyan : pluripotency genes 
orange: hematopoietic genes 
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Imprinted gene network (IGN) 
Aim: explain surprisingly similar expression profiles of 3 gene sets 
 
• only 5 imprinted genes (Gab1, Ins1, Phf17, Tsix, and Xist) are 

present in the pluripotency list and  
• only 3 imprinted genes (Axl, Calcr, and Gnas) belong to the 

hematopoietic list. 
 

Who regulates the imprinted genes? 
• Identify regulators (TFs) of imprinted genes and target genes 

regulated by imprinted genes 
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Mebitoo GRN Plugin 
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   gene sets are (largely) co-expressed and 
enriched with developmental GO terms 

37 
SS 2014 - lecture 10 Mathematics of Biological Networks 

Mohamed Hamed 
(unpublished) 



   Summary 
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Parameter learning from data is an important research field. 
We entered into some basics about MLE and Bayesian parameter estimation. 
 
Powerful and efficient priors need to be estimated, see Beta function. 
 
V11: enter into structure learning. 
 
Application example: construct GRN to derive genes that drive hematopoiesis. 
 
Intersection with pluripotency and imprinted genes reveals interesting module of 
co-expressed genes with homogenous involvement in development. 
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