
V13: Causality 

  
Aims: (1) understand the causal relationships between the variables of a network 
           (2) interpret a Bayesian network as a causal model whose edges 
   have causal significance. 
 
For standard probabilistic queries it does not matter  
whether a Bayesian model is causal or not.  
 
It matters only that it encode the „right“ distribution.  
 
A correlation between 2 variables X and Y can arise in multiple settings: 
- when X causes Y 
- when Y causes X 
- or when X and Y are both effects of a single cause. 
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Intervention queries 

  
When some variable W causally affects both X and Y,  
we generally observe a correlation between them.  
 
If we know about the existence of W and can observe it,  
we can disentangle the correlation between X and Y  
that is induced by W. 
 
 
One approach to modeling causal relationships is using  
the notion of ideal intervention – interventions of the  
form do(Z := z), which force the variable Z to take the  
value z, and have no other immediate effect. 
 
In intervention queries, we are interested in answering  
queries of the form P(Y | do(z)) or P(Y | do(z), X = x) 
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Case study: student example 

  
Let us revisit our simple student example from  
lecture V8 and consider a particular student Gump. 
 
Conditioning an observation that Gump receives an A  
in the class increases the probability that he has high  
intelligence, his probability of getting a high  
SAT score, and his probability of getting a job. 
 
Consider a situation where Gump is lazy and rather than working hard  
to get an A in the class, he pays someone to hack into the  
university computer system and change his grade in the course to an A. 
 
What is his probability of getting a good job in this case? 
 
Intuitively, the company where Gump is applying only has access to his transcript. 
 
Thus, we expect P(J | do(g1) = P(J | g1). 
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Case study: student example 

  
What about the other 2 probabilities? 
 
Intuitively, we feel that the manipulation to Gump‘s grade should not  
affect our beliefs about his intelligence nor about his SAT score. 
 
Thus, we expect P(i1 | do(g1) ) = P(i1) and P(s1 | do(g1) ) = P(s1)  
 
An appropriate graphical model for the postinter- 
vention situation is shown in the right figure. 
 
Here, the grade (and thus his chances 
to get the job) do no longer depend on 
intelligence or difficulty of the class. 
 
This model is an instance of a mutilated network. 
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Latent variables 

  
In practice, however, there is a huge set of possible latent variables,  
representing factors in the world that we cannot observe  
and often are not even aware of. 
 
A latent variable may induce correlations between the observed variables  
that do not correspond to causal relations between them, and hence forms  
a confounding factor in our goal of determining causal interactions. 
 
For the purpose of causal inference, it is critical to disentangle  
the component in the correlation between X and Y that is due to  
causal relationships and the component due to these confounding factors. 
 
Unfortunately, it is virtually impossible in complex real-world settings,  
to identify all relevant latent variables and quantify their effects. 
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Causal models 

  
A causal model has the same form as a probabilistic Bayesian network. 
 
It consists of a directed acyclic graph over the random variables in the domain. 
 
The model asserts that each variable X is governed by a causal mechanism that 
(stochastically) determines its value based on the values of its parents. 
 
A causal mechanism takes the same form as a standard CPD.  
For a node X and its parents U, the causal model specifies  
for each value u of U a distribution over the values of X. 
 
The difference to a probabilistic Bayesian network is in the interpretation of edges. 
 
In a causal model, we assume that X‘s parents are its direct causes. 
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Causal models 

  
The assumption that CPDs correspond to causal mechanisms  
forms the basis for the treatment of intervention queries. 
 
Wen we intervene at a variable X, setting its value to x, we replace its original 
causal mechanism with one that dictates that it should take the value x. 
 
 
The model presented before is an   
instance of the mutilated network. 
 
In a mutilated network BZ=z, we eliminate  
all incoming edges into each variable 
Zi  Z, (here: grade) and set its value  
to be zi with probability 1. 
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Causal models 

  
Definition: A causal model C over X is a Bayesian network over X,  
which in addition to answering probabilistic queries,  
can also answer intervention queries P(Y | do(z), x) as follows: 
 

𝑃" Y | 𝑑𝑜 𝐳 , 𝐱 = 𝑃"𝐙-𝐳 𝐘 | 𝐱  
 
This approach deals appropriately with the student example.  
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Causal models 

  
Let Cstudent be the appropriate causal model. 
 
When we intervene in this model by setting  
Gump‘s grade to an A, we obtain the mutilated  
network shown before. 
 
The distribution induced by this network over Gump‘s SAT score  
is the same as the prior distribution over his SAT score in the original network.  
 
Thus as expected 

𝑃 𝑆|𝑑𝑜 𝐺 ≔ 𝑔3 = 𝑃"4567895:-;< 𝑆 = 𝑃"4567895 𝑆   

 
Conversely, the distribution induced on Gump‘s job prospects is 

𝑃"4567895 𝐽 | 𝐺 = 𝑔3   
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Causal models 

  

Assume that we start out with a somewhat different student model. 
 
In this case, the recruiter can also base 
her hiring decision on the student‘s SAT score.  Fig. 21.1.b 
 
Now, the query 𝑃"4567895 𝐽 | 𝑑𝑜 𝑔3   
is answered by the mutilated network  
shown below.    
 
The answer is clearly not 𝑃"4567895 𝐽  
due to the direct causal influence of his 
grade on his job prospects. 
 
It is also not equal to 𝑃"4567895 𝐽 | 𝐺 = 𝑔3 . 
because the new network also includes an 
influence via G ← I → S → J which is not 
present in the mutilated model. 
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Simpson‘s paradox 

  
Consider the problem of trying to determine whether a drug is beneficial  
in curing a particular disease within some population of patients. 
 
Statistics show that, within the population,  
 57.5% of patients who took the drug (D) are cured (C),  
 whereas only 50% of the patients who did not take the drug are cured. 
 
One may belief given these statistics that the drug is beneficial. 
 
However, within the subpopulation of male patients  
 70% who took the drug are cured, whereas  
 80% who did not take the drug are cured. 
Within the subpopulation of female patients  
 20% of who took the drug are cured, whereas  
 40% of those who did not take the drug are cured. 
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Simpson‘s paradox 

  
Thus, despite the apparently beneficial effect of the drug on the overall population, 
the drug appears to be detrimental to both men and women. We have 

𝑃 𝑐3|𝑑3 > 𝑃 𝑐3|𝑑A   
 𝑃 𝑐3|𝑑3, 𝐺 = 𝑚𝑎𝑙𝑒 < 𝑃 𝑐3|𝑑A, 𝐺 = 𝑚𝑎𝑙𝑒  

𝑃 𝑐3|𝑑3, 𝐺 = 𝑓𝑒𝑚𝑎𝑙𝑒 < 𝑃 𝑐3|𝑑A, 𝐺 = 𝑓𝑒𝑚𝑎𝑙𝑒  
 
This surprising case can occur because taking this drug is correlated with gender. 
In this particular example, 75% of men take the drug, but only 25% of women. 
 
If the population contains 200 people, equally distributed into 100 men and 100 women, 
 75 men take the drug, of these 52.5 are cured (70%) 
 25 men did not take the drug, of these 20 are cured (80%).  
 
 25 women take the drug, of these 5 are cured (20%) 
 75 women did not take the drug. Of these 30 are cured (40%). 
 
→ of 100 people (men + women) taking the drug, 57.5 are cured (57.5%). 
→ of 100 people not taking the drug, 50 are cured (50%). 
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Simpson‘s paradox 

  
The conceptual difficulty behind this paradox is  
that it is not clear which statistics one should use  
when deciding whether to describe the drug to a patient. 
 
The causal framework provides an answer to the  
problem on which variables we should condition on.  
 
The appropriate query we need to answer  
in determining whether to prescribe the drug  
is not 𝑃 𝑐3, 𝑑3  but rather 𝑃 𝑐3 | 𝑑𝑜 𝑑3 . 
 
 
We will show later that the correct answer is that  
the drug is not beneficial, as expected. 
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Structural Causal Identifiability 

  
Fully specifying a causal model is often impossible. 
 
At least, for intervention queries, we must disentangle  
the causal influence of X and Y from other factors  
leading to correlations between them. 
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Structural Causal Identifiability 

  
Consider a pair of variables X, Y with an observed correlation between them,  
and imagine that our task is to determine P(Y | do(X) ).  
 
Let us even assume that X temporally precedes Y,  
and therefore we know that Y cannot cause X. 
 
However, if we consider the possibility that least some of the  
correlation between X and Y is due to a hidden common cause,  
we have no way of determining how much effect perturbing X would have on Y. 
 
If all of the correlation is due to a causal link, then P(Y | do(X) ) = P(Y | X). 
 
Conversely, if all of the common correlation is due to the  
hidden common cause, then P(Y | do(X) ) = P(Y).  
 
In general, any value between those 2 distributions is possible.  
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Query Simplification Rules 

  
Which intervention queries are identifiable? 
 
We will now see that the structure of a causal model  
gives rise to certain equivalence rules over interventional queries. 
 
This allows one query to be replaced by an equivalent one  
that may have a simpler form. 
 
These rules can be defined in terms of an augmented causal model  
that encodes the possible effect of interventions explicitly  
within the graph structure. 
 
We will view the process of an intervention in terms  
of a new decision variable 𝑍I that determines  
whether we intervene at Z, and if so, what its value is. 
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Query Simplification Rules 

  
The variable 𝑍I takes on values in 𝜖 ∪ 𝑉𝑎𝑙 𝑍 . 
 
If 𝑍I = 𝜖, then Z behaves as a random variable  
whose distribution is determined by its usual CPD  𝑃 𝑍|𝑃𝑎M  . 
 
If 𝑍I = 𝑧, then it deterministically sets the value of Z to be z with probability 1. 
 
Let 𝐙O denote the set 𝑍I: 𝑍 ∈ 𝐙  
 
In those cases, where Z‘s value is deterministically set  
by one parent, all of Z‘s other parents U become irrelevant  
so that their edges to Z can be removed. 
 
Let 𝑮S be the augmented model for G. Let 𝑮S𝒁U be the graph obtained from 𝐺S  
except that every 𝑍 ∈ 𝐙 has only the single parent 𝑍I. 
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Query Simplification Rules 

  
The first query simplification rule allows us  
to insert or delete observations into a query. 
 
Proposition. Let C be a causal model over the graph structure G. Then: 
 

𝑃 𝐘 | 𝑑𝑜 𝐙 ≔ 𝐳 , 𝐗 = 𝐱,𝐖 = 𝐰 = 𝑃 𝐘 | 𝑑𝑜 𝐙 ≔ 𝐳 , 𝐗 = 𝐱  
 
if W is d-separated from Y given Z, X in the graph 𝐺SMY . 
 
 
Nomenclature: 
We say that X and Y are d-separated given Z,  
if there is no active trail between any node  
X  X and Y  Y given Z.  
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Query Simplification Rules 

  
The second rule is subtler and allows us  
to replace an intervention with the corresponding observation. 
 
Proposition. Let C be a causal model over the graph structure G.Then: 
 
𝑃 𝐘 | 𝑑𝑜 𝐙 ≔ 𝐳 , 𝑑𝑜 𝐗 = 𝐱 ,𝐖 = 𝐰 = 𝑃 𝐘 | 𝑑𝑜 𝐙 ≔ 𝐳 , 𝐗 = 𝐱,𝐖 = 𝐰  

 
if Y is d-separated from 𝐗Z given X, Z, W in the graph 𝐺SMY . 
 
This rule holds because it tells us that we do not  
get more information regarding Y from the fact  
that an intervention took place at X than the values x themselves.  
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Query Simplification Rules 

  
The third rule allows us to introduce or delete interventions. 
 
Proposition. Let C be a causal model over the graph structure G.Then: 
 

𝑃 𝐘 | 𝑑𝑜 𝐙 ≔ 𝐳 , 𝑑𝑜 𝐗 = 𝐱 ,𝐖 = 𝐰 = 𝑃 𝐘 | 𝑑𝑜 𝐙 ≔ 𝐳 ,𝐖 = 𝐰  
 
if Y is d-separated from 𝐗Z given Z, W in the graph 𝐺SMY . 
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Iterated Query Simplification 

  
There are many queries where none of the 3 rules apply directly. 
 
But we will see that we can also perform other transformations  
on the query allowing the rules to be applied. 
 
Let us revisit the right figure 
which involves the query P(J | do(G) ). 
None of our rules apply directly to this query. 
 
- we cannot eliminate the intervention as P(J | do(G) )  P(J) 

 
- we also cannot turn the intervention into an observation, P(J | do(G) )  P(J | G) 

 
because intervening at G only affects J via the single edge G → J, whereas 
conditioning G also influences J by the indirect trail G ← I → S → J. 
This trail is called a back-door trail, since it leaves G via the „back door“. 
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Iterated Query Simplification 

  
However we can use standard probabilistic reasoning and obtain: 

𝑃 𝐽 | 𝑑𝑜 𝐺 =[𝑃 𝐽 | 𝑑𝑜 𝐺 , 𝑆 𝑃 𝑆 | 𝑑𝑜 𝐺
\

 

Both of the terms in the summation can be further simplified. 
 
For the first term, we have that the only active trail  
from G to J is the direct edge G → J.  
 
I.e. J is d-separated from G given S  
in the graph where outgoing arcs  
from G have been deleted.  
 
Thus we can apply the second rule 
and conclude 

𝑃 𝐽 | 𝑑𝑜 𝐺 , 𝑆 = 𝑃 𝐽 | 𝐺, 𝑆  
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Iterated Query Simplification 

  
For the second term 𝑃 𝑆 | 𝑑𝑜 𝐺 , we already argued  𝑃 𝑆 | 𝑑𝑜 𝐺 = 𝑃 𝑆  
(hacking the computer system does not change our belief on his intelligence/SAT score). 

 
Putting the two together yields    𝑃 𝐽 | 𝑑𝑜 𝐺 = ∑ 𝑃 𝐽 | 𝐺, 𝑆 𝑃 𝑆\  
thus hacking the computer system does not affect the job chances anymore. 
 
A back-door trail from X to Y is an active trail that leaves X via a parent of X. 
 
For a query 𝑃 𝐘 | 𝑑𝑜 𝐗 , a set W satisfies the back-door criterion if no node in W 
is a descendant of X , and W blocks all back-door paths from X to Y. 
 
One can show that if a set W satisfies the back-door criterion  
for a query  𝑃 𝐘 | 𝑑𝑜 𝐗 , then 

𝑃 𝐘 | 𝑑𝑜 𝐗 =[𝑃 𝐘 | 𝐗,𝐖 𝑃 𝐖
𝐖
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Revisit Simpson‘s paradox 

  
We will reconsider Simpson‘s paradox using the back-door criterion. 
 
Consider again the query 𝑃 𝑐3 | 𝑑𝑜 𝑑3 .  
 
The variable G (gender) introduces a back-door trail between C and D.  
 
We can account for its influence using the eq. just derived:  

𝑃 𝑐3 | 𝑑𝑜 𝑑3 =[𝑃
^

𝑐3 | 𝑑3, 𝑔 𝑃 𝑔 . 

we obtain: 
𝑃 𝑐3 | 𝑑𝑜 𝑑3 = 0.7 ∙ 0.5 + 0.2 ∙ 0.5 = 0.45 
𝑃 𝑐3 | 𝑑𝑜 𝑑A = 0.8 ∙ 0.5 + 0.4 ∙ 0.5 = 0.6 

 
Therefore, we should not prescribe the drug. 
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Case study: lung cancer 

  
In the early 1960s, following a significant increase in the number  
of smokers that occurred around World War II, people began  
to notice a substantial increase in the number of cases of lung cancer. 
 
After many studies, a correlation was noticed between smoking and lung cancer. 
 
This correlation was noticed in both directions: 
The frequency of smokers among lung cancer patients  
was substantially higher than in the general population, 
 
Also, the frequency of lung cancer patients within the population of  
smokers was substantially higher than within the population of nonsmokers. 
 
This led the Surgeon General, in 1964, to issue a report  
linking cigarette smoking to lung cancer. 
 
This report came under severe attack by the tobacco industry. 
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Case study: lung cancer 

  
The industry claimed that the observed correlation  
can also be explained by a model in which there is  
no causal relationship between smoking and lung cancer. 
 
Instead, an observed genotype might exist that  
simultaneously causes cancer and a desire for nicotine. 
 
There exist several possible models 
 
Direct causal effect   Indirect influence via a latent 
     common parent genotype 
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Case study: lung cancer 

  
The 2 models can express precisely the same set of distributions  
over the observable variables S and C. 
 
Thus, they can do an equally good job of representing  
the empirical distribution over these variables, and there is no way  
to distinguish between them based on observational data alone. 
 
Both models will provide the same answer to  
standard probabilistic queries such as 𝑃 𝑐3 | 𝑠3 . 
 
However, relative to interventional queries,  
these models have very different consequences. 
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Case study: lung cancer 

  
According to the Surgeon General‘s model, we would have 

𝑃 𝑐3 | 𝑑𝑜 𝑆 ≔ 𝑠3 = 𝑃 𝑐3 | 𝑠  
 
In other words, if we force people to smoke, their probability of  
getting cancer is the same as the probability conditioned on smoking,  
which is much higher than the prior probability. 
 
According to the tobacco industry model, we have 

𝑃 𝑐3 | 𝑑𝑜 𝑆 ≔ 𝑠3 = 𝑃 𝑐3  
 
In other words, making the population smoke or stop smoking  
would have no effect on the rate of cancer cases. 
 
Pearl (1995) proposed a formal analysis of this dilemma.  
He proposed that we should combine these 2 models into a single joint model. 
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Case study: lung cancer 

  
Pearl model 
 
 
 
 
We now need to assess from the marginal distribution over  
the observed variables alone the parametrization of the 3 links. 
 
Unfortunately, it is impossible to determine the parameters  
of these links from the observational data alone, since both  
original models can explain the data perfectly. 
 
Pearl thus refined the model somewhat by introducing an  
additional assumption, and could then determine estimates for the links. 
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Case study: lung cancer 

  
Assume that we determine that the effect of smoking on cancer  
is not a direct effect, but occurs through the accumulation of  
tar deposits in the lungs, see figure. 
 
Here, we assume that the deposition 
of tar in the lungs is not directly 
affected by the latent Genotype 
variable. 
 
We will now show that, if we can 
measure the amount of tar deposits 
in the lungs of various individuals (e.g. by X-ray or in autopsies),  
we can determine the probability of the intervention query 

𝑃 𝑐3|𝑑𝑜 𝑠3  
using observed correlations alone. 
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𝐺S 



Case study: lung cancer 

  
We are interested in 𝑃 𝑐3 | 𝑑𝑜 𝑠3 , which is an intervention query  
whose mutilated network is  
 
 
 
 
 
 
 
Standard probabilistic reasoning shows that 

𝑃 𝐶 | 𝑑𝑜 𝑠3 =[𝑃 𝐶 | 𝑑𝑜 𝑠3 , 𝑡 𝑃 𝑡 | 𝑑𝑜 𝑠3
k

 

We now consider and simplify each term separately. 
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𝐺S\̅ 



Case study: lung cancer 

  
The second term, which measures the effect of smoking on tar,  
can be simplified directly using our rule for converting interventions  
to observations (second rule). 
 
Here, 𝑆I is d-separated from T given S in graph 𝐺S .  
 
It follows that 
 
  𝑃 𝑡 | 𝑑𝑜 𝑠 = 𝑃 𝑡 | 𝑠  
 
Intuitively, the only active trail from 𝑆I to T goes via S,  
and the effect of that trail is identical regardless of  
whether we condition on S or intervene at S. 
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𝐺S 



𝐺S\̅ 

Case study: lung cancer 

  
The first term 𝑃 𝐶 | 𝑑𝑜 𝑠3 , 𝑡  measures the effect of tar on cancer  
in the presence of our intervention on S. 
 
Unfortunately, we cannot directly convert the intervention at S  
to an observation, since C is not d-separated from 𝑆I given S, T in 𝐺S.  
 
However, we can convert the observation at T to an intervention,  
because C is d-separated from 𝑇O given S,T in the graph  𝐺S\̅. 
 
 𝑃 𝐶 | 𝑑𝑜 𝑠3 , 𝑡 = 𝑃 𝐶 | 𝑑𝑜 𝑠3 , 𝑑𝑜 𝑡  
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Case study: lung cancer 

  
We can now eliminate the intervention at S from this expression using the third 
rule, which applies because C is d-separated from 𝑆I given T in the graph  𝐺SnY . 
 
We obtain 
𝑃 𝐶 | 𝑑𝑜 𝑠3 , 𝑑𝑜 𝑡 = 𝑃 𝐶 | 𝑑𝑜 𝑡  
 
By standard probabilistic reasoning 
and conditioning on S we get 
 

𝑃 𝐶 | 𝑑𝑜 𝑡 =[𝑃 𝐶 | 𝑑𝑜 𝑡 , 𝑠′ 𝑃 𝑠p| 𝑑𝑜 𝑡 =
qr

 

[𝑃 𝐶 | 𝑡, 𝑠′ 𝑃 𝑠p| 𝑑𝑜 𝑡 =
qr

 

[𝑃 𝐶 | 𝑡, 𝑠′ 𝑃 𝑠′
qr
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𝐺SnY  

By rule 2 because C is 
d-separated from 𝑇O  
given T, S in 𝐺S 

By rule 3 because S is 
d-separated from 𝑇O in 𝐺S 



Case study: lung cancer 

  
Putting everything together, we get 

𝑃 𝑐 | 𝑑𝑜 𝑠3 =[𝑃 𝑐 | 𝑑𝑜 𝑠3 , 𝑡 𝑃 𝑡 | 𝑑𝑜 𝑠3
k

 

=[𝑃 𝑐 | 𝑑𝑜 𝑠3 , 𝑡 𝑃 𝑡 | 𝑠3
k

 

=[𝑃 𝑡 | 𝑠3
k

[𝑃 𝑐 | 𝑡, 𝑠′ 𝑃 𝑠′
qr

 

 
Thus, if we agree that tar in the lungs is the intermediary  
between smoking and lung cancer,  
we can uniquely determine the extent to which smoking  
causes lung cancer  
even in the presence of a confounding latent variable (here: genotype). 
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