Although the MLE approach seems plausible,
it can be overly simplistic in many cases.

Assume again that we perform the thumbtack experiment
and get 3 heads out of 10 — assuming 6 = 0.3 is then quite reasonable.

But what if we do the same experiment with a standard coin,
and also get 3 heads?

Intuitively, we would probably not conclude that the parameter of the coin is 0.3.
Why not?

Because we have a lot more experience with tossing coins,
we have a lot more prior knowledge about their behavior.
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In the Bayesian approach, we encode our prior knowledge
about 0 with a probability distribution.

This distribution represents how likely we are a priori
to believe the different choices of parameters

Then we can create a joint distribution over the parameter 6 and
the data cases X[1], ..., X[M] that we are about to observe.

This joint distribution captures our assumptions about the experiment.

As long as we don't know 6, the tosses are not marginally independent
because each toss tells us something about 6.

One 0 is known, we assume that the tosses are conditionally independent given 6.
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Joint probabilistic model

We can describe these assumptions using the probabilistic model below.

r’}T

) @3 e
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Having determined the model structure,
it remains to specify the local probability models in this network.

We begin by considering the probability P(X[m] | 0):

0 if x|m] = x?!

1-0 if x|m]

P(x[m] | 6) ={

XO
We also need to describe the prior distribution over 6, P(0).

This is a continuous density over the interval [0,1].
There are several possible choices for this.

Let us first consider how to use it.
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The network structure implies that the joint distribution
of a particular data set and 0 factorizes as

P(x[1],...,x[M],0) = P(x|1], ..., x|[M]|0)P(6)

M
=p@ | [ Pectmilo)
m=1

= P(8)oMtl(1 — gyMlo]

where M[1] is the number of heads in the data,
M[O] is the number of tails, and
P( x[1], ..., x[M] | 0) is simply the likelihood function L(6 : D).

This network specifies a joint probability model over parameters and data.
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There are several ways in which we can use this network.

For example, we can take an observed data set D of M outcomes,
and use it to instantiate the values of x[1], ..., x[M].

We can then compute the posterior distribution over 0:

1], ..., 6)P (0
P(Olx[1],..,x[M]) = P(XIE(L[H Jf.[.Mx][llVl)]I)D( )

The first term in the numerator is the likelihood,
the second term is the prior over the parameters.

The denominator is a normalizing factor
so that the product is a proper density function [0,1].
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Let us consider the value of the next coin toss x[M+1]
given the observations of the first M tosses.
Since 6 is unknown, we will consider all its possible values and integrate over them

P(x[M + 1] | x[1], ..., x[M])

_ fP(x[M + 1116, x[1], ... x[MDP(8 | x[1], ..., x[M]) d6
_ jP(x[M+1]|9)P(0|x[1],...,x[M])dH

When going from the second to the third line,
we used the conditional indepencies implied by the meta-network.

— we are integrating the posterior over 6
to predict the probability of heads for the next toss.
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Assume that our prior is uniform (constant) over 6 in the interval [0,1].

Then P(0|x[1], ..., x[M]) is proportional to the likelihood
P(x[1],...,x[M] | 6) = eMltl(1 — g)Mlo]

Plugging this into the integral, we need to compute

1
P[], ..., x[M])

P(X[M + 1] = xYx[1], ..., x[M]) f g - oMl(1 — g)Mlolgg

_ _ M[1]+1
M[1]+M[0]+1

This so-called Bayesian estimator is quite similar to the MLE prediction
except that it adds one ,imaginary“ sample to each count.
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When using nonuniform priors, the challenge is to pick

a continuous distribution that can be written in a compact form
(e.g. using an analytical formula),

and that can be updated efficiently as we get new data.

An appropriate prior is the Beta distribution.
Definition: a Beta distribution is parametrized by two real and positive

hyperparameters o, o, and defined as:
6~Beta(ay, ap) if p(6) =yo*1~1(1 — 9)*o~1

I'(a;+ag)
I'(a)T(ap)

The normalization constant is defined as: y =

where T'(x) = [” t*"te~tdt is the Gamma function.
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Beta distribution

The parameters a4 and o, correspond intuitively to the number of imaginary

heads and tails that we have ,seen” before starting the experiment.

These are examples of beta functions

i

gl

i i Isllll [ILI:I [I.H '| 1] =8 L<F ] ] Ll - ] il
il [
Herr(l, 1]

i

1} {18 [LE ] (1R ] e 1
[}

Bt 3, I) Fetai |5, 10} fheda {03 415 )
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The Gamma function is simply a continuous generalization of factorials.
It satisfies I'(1) =1 and I'(x + 1) = x I'(x).
HenceI'(n + 1) = n!

Beta distributions have properties
that make them particularly useful for parameter estimation.

Assume our distribution P(0) is Beta(o.4,0,5) and consider a single coin toss X.
Let us compute the marginal probability over X, based on P(0).

We need to integrate out 0.
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1
P(X[1] =x1) = j P(X[1] = x10) - P(0)dO
0

1
_ j 9-P(0)do
0

1
:j 6-y04~1(1 - 6)%1dg
0

B 1T(ay + ayp) @1 g1
‘fo [la)T(ag) 0 L~ 0 db

aq

a, + ag

This finding matches our inituition that the Beta prior indicates
that we have seen o, (imaginary) heads and o, (imaginary) tails.
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As we get more observations, i.e. M[1] heads and MI[0] tails it follows that

P@@|x|1],...,x[M]) < P(x|1], ...,x|[M]|6)P(O)
e 9M[1](1 _ Q)M[O] ) Hal—l(l _ Q)ao—l
— 9a1+M[1]—1(1 _ 6)0£0+M[0]—1

which is precisely Beta(o,+ M[1], o+ M[O]).
This result illustrates a key property of the Beta distribution:

If the prior is a Beta distribution, then the posterior distribution,
that is, the prior conditioned on the evidence, is also a Beta distribution.
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An immediate consequence is that we can compute
the probabilities over the next toss:

PXIM + 1] = x*|x[1], ..., x[M]) = ———

where a = o4 + oy, and M =M, + M,

In this case, our posterior Beta distribution tells us

that we have seen o, + M[1] (imaginary) heads and o, + M[0] tails.
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Let us compare the effect of Beta(2,2) vs. Beta(10,10)
on the probability over the next coin toss.

aq

=0.5.

Both priors predict that the probability of heads in the first toss is

a1+a0

How do different priors (Beta(10,10) is more narrow) affect further convergence?

Suppose we observe 3 heads in 10 tosses.

Using the first prior, our estimate is % ~ 0.36

10+3
20+10

Using the second prior gives ~ 0.43

But when we obtain much more data, the effect of the prior almost disappears.

If we obtain 1000 tosses of which 300 are heads,

2+300 104300
both
441000 2041000

give values close to 0.3
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Let us assume a general learning problem
where we observe a training set D that contains M |ID samples
of a random variable X from an unknown distribution P*(X).

We also assume that we have a parametric model P(¢ | 0)
where we can choose parameters from a parameter space 0.

The MLE approach attempted to find the parameters 6 in ©
that are ,best” given the data.

The Bayesian approach, on the other hand, does not attempt
to find a single best estimate.

Instead, one quantifies the subjective probability for different
values of 0 after seeing the evidence.
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We need to describe a joint distribution P(D, 6) over the data and the parameters.

We can easily write
P(D,0) = P(D|6)P(6)

The first term on the right is the likelihood function
(see V8 — example on predicting PP complexes).

The second term is the prior distribution over the possible values in ©.
It captures our initial uncertainty about the parameters.

It can also capture our previous experience before we start the experiment.
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Once we have specified the likelihood function and the prior,
we can use the data to derive the posterior distribution
over the parameters using Bayes rule:

P(D|6)P(6)

P(O|D) = P(D)

The term P(D) is the marginal likelihood of the data

P(D) = f@ P(D|6)P(6)do
what is the integration of the likelihood
over all possible parameter assignments.
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Let us reconsider the example of a multinomial distribution (MD).
We need to describe our uncertainty about the parameters of MD.

The parameter space contains all nonnegative vectors 6 = (6,4, ..., 0g)
such that ., 6, = 1.

As we saw previously, the likelihood function is L(6: D) =[], HkM[k]

Since the posterior is a product of the prior and the likelihood,
it is natural to require that the prior also have a form similar
to the likelinood.

One such prior is the Dirichlet distribution which generalizes
the Beta distribution.
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A Dirichlet distribution is specified by a set of hyperparameters a., ... ok so that

O~Dirichlet(ay, ..., ag) if P(0) « 1_[ g, k1
k

We use a to denote ). ; ;.
If we use a Dirichlet prior, then the posterior is also Dirichlet:

Proposition: If P(0) is Dirichlet(ay, ..., ag) then P(0 | D) is
Dirichlet(a; + M[1], ..., ax + M[K]),
where M[K] is the number of occurrences of x.

Priors such as the Dirichlet are useful since they ensure that the posterior has a
nice compact description and uses the same representation as the prior.

We will see on 2 examples the effects of priors on posterior estimates.
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Effect of Beta prior on convergence of posterior estimates
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M = # samples M = ¥ samples

For a given data set size M, we assume that D contains 0.2 M heads and 0.8 M tails.
As the amount of real data grows, our estimate converges to the true underlying
distribution, regardless of the starting point.

(Left): effect of varying prior means 0,, 6," for a fixed prior strength .

(Right): effect of varying prior strength for a fixed prior mean 6,” = 6,= 0.5
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| Dotted line: Beta(10,10)
WA Small-dash line: Beta(5,5)
H’Zﬁ | Large-dash line: Beta (1,1)

A

i

ﬂ“wﬁwﬁﬁn-g’;'j — Beta(10,10) has longer ,memory*
' about initial conditions

Lf

Effect of different priors on smoothing the parameter estimates.

Below the graph is shown the particular sequence of tosses.
Solid line: MLE estimate

Dashed lines: Bayesian estimates with different strengths and uniform prior means.
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Imprinting effects during hematopoietic differentiation?

One of the most well studied developmental systems
Mature cell line models

Rathinam and Flavell 2008 Mohamed Hamed
(unpublished)
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Lineage Developmental cell line

B cell LTHC 2 STHC 2 LMPP>GMLP->CLP-PREPROB-BLP>MZB
NK cell LTHSC 2 STHC 2 LMPP>GMLP->CLPMNK
T cell LTHSC 2 STHL 2 LMPPCLP2ETP>THY-DP2THY-SP2TCELL

Erythrocytes | LTHC 2 STHSC - MPP>CMP >PMEP MEP PROE> ERY

Monocytes LTHSC 2 STHC 2 MPP-CMP->PGMP-GMP->MONO->MACRO
or DENDRITIC

Megakaryocytes | LTHSC 2 STHSC » MPP>CMP>PMEP->MEP>MKP->MKE

Mohamed Hamed
(unpublished)
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|dentify cellular events that drive cell differentiation and reprogramming

Construct gene-regulatory network (GRN) that governs
- transitions between the different states along the
developmental cell lines and
- pausing at specific states.

Do imprinted genes play a role in regulating differentiation?.

Mohamed Hamed
(unpublished)
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Berg, Lin et al. (2011)
Real-time PCR analysis of imprinted gene expression in hematopoietic cells

MEF

LT-HEL T-cells B-calls Grans Eryths LT-HSC ST-HEC MFPP CLF GNP GMP

Cdkmic Cdknfc
Dk Dk
Grb1id Groio
3 gz
Hi1S H18
gtz Igf2
Meat Kzal
M Mdn
Pagl Pegl
Paglt Plaglt

v & Fs i £

4 & F AR B
Fold differance in sxpression bevel

during the earliest phases of hematopoietic

Imprinted genes drastically
down-regulated in development, imprinted genes may have
Mohamed Hamed

differentiated cells. distinct roles
(unpublished)
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 violate the usual rule of inheritance
- Dbi-allelic genes :
gene copy (allele) encoding hemoglobin from dad
gene copy (allele) encoding hemoglobin from mom
Child: expresses equal amounts of the 2 types of hemoglobin

« mono-allelic (imprinted) genes : one allele silenced by DNA methylation

n Mom

-
f Da fr
Different genes are epigenetically
silenced in eggs and sperm
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Imprinted genes cluster in the genome

Mouse Imprinted Genes, Regions and Phenotypes
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Parental conflict hypothesis = “battle of the
sexes”

Paternally expressed genes Maternally expressed
genes

embryonic embryonicg
growth in growth in
placenta placenta
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Mouse Pluripotency network (Plurinet)

Pou5f1

Nanog

SS 2014 - lecture 10

Mathematics of Biological Networks

Pluripotency network in
mouse

-| G. Fuellen et al. (2010)

based on 177 publications

274 genes

574 stimulations /
inhibitions/ and
interactions
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Gene regulatory network around Oc4
controls pluripotency

Tightly interwoven network of 9
transcription factors keeps ES cells in
pluripotent state.

6632 human genes have binding site in
their promoter region for at least one of
these 9 TFs.

Many genes have multiple motifs.

800 genes bind =24 TFs.
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Gene expression profiles imprinted pluri  hematopoiesis

(1) long and short-term hematopoietic
stem cells

(2) Intermediate progenitor populations
such as Lymphoid primed multipotent
progenitor (LMPP), common lymphoid
progenitor (CLP), and granulocyte—
monocyte progenitor (GMP), and

bbb T b R i AT o i e
——

(3) Terminally differentiated blood
progeny such as NK cells and
granulocyte- monocyte (GM).

All 3 gene sets contain genes that are
upregulated either in (1), (2) or (3) stages

Mohamed Hamed
(unpublished)
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Lineage-specific marker genes
from all 3 gene sets cluster together

NK cell | I

L 1 1
e (o e T 55 ] e [ 0 o e | T = 4=—|i
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MPPa
sCMP
pGMPa
pGMPb
GMP

Mono

red : maternally expressed imprinted genes
blue : paternally expressed imprinted genes
. pluripotency genes
. hematopoietic genes
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Ahsp

Mohamed Hamed
(unpublished)
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« only 5 imprinted genes (Gab1, Ins1, Phf17, Tsix, and Xist) are
present in the pluripotency list and

« only 3 imprinted genes (Axl, Calcr, and Gnas) belong to the
hematopoietic list.

Who regulates the imprinted genes?

» ldentify regulators (TFs) of imprinted genes and target genes
regulated by imprinted genes

Mohamed Hamed
(unpublished)
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Mebitoo GRN Plugin ¢

=
1 ﬁ
' NetBeans — = ““&& jJava
r ‘
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Java Universal
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wwe- === Database

XStream
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TRED < -
ﬂf_fSl—@ Transcriptional Regulatory (3 NCBI

Element Database

Gene &
Nucleotide

Johannes Trumm, MSc thesis ,CBI, 2011. Mohamed Hamed
(unpublished)
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Mebitoo GRN Plugin

4 Mebitoo =6 =
Eile Task View Tools Window Help
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:Select and move nodes
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Johannes Trumm, MSc thesis ,CBI, 2011.
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gene sets are (largely) co-expressed and
enriched with developmental GO terms

Network heatmap plot, all genes

Color
log10 p-value

B 200

~ 250

l 300
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= . | developmental process |
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P

- [immuna system devalopmant;l

'hemopoiesis |

[organ development |

I' cellular developmental process |

cell differentiation |

|_ regulation of cell diﬂareﬁtiatian | - I ~

- [positiva regulation of biological process |

._ | regulation of macromolecule matabolism_|
Moﬁamed Hameh
(unpublished)
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Parameter learning from data is an important research field.
We entered into some basics about MLE and Bayesian parameter estimation.

Powerful and efficient priors need to be estimated, see Beta function.
V11: enter into structure learning.
Application example: construct GRN to derive genes that drive hematopoiesis.

Intersection with pluripotency and imprinted genes reveals interesting module of
co-expressed genes with homogenous involvement in development.
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