Roughly speaking, there are 3 approaches to learning
without a prespecified structure:

(1) constraint-based structure learning

Finds a model that best explains the dependencies/independencies in the data.
(2) Score-based stucture learning (today)

We define a hypothesis space of potential models and a scoring function

that measures how well the model fits the observed data.

Our computational task is then to find the highest-scoring network.

(3) Bayesian model averaging methods

Generates an ensemble of possible structures.
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There are 2 obvious choices of scoring functions:
- Maximum likelihood parameters (V11)
- Bayesian scores (today)

Bayesian Score

The main principle of the Bayesian approach is that whenever we have
uncertainty over anything, we should place a distribution over it.

Here, we are uncertain both about the structure and parameters of the network.
We define a structure prior P(G) that puts a prior probability
on different graph structures, and

a parameter prior P(6;|G) that puts a probability
on different choices of parameters once the graph is given.
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By Bayes rule, we have

P(D|G)P(G)

P(G|D) = P(D)

The denominator P(D) is simply a normalizing factor that
does not help distinguishing between different structures.

Thus, we define the Bayesian score as
scoreg(G:D) =log P(D|G) + log P(G)

The ability to ascribe a prior P(G) over structures
gives us a way of preferring some structures over others.

E.g. we could penalize dense structures more than sparse ones.

However, the structure-prior term is almost irrelevant compared to the first term.
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The first term P(D|G) takes into consideration our uncertainty over the parameters:

P(D|G) = [y P(DI6G, G)P(651G)dbg
P(D|6;, G) is the likelihood of the data given the network (G, 6;).
P(6;|G) is our prior distribution over different parameter values for the network G.
P(D | G) is called the marginal likelihood of the data given the structure.
The maximum likelihood score would return the maximum of this function.

In contrast, the marginal likelihood is the average value of this function.

Why does the Bayesian score avoid overfitting ?
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For this we examine the sensitivity of the likelihood
to the particular choice of parameters.

In V11, we discussed that the maximal likelihood
is overly ,optimistic” in its evaluation of the score:

it evaluates the likelihood of the training data using
the best parameter values for the given data.

This is unrealistic.
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The Bayesian approach tells us that, although the choice
of parameter 0 is the most likely given the training set D,
it is not the only choice.

The posterior over parameters provides us
with a range of parameter choices,
along with a measure how likely each of them is.

By integrating P(D|0., G) over the different choices of parameters 6. ,

POIG) = [ P(D165,6)P(6516)d0,
e
we are measuring the expected likelihood, averaged over
different possible choices of 6.

Thus, we are being more conservative.
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Using the chain rule for probabilities, we can rewrite the marginal likelihood as

M
PI6) = | | PCEIMIEIL, .., §m — 11,6)
m=1

Each of the terms in this product is the probability of the m‘th instance
using the parameters learned from the first m — 1 instances
(using Bayesian estimation).

Thus, the m‘th instance provides us with one data point for testing
the ability of our model to predict a new data instance,

based on the model learned from the previous one.

The Bayesian score does not depend on the order of instances.
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This suggests that

1
MlogP(DIG) ~ Ep|log P(X|G,D)]

is an estimator for the average log-likelihood of a new sample X
from the distribution P*.

In practice, it turns out that for reasonable sample sizes

this is indeed a fairly good estimator of the ability
of a model to generalize to unseen data.
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Comparison of the average log-marginal-likelihood per sample
in training data (x-axis) to the expected log-likelihood of new samples
from the underlying distribution (y-axis).

Each point corresponds to a network structure,
the true network is marked by a circle.

SS 2014 - lecture 12 Mathematics of Biological Networks



We start by examining how to compute the marginal likelihood for simple cases.

Consider a simple binary random variable X, and assume
that we have a prior distribution Dirichlet(a, @) over X (see V10, p.20).

Consider a data set D with M[1] heads and M][0] tails.

Then the maximum likelihood value given D is

"™ mon\ !
ro)= (%) ()
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Now let us consider the marginal likelihood.

For this, we need to compute the probability P(X[1], ..., X[M])
of the data given our prior.

We can do this e.g. using the chain rule:

P(x[1],...,x[M]) = P(x|1]) - P(x[2]|x[1]) = -+~ P(x[M]]|x[1], ...

Recall from V10 (p.14) that if we used a Beta prior, then
MM+ a4
. m+ta

P(x[m + 1] = H|x[1], ..., x[m])

where M™[1] is the number of heads in the first m examples.
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For example, if D=(H, T, T, H, H),

_a; a a+1l a;+1 a;+2
P(x[l],...,x[S])—a a+1l a+2 a+3 a+4
_ al(al + 1)(“1 + 2)“0(“0 + 1)

B a..(a+4)

. s 1-2-3-1-2 12
Picking e.g. ay = oo = 1 so that o = oy + g = 2, we get ——— = — = 0.017

0.04
0.035 |« _ . P
0.03 | ‘ This is significantly lower
= 0.017
T than the likelihood
D 0.02} 2
Q) 3 2
& I : 3 2 108
; ) (%) =2~ 0035
it ‘ 5 5 3125
0
0 0.2 0.4 0.6 0.8 1

0
Thus, a model using maximum-likelihood parameters ascribes a much

higher probability to the sequence than does the marginal likelihood.

SS 2014 - lecture 12 Mathematics of Biological Networks

12



In general, for a binomial distribution with a Beta prior, we have

[(a) T(ay +M[1]) T(ao+ M[1])

P(x[l], ,X[M]) = F(C( + M) . l"(al) F(CZO)

A similar formula holds for a multinomial distribution over the space x7, ..., x¥

with a Dirichlet prior with hyperparameters a4, ..., o, :
k .
I'(a) F(al- + M[x‘])
P(x|1],...,x|M]) = :
G1), oo M) = F s ]_1[ o

SS 2014 - lecture 12 Mathematics of Biological Networks

13



We now generalize the discussion of the Bayesian score to more general BNs.
Consider 2 possible structures of 2 binary random variables X and Y.

G, is the graph with no edges. Here, we have

P(DIG,) = f P(D|0y, Oy, Go)P(Oy, Oy |Go)d[Oy, Oy]

OxX0Oy

The likelihood term P(D|®y, Oy, G,) can be written as a product of terms,
one involving ©5 and the observations of X in the data,
and the other involving 0y, and the observations of Y in the data.
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If we also assume parameter independence, that is that
P(0y,0,|G,) decomposes as a product P(0y |Gy) P(Oy|Gy)
then we can simplify the integral

P(DIG,) = j P(D|8y, Oy, Go)P(Oy, O |Go)d[Oy, Oy]

OxX0Oy

= jP(@XIGO)nP(x[m]IGX,GO)d@X jP(@)YlGO)np(y[m“@Y'GO)d@Y

Ox Oy

Since we assumed parameter independence, we wrote the integral over a
product of independent functions as the product of the integrals of the functions.

Each of the 2 integrals is the marginal likelihood of a single variable.
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Now consider the network Gy .y =( X —Y)

If we again assume parameter independence, we can decompose this integral
into a product of 3 integrals, each over a single parameter family.

POIG) = [ POxIGxp) | | Peclmlloy, Gxoy)dox
Ox m

j P (@y[0lGxoy) 1_[ P (y[m] |@y|zo, Gxoy ) dOypo

. —40
®Y|x0 m.x[m]—x

j P (Oyp11Gxoy) 1_[ P (y[m] |®Y|x1,GXﬁY) dOy |,

®Y|x1 m:x[m]=x1

Each term can be written using the closed form solution, see Dirichlet prior (p.13).
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Comparing the marginal likelihood of the two structures G, and Gy _, v,
we see that the term that corresponds to X is similar in both.

In fact, the terms P(x[m]|®y, Gx_y) and P(x|m]|0y, G,) both
make the same predictions given the parameter values.

Thus, if we choose the prior P(04|G,) to be the same as P(Ox|Gx_y),
the first terms in the marginal likelihood of both structures are identical.

Under this assumption, the difference between the two marginal likelihoods

is due to the difference between the marginal likelihood of the observations of Y
and the marginal likelihoods of the observations of Y

when we partition our examples based on the observed value of X.

Let us now consider what effect the complexity of the network has.
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We consider an idealized experiment where the empirical distribution is such that
P(x’)=05andP(y’ | x")=05+pand P(y" | x°)=0.5-p.

p is a free parameter.
Larger values of p imply stronger dependence between X and Y.

The marginal distributions of X and Y are the same regardless of the value of p.
Thus, the score of the empty graph G, does not depend on p.

But the score of the structure Gy _,y )
depends on p. The figure illustrates how
the scores change depending on the
number of training samples.

As we get more data, the Bayesian score
prefers the structure Gy _,, where X and Y
are dependent.

~14}

-1.5F

-1.6 |

1
+-log P(D| Q)

1,000
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But if the dependence becomes weaker (smaller p values),
more data are needed to establish this preference.

Proposition: Let G be a network structure and let P( ®5 | G ) be
a parameter prior satisfying global parameter independence. Then

P(DlG) — l_[i f@ HmP (xi[m]lpaxi[m]'e)xi|pax_’ G) P (®Xi|PaX.|G) d@Xilan..

Xi|PaXl.

The Bayesian score is biased towards simpler structures.

But as it gets more data, it is willing to recognize that a more complex structure
is necessary. It appears to trade off the fit to data with model copmlexity.
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| Introduction: prelude photosynthesis

Il Process view and geometric model of a chromatophore vesicle
Tihameér Geyer & V. Helms (Biophys. J. 2006a, 2006b)

lll Stochastic dynamics simulations
T. Geyer, Florian Lauck & V. Helms (J. Biotechnol. 2007)

IV Parameter fit through evolutionary algorithm
T. Geyer, X. Mol, S. BlaB & V. Helms (PLoS ONE 2010)
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Bacterial Photosynthesis 101

| ATPase
Photons Reactionp Center chemical energy

light energy e —H —pairs

outside ;
NG, Y Q7
inside r
nggt Harl'vestlng ubiguinon / cytochrome bc,
omplexes cytochrome ¢, complex
electronic excitation clectron carriers H* gradient;

transmembrane potential

21



Thick arrows : path through which the photon energy is converted into chemical
energy stored in ATP via the intermediate stages (rounded rectangles).

Each conversion step takes place in parallely working proteins.
Their number N times the conversion rate of a single protein R
determines the total throughput of this step.

v . incoming photons collected in the LHCs

E : excitons in the LHCs and in the RC

e H* electron—proton pairs stored on the quinols

e~ for the electrons on the cytochrome c,

pH : transmembrane proton gradient

H* : protons outside of the vesicle (broken outine of the respective reservoir).
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Stochastic dynamics simulations: Molecules & Pools model

ATPase

H* inside

Round edges: pools for metabolite molecules
Rectangles: protein machines are modeled explicitly as multiple copies
fixed set of parameters

integrate rate equations with stochastic algorithm
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(Consequence1) —» modeling of reactions as continuous fluxes of matter is no
longer correct.

(Consequence?) Significant stochastic fluctuations occur.

To study the stochastic effects in biochemical reactions, stochastic formulations of
chemical kinetics and Monte Carlo computer simulations have been used.

Daniel Gillespie (J Comput Phys 22, 403 (1976); J Chem Phys 81, 2340 (1977))
introduced the exact Dynamic Monte Carlo (DMC) method
that connects the traditional chemical kinetics and stochastic approaches.
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(Step i) generate a list of the components/species and define the initial distribution
at time t= 0.

(Step ii) generate a list of possible events E; (chemical reactions as well as
physical processes).

(Step iii) using the current component/species distribution, prepare a probability
table P(E,) of all the events that can take place.

Compute the total probability
R=2HE)
P(E;) : probability of event E; .

(Step iv) Pick two random numbers r;, and r, € [0...1] to decide which event E , will
occur next and the amount of time t after which Eﬂ will occur.

Resat et al., J.Phys.Chem. B 105, 11026 (2001)
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Using the random number r, and the probability table,
the event E , is determined by finding the event that satisfies the relation

S AE)<rP, <3 P(E)

The second random number r, is used to obtain the amount of time t between the
reactions 1

=——In(r
= p ()

As the total probability of the events changes in time, the time step between
occurring steps varies.

Steps (iii) and (iv) are repeated at each step of the simulation.

The necessary number of runs depends on the inherent noise of the system and
on the desired statistical accuracy.

Resat et al., J.Phys.Chem. B 105, 11026 (2001)
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Model vesicle: 12 LH1/RC-monomers
1-6 bc, complexes
1 ATPase

120 quinones
20 cytochrome c,

integrate rate equations with:
- Gillespie algorithm (associations)

- Timer algorithm (reactions); 1 random number determines when reaction occurs

simulating 1 minute real time requires 1.5 minute on one opteron 2.4 GHz proc
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simulate increase of light intensity (sunrise)

during 1 minute,
light intensity is slowly
increased from 0 to 10 W/m? - l
(quasi steady state) 0 || | H |
S‘ l H 1] |
\II
Iih |
Il‘
t"ll‘”
— there are two regimes o T S L
- one limited by available light 0 3 ,
- | [W/m
- one limited by bc, throughput [ ]
low light intensity: high light intensity:
linear increase of saturation is reached
ATP production the later the higher the
with light intensity number of bc1 complexes
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oxidation state of cytochrome c, pool

20

2,red)

2
H=
10
0
low light intensity: high light intensity
all 20 cytochrome c, RCs are faster than bc,,

are reduced by bc, C,s wait for electrons
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oxidation state of cytochrome c, pool

20 M= ¢ reduced e
g i N N =5
o S - bei
SN . - e
Fr I - T\
ol : . ]
Nbc1 =-3t
N =1 :
"\ bet o o\
0 I .- l' '.'. ‘ 9xi’éifz<§&.. L
0 3 6 , 9
| [W/m?]

more bc, complexes
can load more
cytochrome c,s
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total number of produced ATP

blue line: ~ __— -

llumination ok 0925 Qlts 0ps O'SS/W'
E /-"' ]

200 | / E

a 7 3 W/m®

= g ]

< - / ]

H: B p ]

0 1 2 3 4 6 2

time [s]

low light intensity: any interruption stops ATP producti

high light intensity: interruptions are buffered up to 0.3 s duration
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C, pool acts as buffer

30 L L L AL L L UL ) B
I 0.02s 0.1s 02s 0.5s

red

#c2

0 1 2 3 4 5 6 7
time [s]

At high light intensity, c2 pool is mainly oxidized.

If light is turned off, bc1 can continue to work (load c2s, pump protons, let ATPase
produce ATP) until c2 pool is fully reduced.
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Bridging the Gap: Linking Molecular Simulations and
Systemic Descriptions of Cellular Compartments

2.0

Tihamér Geyer®, Xavier Mol, Sarah Blali, Volkhard Helms — A fash © PUFC/g
“enter for Bioinfarmatics, 5aarland University, 5aarbricken. Sermany ‘g ' e PUFSX-‘IS
PLoS ONE (2010) 10l |
p:
choose 25 out of 45 system parameters 00-Loo0od ‘ SEE——
. . . -5 0 5 0 B0 120 160 200
for optimization. tme s :
0.0 5
. |B
take 7 different non-equilibrium time-resolved «
experiments from Dieter Oesterhelt lab | .
(MPI Martinsried). X o PURC/g
o Flash | o PUFAX/g
s 0 510 15 20
time [ms]
Biochemistry 1995, 34, 15235—15247 15235

Role of PufX Protein in Photosynthetic Growth of Rhodobacter sphaeroides.
1. PufX Is Required for Efficient Light-Driven Electron Transfer and
Photophosphorylation under Anaerobic Conditions’

Wolfgang P. Barz,}* Francesco Francia,'! Giovanni Venturoli,! B. Andrea Melandri,! André Verméglio,! and 34
Dieter Oesterhelt**



Parameter Value Description
be e HYom) 1010 gy 571 rate for proton uptake from the cytoplasm by bey
heribde Qe==Fely | 2.3*% 107 51 rate for electron transfer from Qo to Feld
be 1l Bl e1=02) 107 &1 electron transfer rate from ¢1 to bound cytochrome 2
beydade Qo==br) 10% g1 electron transfer from Qo to by heme
bey i br=>b) 104 1 glectron trans fer frorn b to g hetne
MV 265 * 10* nrd inner wolume of the vesicle
MbA 528 * 107 nme metnbrane area (O pool , volume™)
AP O l0e effective charge of a free proton in the vesicle
A O l0e effective charge of a proton on the titratable groups
A O -10e effective charge ofan e translocated through an RC
M O -N5e effective charge of a reduced cytocthrome ez
M Cloer 03e effective charge ofan cadized cytochrome c2
FE:: Mg al munber of itratable groups in the vesicle
PR pE 3.0 pE of the titratable groups
Moo 1a mamnber of dimeric core complexes (2 BT+ 1 LHC
e 10 mutrber of cytochrome bey cormpl exes
M iTrace 1 manber 0f ATPazes
M 20 total mumber of cytochrorme oo
My 200 total mumber of quiniones

Tahle 51: Model Parameters Not Included in the Optimization Process
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Parameter optimization through evolutionary
algorithm

input files

DR R =
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R
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Figure 51: Determining the Number of hel Conplexes: Evolution of the Mésqgr Score



Analyze 1000 best
parameter sets among
32.800 simulations:

(P)=exp[{log P}

> ={(log P—log P>)*>
Pyin = exp[<log P> — o]
Pax = exp[{log P>+ o]

parameter
LHC: =

LHC Mg

LHC kg (E)
Riikanl(E)
Riikan(HY

Rk, (G

Rk anl2H2)

Rk anlr2red)
Rk 2 ox)

bl kon(GH 28 Qo)
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by ik (2, — = 02)
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bl :koffiH2 @00
be, ik (QH20, - =)
by by o (0 20

by b slc2red)

bel ko ffiH @00
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e
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&2 108
2.2 107
1.2 *10°
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4%+ 10°
&7 * 1107
a6

38 *10°
a4+ 108
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24 =10
33 *10°
28 *10°
77107
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10

4.84

B i P
6.02...8.42
0.81... 213
(1.1...3.8 107
f1.2..4.5 = 10°
1.3..1.6 =10°
44,81 =10
70...108
(73..11.5 *10°
1.6..3.0 = 10°
[0.7%.1.7 * 10¢
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4.5..1m * 107
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(63,140 * 10°
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(31..51 = 10*
(2.2..36 =10°
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Foind

0.04
0.38
0.2%
0.27
0.81

0.54
0.65
0.63
0.53
0.46
.86
0.54
0.45
0.62
0.47
0.47
0.30
10.30
0.61

.61

0.42
0.73
0.B%
.55
1.66
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Sensitivity of master score
Decay rate of excitons

in LHC
06 A | . os B . . oe| ©
az | ' @ * H
S 0.4 g S 04 | . E 0.4 y
= : ] - £ -
5 i g - i :
E £ P .-
02— — .- -‘ 02 _
0k T W EEE L T 0 T L
oA 1 10 100 107 10° 10° 10
LHC o [m* W 57 LHG:k (E) [57] be K (FeSic==b) [s”]
Absorption cross section Kinetic rate for hinge
light harvesting complex motion of FeS domain in

bc1 complex

Some parameters are very sensitive, others not.

38



Three
best-scored
parameter sets

Score of individual parameter set J

for matching one experiment:
Ci
> (x(t) =/ (1))’

S; =

x(t): simulation result
f(t): smooth fit of exp. data

Master score for one
parameter set: defined as
product of the individual
scores S;
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Different experiments yield different sensitivity

R T T T T T T l'l A8_I‘\(|)
0= Bi_Q
72]
o -
§ 0.6 L =
B -
B !
203 3 “importance score”:
= ) Sum of the sensitivities
O —— o P in /P max Of all relevant

av:U [mV/e] parameters

Table 2. Importance scores and correlation coefficients Bbebueen the master score and the respective individoal scores of the
exparimental scenarios denoting the relative impotance of each of the experiments for the parameter value optimization,

EXPEFIiME Nt AT oytc AT A Af A AS oytc B1 Bs P B& cytc BLA
irmportance soore 4.4 7 g =i 9] 52 84 55
comelation Qo e 022 038 082 017 0.2 MY

Theimportance scores are determined as the sums of the sensitivities of all relevant parameters against the individual scores (g2 tablke 52 for all the individual valoes].
The correlation coefficiente are obtained frorn 3 linear fit of the rmaster toore against the recpective individual score.

Analysis could suggest new
experiments that would be

most informative! ‘0



Only 1/3 of the kinetic parameters previously known.

Stochastic parameter optimization converges robustly into the same
parameter basin as known from experiment.

Two large-scale runs (15 + 17 parameters) yielded practically the same
results.

If implemented as grid search, less than 2 points per dimension.

It appears enough to know 1/3 — 1/2 of kinetic rates about a system to be
able to describe it quantitatively (IF connectivities are known).
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