
V12: Structure Learning in Bayesian Networks II 

  
Roughly speaking, there are 3 approaches to learning  
without a prespecified structure: 
 
(1) constraint-based structure learning 

 
Finds a model that best explains the dependencies/independencies in the data. 

 
(2) Score-based stucture learning (today) 

 
We define a hypothesis space of potential models and a scoring function  
that measures how well the model fits the observed data. 
Our computational task is then to find the highest-scoring network. 
 
(3) Bayesian model averaging methods 
 
Generates an ensemble of possible structures.   
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Bayesian Structure Scores 

  
There are 2 obvious choices of scoring functions: 
- Maximum likelihood parameters (V11) 
- Bayesian scores (today) 

 
Bayesian Score 
 
The main principle of the Bayesian approach is that whenever we have  
uncertainty over anything, we should place a distribution over it. 
 
Here, we are uncertain both about the structure and parameters of the network. 
 
We define a structure prior P(G) that puts a prior probability  
on different graph structures, and  
a parameter prior P(G|G) that puts a probability  
on different choices of parameters once the graph is given. 
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Bayesian Score 

  
By Bayes rule, we have 

𝑃 𝐺|𝐷 = 𝑃 𝐷|𝐺 𝑃 𝐺
𝑃 𝐷  

 
The denominator P(D) is simply a normalizing factor that  
does not help distinguishing between different structures. 
 
Thus, we define the Bayesian score as 

𝑠𝑐𝑜𝑟𝑒+ 𝐺:𝐷 = log𝑃 𝐷|𝐺 + log𝑃 𝐺  
 
The ability to ascribe a prior P(G) over structures  
gives us a way of preferring some structures over others. 
 
E.g. we could penalize dense structures more than sparse ones. 
 
However, the structure-prior term is almost irrelevant compared to the first term.  
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Bayesian Score 

  
The first term P(D|G) takes into consideration our uncertainty over the parameters: 

𝑃 𝐷|𝐺 = ∫ 𝑃 𝐷|𝜃3, 𝐺 𝑃 𝜃3|𝐺 𝑑𝜃367   
 
𝑃 𝐷|𝜃3, 𝐺  is the likelihood of the data given the network 𝐺, 𝜃3 . 
 
𝑃 𝜃3|𝐺  is our prior distribution over different parameter values for the network G. 
 
P(D | G) is called the marginal likelihood of the data given the structure. 
 
The maximum likelihood score would return the maximum of this function. 
 
In contrast, the marginal likelihood is the average value of this function. 
 
 
Why does the Bayesian score avoid overfitting ? 
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Bayesian Score 

  
For this we examine the sensitivity of the likelihood  
to the particular choice of parameters. 
 
In V11, we discussed that the maximal likelihood  
is overly „optimistic“ in its evaluation of the score:  
 
it evaluates the likelihood of the training data using  
the best parameter values for the given data.  
 
This is unrealistic. 
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Bayesian Score 

  
The Bayesian approach tells us that, although the choice  
of parameter 𝜃8  is the most likely given the training set D,  
it is not the only choice. 
 
The posterior over parameters provides us  
with a range of parameter choices,  
along with a measure how likely each of them is. 
 
By integrating 𝑃 𝐷|𝜃3, 𝐺  over the different choices of parameters 𝜃3 ,  

𝑃 𝐷|𝐺 = 9 𝑃 𝐷|𝜃3, 𝐺 𝑃 𝜃3|𝐺 𝑑𝜃3
67

 

we are measuring the expected likelihood, averaged over  
different possible choices of 𝜃3.  
 
Thus, we are being more conservative. 
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Bayesian Score 

  
Using the chain rule for probabilities, we can rewrite the marginal likelihood as  

𝑃 𝐷|𝐺 = :𝑃 𝜉 𝑚 |𝜉 1 , … , 𝜉 𝑚 − 1 , 𝐺
@

ABC
 

 
Each of the terms in this product is the probability of the m‘th instance  
using the parameters learned from the first m – 1 instances  
(using Bayesian estimation). 
 
Thus, the m‘th instance provides us with one data point for testing  
the ability of our model to predict a new data instance,  
based on the model learned from the previous one.  
 
The Bayesian score does not depend on the order of instances. 
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Bayesian Score 

  
This suggests that 

1
𝑀 log𝑃 𝐷|𝐺 ≈ 𝐸G log𝑃 𝑋|𝐺, 𝐷  

 
is an estimator for the average log-likelihood of a new sample X  
from the distribution P*. 
 
In practice, it turns out that for reasonable sample sizes  
this is indeed a fairly good estimator of the ability  
of a model to generalize to unseen data. 
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Bayesian Score 

  
Fig. 18.1 
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Comparison of the average log-marginal-likelihood per sample  
in training data (x-axis) to the expected log-likelihood of new samples  
from the underlying distribution (y-axis). 
 
Each point corresponds to a network structure,  
the true network is marked by a circle. 



Marginal likelihood for a single variable 

  
We start by examining how to compute the marginal likelihood for simple cases. 
 
Consider a simple binary random variable X, and assume  
that we have a prior distribution 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼C, 𝛼N  over X (see V10, p.20). 
 
Consider a data set D with M[1] heads and M[0] tails.  
 
Then the maximum likelihood value given D is 

𝑃 𝐷O𝜃8 = 𝑀 1
𝑀

@ C
∙ 𝑀 0

𝑀
@ N
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Marginal likelihood for a single variable 

  
Now let us consider the marginal likelihood. 
 
For this, we need to compute the probability P(X[1], …, X[M])  
of the data given our prior. 
 
We can do this e.g. using the chain rule: 
 

𝑃 𝑥 1 ,… , 𝑥 𝑀 = 𝑃 𝑥 1 ∙ 𝑃 𝑥 2 |𝑥 1 ∙ ⋯ ∙ 𝑃 𝑥 𝑀 |𝑥 1 ,… , 𝑥 𝑀 − 1  
 
Recall from V10 (p.14) that if we used a Beta prior, then 

𝑃 𝑥 𝑚 + 1 = 𝐻|𝑥 1 ,… , 𝑥 𝑚 = 𝑀A 1 + 𝛼C
𝑚 + 𝛼  

 
where Mm[1] is the number of heads in the first m examples. 
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Marginal likelihood for a single variable 

  
For example, if D =  H, T, T, H, H, 

𝑃 𝑥 1 ,… , 𝑥 5 = 𝛼C
𝛼 ∙ 𝛼N

𝛼 + 1 ∙
𝛼N + 1
𝛼 + 2 ∙ 𝛼C + 1𝛼 + 3 ∙

𝛼C + 2
𝛼 + 4

= 𝛼C 𝛼C + 1 𝛼C + 2 𝛼N 𝛼N + 1
𝛼… 𝛼 + 4  

 

Picking e.g. 1 = 0 = 1 so that  = 1 + 0 = 2, we get C∙Y∙Z∙C∙YY∙Z∙[∙\∙] =
CY
^YN = 0.017 

 
Figu. 18.2    This is significantly lower  
     than the likelihood 

     Z
\
Z
∙ Y

\
Y
= CNa

ZCY\ ≈ 0.035 

 
 
Thus, a model using maximum-likelihood parameters ascribes a much  
higher probability to the sequence than does the marginal likelihood. 
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Marginal likelihood for a single variable 

  
In general, for a binomial distribution with a Beta prior, we have 

𝑃 𝑥 1 ,… , 𝑥 𝑀 = Γ 𝛼
Γ 𝛼 +𝑀 ∙ Γ 𝛼C + 𝑀 1

Γ 𝛼C
∙ Γ 𝛼N + 𝑀 1

Γ 𝛼N
 

 
A similar formula holds for a multinomial distribution over the space x1, …, xk  
with a Dirichlet prior with hyperparameters 1,  …, k : 

𝑃 𝑥 1 ,… , 𝑥 𝑀 = Γ 𝛼
Γ 𝛼 +𝑀 ∙:Γ 𝛼c + 𝑀 𝑥c

Γ 𝛼c
   

e

cBC
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Bayesian score for Bayesian networks 

  
We now generalize the discussion of the Bayesian score to more general BNs. 
 
Consider 2 possible structures of 2 binary random variables X and Y. 
 
G0 is the graph with no edges. Here, we have 

𝑃 𝐷|𝐺N = 9 𝑃 𝐷|Θg, Θh, 𝐺N 𝑃 Θg, Θh|𝐺N 𝑑 Θg, Θh
ij×il

 

 
The likelihood term 𝑃 𝐷|Θg, Θh, 𝐺N  can be written as a product of terms,  
one involving Θg and the observations of X in the data,  
and the other involving Θh and the observations of Y in the data. 
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Bayesian score for Bayesian networks 

  
If we also assume parameter independence, that is that 
𝑃 Θg, Θh|𝐺N  decomposes as a product 𝑃 Θg |𝐺N  𝑃 Θh|𝐺N   
then we can simplify the integral 
 

𝑃 𝐷|𝐺N = 9 𝑃 𝐷|Θg, Θh, 𝐺N 𝑃 Θg, Θh|𝐺N 𝑑 Θg, Θh
ij×il

= 9 𝑃 Θg|𝐺N :𝑃 𝑥 𝑚 |Θg, 𝐺N 𝑑Θg
Aij

9 𝑃 Θh|𝐺N :𝑃 𝑦 𝑚 |Θh, 𝐺N 𝑑Θh
Ail

 

 
Since we assumed parameter independence, we wrote the integral over a  
product of independent functions as the product of the integrals of the functions. 
 
Each of the 2 integrals is the marginal likelihood of a single variable. 
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Bayesian score for Bayesian networks 

  
Now consider the network GX → Y = ( X → Y) 
 
If we again assume parameter independence, we can decompose this integral  
into a product of 3 integrals, each over a single parameter family. 

𝑃 𝐷|𝐺g→h = 9 𝑃 Θg|𝐺g→h :𝑃 𝑥 𝑚 |Θg, 𝐺g→h 𝑑Θg
Aij

 

9 𝑃 ΘhOop|𝐺g→h : 𝑃 𝑦 𝑚 qΘhOop, 𝐺g→h 𝑑ΘhOop
A:o A BopilOrp

 

9 𝑃 ΘhOos|𝐺g→h : 𝑃 𝑦 𝑚 qΘhOos, 𝐺g→h 𝑑ΘhOos
A:o A BosilOrs

 

Each term can be written using the closed form solution, see Dirichlet prior (p.13). 
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Bayesian score for Bayesian networks 

  
Comparing the marginal likelihood of the two structures G0 and GX → Y ,  
we see that the term that corresponds to X is similar in both. 
 
In fact, the terms 𝑃 𝑥 𝑚 |Θg, 𝐺g→h  and 𝑃 𝑥 𝑚 |Θg, 𝐺N  both  
make the same predictions given the parameter values. 
 
Thus, if we choose the prior 𝑃 Θg|𝐺N  to be the same as 𝑃 Θg|𝐺g→h ,  
the first terms in the marginal likelihood of both structures are identical. 
 
Under this assumption, the difference between the two marginal likelihoods  
is due to the difference between the marginal likelihood of the observations of Y 
and the marginal likelihoods of the observations of Y  
when we partition our examples based on the observed value of X. 
 
Let us now consider what effect the complexity of the network has. 
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Bayesian score for Bayesian networks 

  
We consider an idealized experiment where the empirical distribution is such that 
P( x1 ) = 0.5 and P(y1 | x1 ) = 0.5 + p and P(y1 | x0 ) = 0.5 - p . 
 
p is a free parameter.  
Larger values of p imply stronger dependence between X and Y. 
 
The marginal distributions of X and Y are the same regardless of the value of p. 
Thus, the score of the empty graph G0 does not depend on p. 
 
But the score of the structure GX→Y  
depends on p. The figure illustrates how  
the scores change depending on the  
number of training samples. 
As we get more data, the Bayesian score 
prefers the structure GX→Y where X and Y 
are dependent. 
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Bayesian score for Bayesian networks 

  
But if the dependence becomes weaker (smaller p values),  
more data are needed to establish this preference. 
 
Proposition: Let G be a network structure and let P( G | G ) be  
a parameter prior satisfying global parameter independence. Then 

𝑃 𝐷|𝐺 = ∏ ∫ ∏ 𝑃 𝑥c 𝑚 O𝑝𝑎gw 𝑚 ,ΘgwqGxjw , 𝐺 𝑃 ΘgwqGxjw|𝐺 𝑑ΘgwqGxjwAijwqyzjw
c . 

 
 
The Bayesian score is biased towards simpler structures. 
 
But as it gets more data, it is willing to recognize that a more complex structure  
is necessary. It appears to trade off the fit to data with model copmlexity. 
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Practical example of parameter learning: 
Stochastic Dynamics simulations of a  

photosynthetic vesicle  
I Introduction: prelude photosynthesis 
 

II Process view and geometric model of a chromatophore vesicle 
 Tihamér Geyer & V. Helms (Biophys. J. 2006a, 2006b) 
 

III Stochastic dynamics simulations 
  T. Geyer, Florian Lauck & V. Helms (J. Biotechnol. 2007) 
 
IV Parameter fit through evolutionary algorithm 
 T. Geyer, X. Mol, S. Blaß & V. Helms (PLoS ONE 2010) 
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Bacterial Photosynthesis 101 

Photons 

Light Harvesting 
Complexes 

light energy 

electronic excitation 

Reaction Center 
e
–
–H

+
–pairs 

ATPase 
chemical energy 

cytochrome bc1 
complex 
H+ gradient;  

transmembrane potential 

ubiquinon 
cytochrome c2 

electron carriers 

outside 

inside 
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Viewing the photosynthetic apparatus as a conversion chain 

Thick arrows : path through which the photon energy is converted into chemical 
energy stored in ATP via the intermediate stages (rounded rectangles).  
 
Each conversion step takes place in parallely working proteins.  
Their number N times the conversion rate of a single protein R  
determines the total throughput of this step.  
 

  : incoming photons collected in the LHCs 
 E : excitons in the LHCs and in the RC 
 e−H+  electron–proton pairs stored on the quinols 
 e− for the electrons on the cytochrome c2 
 pH : transmembrane proton gradient 
 H+ : protons outside of the vesicle (broken outine of the respective reservoir). 
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Stochastic dynamics simulations: Molecules & Pools model 

Round edges: pools for metabolite molecules 
 
Rectangles: protein machines are modeled explicitly as multiple copies 
 
fixed set of parameters 
 
integrate rate equations with stochastic algorithm 
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Include stochastic effects  
(Consequence1)  modeling of reactions as continuous fluxes of matter is no 
longer correct. 
 
(Consequence2)  Significant stochastic fluctuations occur. 
 
To study the stochastic effects in biochemical reactions, stochastic formulations of 
chemical kinetics and Monte Carlo computer simulations have been used. 
 
Daniel Gillespie (J Comput Phys 22, 403 (1976); J Chem Phys 81, 2340 (1977)) 
introduced the exact Dynamic Monte Carlo (DMC) method  
that connects the traditional chemical kinetics and stochastic approaches. 
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Basic outline of the direct method of Gillespie 
(Step i) generate a list of the components/species and define the initial distribution 
at time t = 0. 
 
(Step ii) generate a list of possible events Ei (chemical reactions as well as 
physical processes). 
 
(Step iii) using the current component/species distribution, prepare a probability 
table P(Ei) of all the events that can take place. 
Compute the total probability  
 
P(Ei) : probability of event Ei .  
 
(Step iv) Pick two random numbers r1 and r2  [0...1] to decide which event E will 
occur next and the amount of time  after which E will occur. 

Resat et al., J.Phys.Chem. B 105, 11026 (2001) 

 )( ito t EPP
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Basic outline of the direct method of Gillespie 
Using the random number r1 and the probability table, 
the event E is determined by finding the event that satisfies the relation 

Resat et al., J.Phys.Chem. B 105, 11026 (2001) 

    








1

1

1
1

i
i

i
to ti EPPrEP

The second random number r2 is used to obtain the amount of time  between the 
reactions 

 
2ln1 r

Pto t



As the total probability of the events changes in time, the time step between 
occurring steps varies. 
 
Steps (iii) and (iv) are repeated at each step of the simulation. 
 
The necessary number of runs depends on the inherent noise of the system and 
on the desired statistical accuracy. 
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reactions included in stochastic model of 
chromatophore 
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Stochastic simulations of a complete vesicle 
Model vesicle: 12 LH1/RC-monomers 
  1-6 bc1 complexes 
  1 ATPase 
 
  120 quinones 
  20 cytochrome c2 
 
integrate rate equations with: 
 
- Gillespie algorithm (associations) 
 
- Timer algorithm (reactions); 1 random number determines when reaction occurs 
 
simulating 1 minute real time requires 1.5 minute on one opteron 2.4 GHz proc 
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simulate increase of light intensity (sunrise) 
during 1 minute, 
light intensity is slowly 
increased from 0 to 10 W/m2 

(quasi steady state) 
 
 
 
 there are two regimes 
- one limited by available light 
- one limited by bc1 throughput 

low light intensity: 
linear increase of  
ATP production  
with light intensity 

high light intensity: 
saturation is reached  
the later the higher the  
number of bc1 complexes 
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oxidation state of cytochrome c2 pool 

low light intensity: 
all 20 cytochrome c2 
are reduced by bc1 

high light intensity 
RCs are faster than bc1, 
c2s wait for electrons 
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oxidation state of cytochrome c2 pool 

more bc1 complexes 
can load more  
cytochrome c2s 
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total number of produced ATP 

low light intensity: any interruption stops ATP production 
 
high light intensity: interruptions are buffered up to 0.3 s duration 

blue line: 
illumination 
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c2 pool acts as buffer 

At high light intensity, c2 pool is mainly oxidized. 
 
If light is turned off, bc1 can continue to work (load c2s, pump protons, let ATPase 
produce ATP) until c2 pool is fully reduced. 
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What if parameters are/were unknown ? 

PLoS ONE (2010) 
 
choose 25 out of 45 system parameters  
for optimization. 
 
take 7 different non-equilibrium time-resolved 
experiments from Dieter Oesterhelt lab 
(MPI Martinsried). 
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Parameters not optimized 
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Parameter optimization through evolutionary 
algorithm 
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25 optimization parameters 

Analyze 1000 best 
parameter sets among 
32.800 simulations: 
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Absorption cross section 
light harvesting complex 

Sensitivity of master score 

Kinetic rate for hinge 
motion of FeS domain in 
bc1 complex 

Decay rate of excitons 
in LHC 

Some parameters are very sensitive, others not. 
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Three 
best-scored 
parameter sets 

Score of individual parameter set i 
for matching one experiment: 

x(ti): simulation result 
f(ti): smooth fit of exp. data 
 
Master score for one 
parameter set: defined as 
product of the individual 
scores si 
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Analysis could suggest new 
experiments that would be 
most informative! 

Different experiments yield different sensitivity 

‘‘importance score’’: 
Sum of the sensitivities  
Pmin /Pmax of all relevant 
parameters 
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Only 1/3 of the kinetic parameters previously known. 
 
Stochastic parameter optimization converges robustly into the same 
parameter basin as known from experiment. 
 
Two large-scale runs (15 + 17 parameters) yielded practically the same 
results. 
 
If implemented as grid search, less than 2 points per dimension. 
 
It appears enough to know 1/3 – 1/2 of kinetic rates about a system to be 
able to describe it quantitatively (IF connectivities are known). 

Summary 


