
V11: Structure Learning in Bayesian Networks 

  
In lectures V9 and V10 we made the strong assumption  
that we know in advance the network structure. 
 
Today, we consider the task of learning in situations  
where we do not know the structure of the BN in advance. 
 
Instead, we will apply the strong assumption that our data set is fully observed. 
 
As before, we assume that the data D are generated IID  
from an underlying distribution P*(X). 
 
We assume that P* is induced by some Bayesian network G* over X.  
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Example: coin toss 

  
Consider an experiment where we toss 2 standard coins X and Y independently. 
 
We are given a data set with 100 instances of this experiment 
and would like to learn a model for this scenario. 
 
A „typical“ data set may have the entries for X and Y:  
 27 head/head 22 head/tail 
 25 tail/head 26 tail/tail 
 
In this empirical distribution, the 2 coins are apparently not fully independent. 
(If X = tail, the chance for Y = tail appears higher than if X = head). 
 
This is quite expected because the probability of tossing 100 pairs of fair coins  
and getting exactly 25 outcomes in each category is only about 1/1000. 
 
Thus, even if the coins are indeed indepdendent, we do not expect that 
the observed empirical distribution will satisfy independence. 
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Example: coin toss 

  
Suppose we get the same results in a very different situation. 
 
Say we scan the sports section of our local newspaper for 100 days  
and choose an article at random each day. 
 
We mark X = x1 if the word „rain“ appears in the article and X = x0 otherwise. 
 
Similarly, Y denotes whether the word „football“ appears in the article. 
 
Our intuition whether the two random variables are independent is unclear. 
 
If we get the same empirical  counts as in the coins described before, 
we might suspect that there is some weak connection. 
 
In other words, it is hard to be sure whether the true underlying  
model has an edge between X and Y or not. 
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Goals of the learning process 

  
The goal of learning G* from the data is hard to achieve because  
- the data sampled from P* are typically noisy and  
- do not reconstruct P* perfectly. 
 
We cannot detect with complete reliability which  
independencies are present in the underlying distribution. 
 
Therefore, we must generally make a decision about our willingness  
to include in our learned model edges about which we are less sure. 
 
If we include more of these edges, we will often learn  
a model that contains spurious edges. 
 
If we include few edges, we may miss independencies. 
 
The decision which compromise is better depends on the application. 
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Independence in coin toss example? 

  
It seems that if we do make mistakes in the structure, it is better to have  
too many rather than too few edges. But the situation is more complex. 
 
Let‘s go back to the coin example and assume that we had only 20 cases for X/Y: 
 
 3 head/head 6 head/tail 
 5 tail/head 6 tail/tail 
 
When we assume X and Y as correlated, we find by MLE 
(where we simply count the observed numbers): 
 
P(X = H)              = 9/20  = 0.45 
P(Y = H | X = H)  = 3/9    = 1/3 
P(Y = H | X = T)   = 5/11  
 
In the independent structure (no edge between X and Y), P(Y = H) = 8/20 = 0.4  
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Noisy data → prefer sparse models 

  
All of these parameter estimates are imperfect, of course. 
 
The ones in the more complex model are significantly more likely to be skewed 
(dt: verzogen) because each one is estimated from a much smaller data set. 
 
E.g. P(Y = H | X = H) is estimated from only 9 instances  
compared to 20 instances for the estimation of P(Y = H). 
 
Note that the standard estimation error of MLE is 1/ 𝑀. 
 
When doing density estimation from limited data,  
it is often better to prefer a sparser structure. 
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Overview of structure learning methods 

  
Roughly speaking, there are 3 approaches to learning  
without a prespecified structure: 
 
(1) constraint-based structure learning 

 
Finds a model that best explains the dependencies/independencies in the data. 

 
(2) Score-based stucture learning (today) 

 
We define a hypothesis space of potential models and a scoring function  
that measures how well the model fits the observed data. 
Our computational task is then to find the highest-scoring network. 
 
(3) Bayesian model averaging methods 
 
Generates an ensemble of possible structures.   
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Structure Scores 

  
We will discuss 2 obvious choices of scoring functions: 
- Maximum likelihood parameters (today) 
- Bayesian scores (V12) 

 
Maximum likelihood parameters 
 
This function measures the probability of the data given a model. 
 
→ try to find a model that would make the data as probable as possible. 
 
A model is a pair G, G.  
 
Our goal is to find both a graph G and parameters G  

that maximize the likelihood. 
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Maximum likelihood parameters 

  
In V9 we determined how to maximize the likelihood for a given structure G. 
 
We will simply use these maximum likelihood parameters 𝜃%&  for each graph. 
 

max&,+,
𝐿 𝐺, 𝜃& : 𝐷 = max& max+,

𝐿 𝐺, 𝜃& : 𝐷  
= max& 𝐿 𝐺, 𝜃%&  : 𝐷  

 
To find the maximum likelihood (G, G) pair, we should find the graph structure G 
that achieves the highest likelihood when we use the MLE parameters for G.  
 
We define  score𝑳 𝐺: 𝐷 = 𝑙 𝜃%&: 𝐷  
 
where 𝑙 𝜃%&: 𝐷  is the logarithm of the likelihood function  
and 𝜃%& are the maximum likelihood parameters for G. 
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Maximum likelihood parameters 

  
Let us consider again the scenario of the 2 coins. 
 
In model G0, X and Y are assumed to be independent. In this case, we get 

score: 𝐺;: 𝐷 =<log𝜃%? @ + log 𝜃%B @
@

 

In model G1, we assume a dependency modelled by the arc X → Y. We get 

score: 𝐺C: 𝐷 =<log𝜃%? @ + log 𝜃%B @ |? @
@

 

where 𝜃%?  is the maximum likelihood estimate for P(x)  
and 𝜃%B|?  is the maximum likelihood estimate for P(y | x).  
 
The scores of the two models share a common component, the first term.  
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Maximum likelihood parameters 

  
Thus, we can write the difference between the two scores as: 

score: 𝐺C: 𝐷 − score: 𝐺;: 𝐷 =<log𝜃%B @ |? @ −
@

log 𝜃%B @  

By counting how many times each conditional probability parameter appears  
in this term, we can change the summation index and write this as: 

score: 𝐺C: 𝐷 − score: 𝐺;: 𝐷 =<𝑀 𝑥, 𝑦 log 𝜃%B|? −
?,B

<𝑀 𝑦
B

log 𝜃%B 

 
Let 𝑃I be the empirical distribution observed in the data;  
that is  𝑃I 𝑥, 𝑦  is the empirical frequency of x,y  in D. 
 
Then we can write M 𝑥, 𝑦 = 𝑀 ∙ 𝑃I 𝑥, 𝑦  and M 𝑦 = 𝑀 ∙ 𝑃I 𝑦  
 

Moreover, 𝜃%B|? = 𝑃I 𝑦|𝑥 = LI ?,B
LI ?     and 𝜃%B = 𝑃I 𝑦  
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Mutual information 

  
We get 

score: 𝐺C: 𝐷 − score: 𝐺;: 𝐷 = 𝑀<𝑃I 𝑥, 𝑦 log 𝑃I 𝑥, 𝑦
𝑃I 𝑥 𝑃I 𝑦?,B

= 𝑀 ∙ 𝐈LI 𝑋; 𝑌  

where 𝐈LI 𝑋; 𝑌  is the mutual information between X and Y in the distribution 𝑃I. 
 
The likelihood of model G1 thus depends on  
the mutual information between X and Y. 
 
Note that higher mutual information implies  
stronger dependency. 
 
Thus, stronger dependency implies stronger preference  
for the model where X and Y depend on each other. 
 
Can this be generalized to general network structures? 
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Decomposition of Maximum likelihood scores 

  
Proposition: the likelihood score decomposes as follows: 

score: 𝐺: 𝐷 = 𝑀<𝐈LI 𝑋Q; 𝑃𝑎ST& − 𝑀
U

QVC
<𝑃I 𝑥Q log

1
𝑃I 𝑥Q

U

QVC

= 𝑀<𝐈LI 𝑋Q; 𝑃𝑎ST& − 𝑀
U

QVC
<𝑯LI 𝑋Q 
U

QVC
 

 
Proof: omitted 
 
 
The likelihood of a network measures the strength  
of the dependencies between variables and their parents. 
 
We prefer networks where the parents of each variable are informative about it. 

 
13 

SS 2014 - lecture 11 Mathematics of Biological Networks 



Maximum likelihood parameters 

  
We can also express this result in a complementary manner. 
 
Corollorary: Let X1, …, Xn be an ordering of the variables  
that is consistent with edges in G. Then 

1
𝑀 score: 𝐺: 𝐷 = 𝑯LI 𝑋C , … , 𝑋U −<𝐈LI 𝑋Q; 𝑋C, … , 𝑋QYC − 𝑃𝑎ST

&|𝑃𝑎ST&
U

QVC
 

 
The first term on the right-hand-side does not depend  
on the structure, but the second term does. 
  
The second term involves conditional mutual-information 
of variable Xi and the preceding variables given the parents of Xi. 
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Limitations of the maximum likelihood score 

  
The likelihood score is a good measure  
of the fit of the estimated BN and the training data. 
 
Important, however, is the performance of the learned network on new instances. 
 
It turns out that the MLE score never prefers simpler networks over more complex 
networks. The optimal ML network will always be a fully connected network. 
 
Thus, the ML overfits the training data.  
 
The model often does not generalize well to new data cases. 
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Structure search 

  
The input to the optimization problem is: 
 - training set D 
 - scoring function (including priors, if needed) 
 - a set G of possible network structures 
 
Our desired output:  
- a network structure (from the set of possible structures) that maximizes the score. 
 
We assume that we can decompose the score of the network structure G: 

𝑠𝑐𝑜𝑟𝑒 𝐺: 𝐷 =<𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Qb𝑃𝑎ST&: 𝐷
Q

 

as the sum of family scores.  
 
FamScore(X | U : D) is a score measuring how well  
a set of variables U serves as parents of X in the data set D. 
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Tree-structure networks 

  
Structure learning of tree-structure networks is the simplest case. 
 
Definition: in tree-structured network structures G,  
each variable X has at most one parent in G. 
 
The advantage of trees is that they can be learned efficiently in polynomial time. 
 
Learning a tree model is often used as a starting point  
for learning more complex structures. 
 
Key properties to be used: 
- decomposability of the score 
- restriction on the number of parents 
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Score of tree structure 

  
Instead of maximizing the score of a tree structure G, 
we will try to maximize the difference between its score  
and the score of the empty structure G0. 

∆ 𝐺 = 𝑠𝑐𝑜𝑟𝑒 𝐺: 𝐷 − 𝑠𝑐𝑜𝑟𝑒 𝐺;: 𝐷  
 
𝑠𝑐𝑜𝑟𝑒 𝐺;: 𝐷  is simply a sum of terrms 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Q: 𝐷  for each Xi. 
 
That is the score of Xi if it does not have any parents. 
 
The score 𝑠𝑐𝑜𝑟𝑒 𝐺:𝐷   consists of terms 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Qb𝑃𝑎ST&: 𝐷 . 
 
Now there are 2 cases:  
 
If 𝑃𝑎ST& = ∅, then the terms for Xi in both scores cancel out. 
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Structure search 

  
If 𝑃𝑎ST& = 𝑋e   we are left with the difference between the 2 terms. 

∆ 𝐺 = < 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Qb𝑃𝑎ST&: 𝐷 − 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Q: 𝐷
Q,LfgT

,h∅
 

 
If we define the weight 

𝑤e→Q = 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Qb𝑋e: 𝐷 − 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒 𝑋Q: 𝐷  
 
then we see that (G) is the sum of weights on pairs 𝑋Q, 𝑋e  such that 𝑋e → 𝑋Q in G 

∆ 𝐺 = < 𝑤e→Q
Sk→ST∈&

 

 
We have thus transformed our problem to one of finding  
a maximum weight spanning forest in a directed weighted graph. 
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General case 

  
For a general model topology that may also involve cycles,  
we start by considering the search space. 
 
We can think of the search space as a graph  
over candidate solutions (different network topologies). 
 
Nodes are connected by operators that transform one network into the other one. 
 
If each state has few neighbors, the search procedure only  
has to consider few solutions at each point of the search. 
 
However, the search for an optimal (or high-scoring) solution  
may be long and complex. 
 
On the other hand, if each state has many neighbors, the search may involve 
only a few steps, but it may be difficult to decide at each step which point to take. 

 
20 

SS 2014 - lecture 11 Mathematics of Biological Networks 



General case 

  
A good trade-off for this problem chooses reasonably few neighbors for each state 
but ensures that the „diameter“ of the search space remains small. 
 
A natural choice for the neighbors of a state is a set of structures  
that are identical to it except for small „local“ modifications. 
 
We will consider the following set of modifications of this sort: 
 
- Edge addition 
- Edge deletion 
- Edge reversal 

 
The diameter of the search space is then at most n2. 
 
(We could first delete all edges in G1 that do not appear in G2 and then add the edges of  G2 
that are not in G1. This is bounded by the total number of possible edges n2). 
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Example requiring edge deletion 
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Let‘s assume that A is highly informative about B and C. 
 
When starting from an empty network,  
edges A → B and A → C would be added first. 
 
Sometimes, we may also add the edge A →  D. Since A is informative about B  
and C (which are the parents of D), A is also informative about D -> (b) 
 
Later, we may also add the edges B → D and C → D -> (c) 
 
Node A cannot provide additional information on top of what B and C convery.  
Deleting A → D therefore makes the score optimal. 

(a) Original model that 
generated the data 

(b) and (c) Intermediate 
networks encountered 
during the search. 



Example requiring edge reversal 
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(a) Original network, (b) and (c) intermediate networks during search. 
(d) Undesirable outcome. 
 
When adding edges, we do not know their direction because both directions give 
the same score. 
 
This is where edge reversal helps.  
 
In situation (c) we realize that A and B together should make the best prediction of 
C.  Therefore, we need to reverse the direction of the arc pointing at A. 
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Who controls the 
developmental  
status of a cell? 
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We will continue with structure learning in V12 
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Transcription 

a 
http://www.berkeley.edu/news/features/1999/12/09_nogales.html 
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Preferred transcription factor binding motifs 

Chen et al., Cell 133, 
1106-1117  (2008) 
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DNA-binding domain 
of a glucocorticoid 
receptor from 
Rattus norvegicus  
with matching DNA 
fragment. 
 
www.wikipedia.de 

SS 2014 - lecture 11 Mathematics of Biological Networks 
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Gene regulatory network around Oc4  
controls pluripotency 

  Tightly interwoven network of 9 
transcription factors keeps ES cells in 
pluripotent state. 
 
6632 human genes have binding site in 
their promoter region for at least one of 
these 9 TFs. 
 
Many genes have multiple motifs. 
 
800 genes bind ≥ 4 TFs. 
 

Kim et al. Cell 132, 1049 (2008) 
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Complex of transcription factors Oct4 and Sox2 

  

www.rcsb.org 

Idea: Check for conserved 
transcription factor binding sites  
in mouse and human 
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Combined binding of Oct4, Sox2 and Nanog 
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Göke et al., PLoS 
Comput Biol 7, 
e1002304 (2011)  

The combination of OCT4, SOX2 and NANOG 
influences conservation of binding events. 
  
(A) Bars indicate the fraction of loci where binding 
of Nanog, Sox2, Oct4 or CTCF can be observed at 
the orthologous locus in mouse ES cells for all 
combinations of OCT4, SOX2 and NANOG in 
human ES cells as indicated by the boxes below.  
 
Dark boxes indicate binding, white boxes indicate 
no binding (‘‘AND’’ relation). 
 
Combinatorial binding of OCT4, SOX2 and 
NANOG shows the largest fraction of conserved 
binding for Oct4, Sox2 and Nanog in mouse.  



Increased Binding conservation in ES cells at 
developmental enhancers 

  

Göke et al., PLoS 
Comput Biol 7, 
e1002304 (2011)  

Fraction of loci where binding of Nanog, 
Sox2, Oct4 and CTCF can be observed 
at the orthologous locus in mouse ESC. 
 
Combinations of OCT4, SOX2 and 
NANOG in human ES cells are 
discriminated by developmental activity 
as indicated by the boxes below.  
Dark boxes : ‘‘AND’’ relation,  
light grey boxes with ‘‘v’’ : ‘‘OR’’ relation, ‘ 
‘?’’ : no restriction. 
  
Combinatorial binding events at develop-
mentally active enhancers show the 
highest levels of binding conservation 
between mouse and human ES cells. 

 
30 

SS 2014 - lecture 11 Mathematics of Biological Networks 



31 

Transcriptional activation 

Mediator 

looping 
factors 

DNA-looping enables interactions for the distal 
promotor regions, 

Mediator cofactor-complex serves as a huge linker 
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cis-regulatory modules 

TFs are not dedicated activators or respressors! 
It‘s the assembly that is crucial. 

coactivators 

corepressor 

TFs 

IFNenhanceosome from  
RCSB Protein Data Bank, 2010 
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  Aim:  
identify Protein complexes involving transcription factors 
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Borrow idea from ClusterOne method: 

Identify candidates of TF complexes 

in protein-protein interaction graph 

by optimizing the cohesiveness 

Thorsten Will, 
Master thesis 
(accepted for ECCB 2014) 
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DDI model 
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domain interactions can reveal which 
proteins can bind simultaneously if 
interactions per domain are restricted 

transition to  
domain-domain 
interactions 

“protein-level“ 
network 

“domain-level“ 
network 

Ozawa et al., BMC Bioinformatics, 2010 
Ma et al., BBAPAP, 2012 
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   underlying domain-domain representation of PPIs 
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Green proteins A, C, E form actual complex.  

Their red domains are connected by the two green edges. 

 

B and D are incident proteins. They could form new interactions 

(red edges) with unused domains (blue) of A, C, E 

Assumption: every domain can only participate in one interaction. 
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   data source used: Yeast Promoter Atlas, PPI and 
DDI 
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   Daco identifies far more TF complexes than other methods 
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   Examples of TF complexes – comparison with ClusterONE 
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Green nodes: proteins in the 
reference that were matched by the 
prediction  
 
red nodes: proteins that are in the 
predicted complex, but not part 
of the reference. 
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   Performance evaluation 
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   Are target genes of TF complexes co-expressed? 
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   Functional role of TF complexes 
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Complicated regulation of Oct4 

  

Kellner, Kikyo, Histol Histopathol 25, 405 (2010) 
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