
V3 Matrix algorithms and graph partitioning

- Dividing networks into clusters

- Graph partitioning

- The Kernighan-Lin algorithm

- Spectral partitioning

1

SS 2014 - lecture 3 Mathematics of Biological Networks

Motivation: Cellular networks are modular!

 Adam Arkin / UC Berkeley

Modularity is one way to reconcile the seemingly incompatible
objectives of complexity and evolvability.

Modularity has been shown to underlie biological function e.g.
at the levels of transcription and embryonic development.

Over half of all functional modules (in the form of transcriptional modules, protein
complexes, and metabolic pathways) have coevolving components.

Modularity is hierarchical.

2

SS 2014 - lecture 3 Mathematics of Biological Networks

Singh … Arkin PNAS (2008) 105, 7500-7505

Evolutionary modules in chemotaxis

Orthologs of 61 B. subtilis
chemotaxis genes from 207
microbial species. The resulting
gene content matrix was
hierarchically clustered along both
genes (rows) and species
(columns).
Genes were then colored
according to which dynamic-control
role they occupy in the network.
The clustering reveals that genes
group into 5 statistically significant
evolutionary modules (A–E).
(i) flagellar genes (flg, fli, flh) are
conserved among motile bacteria
but not among motile Archaea;
(ii) the full complement of signal
transducers (mcp, tlp) and
regulators (che) is absent in many
intracellular pathogens.

3

SS 2014 - lecture 3 Mathematics of Biological Networks

Singh … Arkin PNAS (2008) 105, 7500-7505

4

FBA-optimized network on glutamate-rich substrate
High-flux backbone for FBA-optimized metabolic
network of E. coli on a glutamate-rich substrate.
Metabolites (vertices) coloured blue have at least one
neighbour in common in glutamate- and succinate-rich
substrates, and those coloured red have none.
Reactions (lines) are coloured blue if they are identical
in glutamate- and succinate-rich substrates, green if a
different reaction connects the same neighbour pair, and
red if this is a new neighbour pair. Black dotted lines
indicate where the disconnected pathways, for example,
folate biosynthesis, would connect to the cluster through
a link that is not part of the HFB. Thus, the red nodes
and links highlight the predicted changes in the HFB
when shifting E. coli from glutamate- to succinate-rich
media. Dashed lines indicate links to the biomass
growth reaction.

Almaar et al., Nature 427, 839 (2004)

(1) Pentose Phospate (11) Respiration
(2) Purine Biosynthesis (12) Glutamate Biosynthesis (20) Histidine Biosynthesis
(3) Aromatic Amino Acids (13) NAD Biosynthesis (21) Pyrimidine Biosynthesis
(4) Folate Biosynthesis (14) Threonine, Lysine and Methionine Biosynthesis
(5) Serine Biosynthesis (15) Branched Chain Amino Acid Biosynthesis
(6) Cysteine Biosynthesis (16) Spermidine Biosynthesis (22) Membrane Lipid Biosynthesis
(7) Riboflavin Biosynthesis (17) Salvage Pathways (23) Arginine Biosynthesis
(8) Vitamin B6 Biosynthesis (18) Murein Biosynthesis (24) Pyruvate Metabolism
(9) Coenzyme A Biosynthesis (19) Cell Envelope Biosynthesis (25) Glycolysis
(10) TCA Cycle

SS 2014 - lecture 3 Mathematics of Biological Networks

RNA polymerases I, II and III

Again: modular decompositon easier
to comprehend than graph

5

SS 2014 - lecture 3 Mathematics of Biological Networks

Gagneur et al. Genome Biology 5, R57 (2004)

Dividing networks into clusters

We like to divide the vertices of a graph so that vertices in one group have many
edges to other vertices inside the same group and only a few edges to vertices in
other groups.

Network of Co-authorships in a
university department.
Vertices are scientists and edges
link pairs of scientists who have
co-authored scientific
publications.

The network has clear clusters
or „communities“ that likely
reflect divisions of interests
and research groups.

6

SS 2014 - lecture 3 Mathematics of Biological Networks

Graph partitioning

Graph partitioning and community detection are distinguished from one
another by whether the number and size of the groups is fixed by the experimenter
or whether it is unspecified.

Graph partitioning is a classic problem in computer science, studied since the
1960s.
It is the problem of dividing the vertices of a network into a given number of non-
overlapping groups of given sizes such that the number of edges between groups
is minimized.

One important application is the optimal distribution of vertices onto cores of a
parallel computer in order to mimimize the amount of communication required
when solving e.g. a system of coupled equations.

7

SS 2014 - lecture 3 Mathematics of Biological Networks

Community detection

In community detection, the number and size of the groups into which the
network is divided are not specified by the experimenter but by the network itself.

The goal of community detection is to find the natural fault lines along which a
network separates.

8

SS 2014 - lecture 3 Mathematics of Biological Networks

Algorithms for graph partitioning

Why is partitioning hard?

The simplest graph partitioning problem is the division of a
network into just 2 parts. This is sometimes called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts …

The graph bisection problem is the problem of dividing the vertices of a network
into 2 non-overlapping groups of given sizes such that the number of edges
running between vertices in different groups is minimized.

The number of edges between groups is called the cut size.

Thus, one could simply look through all possible divisions of the network
into 2 parts and choose the one with smallest cut size.

9

SS 2014 - lecture 3 Mathematics of Biological Networks

Algorithms for graph partitioning

But this exhaustive search is prohibitively expensive!

Given a network of n vertices. There are
!!

!#!!$!
 different ways of dividing it

into 2 groups of n1 and n2 vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with current computers.

In computer science, either an algorithm can be clever and run quickly, but will fail
to find the optimal answer in some (and perhaps most) cases, or it will always find
the optimal answer, but takes an impractical length of time to do it.

10

SS 2014 - lecture 3 Mathematics of Biological Networks

The Kernighan-Lin algorithm

This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the
simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also one of the developers of the C language).

11

SS 2014 - lecture 3 Mathematics of Biological Networks

(a) The algorithm starts with any division of the vertices of a network into two
groups (shaded) and then searches for pairs of vertices, such as the pair
highlighted here, whose interchange would reduce the cut size between the
groups.
(b) The same network after interchange of the 2 vertices.

The Kernighan-Lin algorithm

(1) Divide the vertices of a given network into 2 groups (e.g. randomly)

(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the

second group, calculate how much the cut size between the groups would
change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount.

 If no pair reduces it, find the pair that increases it by the smallest amount.

Repeat this process, but with the important restriction that each vertex in the
network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.

12

SS 2014 - lecture 3 Mathematics of Biological Networks

The Kernighan-Lin algorithm (II)

(3) Go back through every state that the network passed through during the

swapping procedure and choose among them the state in which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly, starting each time with the best division
of the network found in the last round.

(5) Stop when no improvement on the cut size occurs.

Note that if the initial assignment of vertices to group is done randomly, the
Kernighan-Lin algorithm may give different answers when it is run twice on the
same network.

13

SS 2014 - lecture 3 Mathematics of Biological Networks

The Kernighan-Lin algorithm (II)

(a) A mesh network of 547 vertices of the kind commonly used in finite element
analysis.
(b) The best division found by the Kernighan-Lin algorithm when the task is to split
the network into 2 groups of almost equal size.
This division involves cutting 40 edges in this mesh network and gives parts of 273
and 274 vertices.
(c) The best division found by spectral partitioning (second half of V3).

14

SS 2014 - lecture 3 Mathematics of Biological Networks

Runtime of the Kernighan-Lin algorithm

The number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups  [0, n / 2].

→ in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups to
determine how the cut size would be affected if the pair was swapped.

In the worst case, there are n / 2  n / 2 = n2 / 4 such pairs, which is O(n2).

15

SS 2014 - lecture 3 Mathematics of Biological Networks

Runtime of the Kernighan-Lin algorithm (ii)

When a vertex i moves from one group to the other group, any edges connecting it
to vertices in its current group become edges between groups after the swap.

Let us suppose that are ki

same such edges.

Similarly, any edges that i has to vertices in the other group, (say ki

other ones)
become within-group edges after the swap.

There is one exception. If i is being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

→ the change in the cut size due to the movement of i is ki

other - ki
same – Aij

A similar expression applies for vertex j.

→ the total change in cut size due to the swap is ki

other - ki
same +kj

other - kj
same – 2Aij

16

SS 2014 - lecture 3 Mathematics of Biological Networks

Runtime of the Kernighan-Lin algorithm (iii)

For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of i and j in turn, and hence
takes time on the order of the average degree in the network,
or O (m/n) with m edges in the network.

→ the total running time is O (n  n2  m/n) = O(mn2)

On a sparse network with m  n, this is O(n3)

On a dense network (with 𝑚 → ! !()
*) , this is O(n4)

This time still needs to be multiplied by the number of rounds the algorithm is run
before the cut size stops decreasing.
For networks up to a few 1000 of vertices, this number may be between 5 and 10.

17

SS 2014 - lecture 3 Mathematics of Biological Networks

Spectral partitioning

This method was presented by Fiedler (1973) and makes use of the matrix
properties of the graph Laplacian.

Again we will apply this algorithm to the graph bisection problem.

Given a network of n vertices and m edges and a divsion into group 1 and group 2.

We can write the cut size for the division as

𝑅 = 1
2 / 𝐴12

1,2 in
differentgroups

The factor ½ compensates for counting each edge twice in the sum.

18

SS 2014 - lecture 3 Mathematics of Biological Networks

Spectral partitioning

Let us define a set of quantities si , one for each vertex i, which represent the
division of the network thus:

𝑠1 = A+1 if vertex 𝑖 belongs to group 1
−1 if vertex 𝑖 belongs to group 2

Then)* 1 − 𝑠1𝑠2 = A1 if 𝑖 and 𝑗 are in different group𝑠
0 if 𝑖 and 𝑗 are in the same group

This allows to rewrite the cut size as

𝑅 = 1
4/𝐴12

1,2
1 − 𝑠1𝑠2

where the sum now runs over all values of i and j.

19

SS 2014 - lecture 3 Mathematics of Biological Networks

Spectral partitioning

 𝑅 =
)
O∑ 𝐴121,2 1 − 𝑠1𝑠2 The first term in the sum is

 ∑ 𝐴12 = ∑ 𝑘1 = ∑ 𝑘1𝑠1* = ∑ 𝑘1𝛿12𝑠1𝑠2121112

where ki is the degree of vertex i , ij is the Kronecker symbol.

We have also used the fact that ∑ 𝐴12 = 𝑘12 and si

2 = 1

Substituting this back into the above equation gives

𝑅 =)
O∑ 𝑘1𝛿12 − 𝐴12 𝑠1𝑠2 =)

O∑ 𝐿12𝑠1𝑠21212 or 𝑅 =)
O s

TL s

in matrix form, where s is the vector with elements si and
Lij = ki ij – Aij is the ij-th element of the graph Laplacian matrix.

20

SS 2014 - lecture 3 Mathematics of Biological Networks

Insert: graph Laplacian

The graph Laplacian is defined in analogy to the diffusion process.

Diffusion processes are normally treated by the diffusion equation
VW
VX = 𝐷 V$W

VZ$

But one can also consider diffusion processes that take place on networks.

There, the rate at which the amount of substance i at vertex i changes is
determined by the flow from and to other vertices j that are connected to i.

This gives
[\]
[X = 𝐶 ∑ 𝐴12 𝜎2 − 𝜎12 . By splitting the 2 terms we can write

𝑑𝜎1
𝑑𝑡 = 𝐶/𝐴12𝜎2 − 𝐶𝜎1/𝐴12 = 𝐶/𝐴12𝜎2 − 𝐶𝜎1𝑘1

222

21

SS 2014 - lecture 3 Mathematics of Biological Networks

Insert: graph Laplacian

We can write this equation [\][X = 𝐶 ∑ 𝐴12𝜎2 − 𝐶𝜎12 𝑘1
in matrix form

𝑑𝜎
𝑑𝑡 = 𝐶 A − D 𝜎

where  is the vector with components i , A is the adjacency matrix and
D is a diagonal matrix with the vertex degrees on the diagonal.

It is common to define a new matrix L = D - A so that the above equation takes on
the form of the ordinary diffusion equation

[\
[X − 𝐶 L 𝜎 = 0 VWVX − 𝐷

V$W
VZ$ = 0

Here, the Laplacian operator of the second spatial derivatives is replaced by L.

22

SS 2014 - lecture 3 Mathematics of Biological Networks

Insert: eigenvectors of the graph Laplacian

Consider an undirected network with n vertices and m edges.

Let us designate one end of each edge to be end 1 and the other to be end 2.

Now let us define the m  n incidence matrix B with elements as follows

𝐵12 = e
+1 if end 1 of edge 𝑖 is attached to vertex 𝑗
−1 if end 2 of edge 𝑖 is attached to vertex 𝑗
0 otherwise

Thus, each row of B has exactly one +1 and one -1 element.

23

SS 2014 - lecture 3 Mathematics of Biological Networks

Insert: eigenvectors of the graph Laplacian

Let us now consider the sum ∑ 𝐵h1𝐵h2h that runs over all edges for the
vertex pair i and j.

If i  j , the only non-zero terms in this sum occur if both Bki and Bkj are non-zero.

In that case, edge k connects vertices i and j, and the product will be -1.

For a simple network, there is at most one edge between any pair of vertices.
Thus, the entire sum will be -1 if there is an edge between i and j and 0 otherwise.

If i = j , then the sum is ∑ 𝐵h1*h which contributes a value of +1 for every edge
connected to vertex i, so the whole sum is just equal to degree ki of vertex i.

24

SS 2014 - lecture 3 Mathematics of Biological Networks

Insert: eigenvectors of the graph Laplacian

Thus the sum ∑ 𝐵h1𝐵h2h is precisely equal to an element of the Laplacian

/𝐵h1𝐵h2
h

= 𝐿12

The diagonal elements Lii are equal to the degrees ki and the off-diagonal terms
Lij are -1 if there is an edge (i,j) and zero otherwiwse.

In matrix form, we can write L = BT B

Now let vi be an eigenvector of L with eigenvalue i.

Then vi

T BT B vi = vT
i L vi = i vT

i vi = i

where we assumed that the eigenvector vi is normalized to that
its inner product with itself is 1.

25

SS 2014 - lecture 3 Mathematics of Biological Networks

Insert: eigenvectors of the graph Laplacian

Thus any eigenvalue i of the Laplacian is equal to (vi

T BT) (B vi).

This quantity is just the product of a real vector with itself. It is the sum of the
squares of the real elements of that vector and hence cannot be negative.

It follows that all eigenvalues of the graph Laplacian are non-negative.
The smallest possible eigenvalue is 0.

Let us consider the vector 1 = (1,1,1,…).

If we multiply this vector by the Laplacian, the i-th element has the value

/𝐿12 × 1 =/ 𝛿12𝑘1 − 𝐴12 = 𝑘1 −/𝐴12 = 𝑘1 − 𝑘1 = 0
222

Thus the vector 1 is always an eigenvector of L with the smallest possible
eigenvalue 0.

26

SS 2014 - lecture 3 Mathematics of Biological Networks

Back to spectral partitioning

R was the cut size for the division, i.e., the number of edges running between the
2 groups:

𝑅 = 1
4 s

TL s

where s is the vector with elements si and Lij = ki ij – Aij is the ij-th element of the
graph Laplacian matrix.

The matrix L specifies the structure of the network and the vector s defines a
division of that network into groups.

Our goal is to find the vector s that minimizes the cut size for given L.

In general, this mimization problem is not easy to solve because the values si are
restricted to +1 and -1.

27

SS 2014 - lecture 3 Mathematics of Biological Networks

Relaxation method

If the values si could take on any real value, we could compute the derivative, set
this to zero, and find the minimum.

We will solve this problem with the relaxation method where we will relax these
restraints.

This is one of the standard methods for finding approximate solutions of vector
optimization problems.

The allowed values of si are actually subject to 2 constraints.

First, each individual element si can only have the values +1 and -1.

If we regard s as a vector in Euclidian space then this constraint means that the
vector always points to one of the 2n corners of an n-dimensional hypercube
centered on the origin. It always has the same length 𝑛.

28

SS 2014 - lecture 3 Mathematics of Biological Networks

Back to spectral partitioning

Let us now relax the constraint on the vector‘s
direction, so that it can point in any direction
in its n-dimensional space.

We will however still keep its length the same.

So s will be allowed to take any value,
subject to the constraint s = 𝑛 or ∑ 𝑠1* = 𝑛1

The second constraint on the si is that the numbers of them that are equal to +1
and -1 respectively must be equal to the desired sizes of the 2 groups.

If these 2 sizes are n1 and n2 , this second constraint can be written as
∑ 𝑠1 = 𝑛) − 𝑛*1 or in vector notation 1Ts = 𝑛) − 𝑛* where 1T = (1,1,1, …)

We keep this second constraint unchanged.

29

SS 2014 - lecture 3 Mathematics of Biological Networks

Minimize cut size subject to constraints

Our task is therefore to mimize the cut size

𝑅 = 1
4/𝐿12𝑠1𝑠2

12

subject to the 2 constraints
 ∑ 𝑠1* = 𝑛1

/𝑠1 = 𝑛) − 𝑛*
1

We differentiate R with respect to the elements si and enforce the constraints
using two Lagrange multipliers which we denote  and 2

𝜕
𝜕𝑠1

/𝐿2h𝑠2𝑠h + 𝛼 𝑛 −/𝑠2*
2

+ 2𝜇 𝑛) − 𝑛* −/𝑠2
22h

= 0

30

SS 2014 - lecture 3 Mathematics of Biological Networks

Back to spectral partitioning

 𝜕
𝜕𝑠1

/𝐿2h𝑠2𝑠h + 𝛼 𝑛 −/𝑠2*
2

+ 2𝜇 𝑛) − 𝑛* −/𝑠2
22h

= 0

Performing the derivatives, we then find that

/𝐿12𝑠2 +/𝐿1h𝑠h − 2𝛼𝑠1 − 2𝜇
h

= 0
2

/𝐿12𝑠2 = 𝛼𝑠1 + 𝜇
2

or in matrix notation
 L s =  s +  1

We can calculate the value of  by recalling that 1 is an eigenvector of the
Laplacian with eigenvalue 0 so that L  1 = 1T L = 0.

31

SS 2014 - lecture 3 Mathematics of Biological Networks

Relationship to eigenvectors of Laplacian

Multiplying L s =  s +  1 from the left by 1T gives

𝟏TL s = 𝛼𝟏T s + 𝜇 𝟏T𝟏
with 1Ts = 𝑛) − 𝑛* we get
 0 = 𝛼 𝑛) − 𝑛* + 𝜇 𝑛
or

 𝜇 = −!#(!$
! 𝛼

If we define the new vector x = s + p
q 𝟏 = s − !#(!$

! 1

then L x = L s + p
q 𝟏 = L s = 𝛼 s + 𝜇 𝟏 = 𝛼 x

In other words, x is an eigenvector of the Laplacian with eigenvalue .

32

SS 2014 - lecture 3 Mathematics of Biological Networks

Which eigenvector should be choose?

We are still free to choose which eigenvector it is.

We should choose the one that gives the smallest value of the cut size R.

Notice that 1Tx = 𝟏Ts + p
q 𝟏

T𝟏 = 𝑛) − 𝑛* − !#(!$
! 𝑛 = 0

Thus, x is orthogonal to 1.

While x should be an eigenvector of L , it cannot be the eigenvector (1,1,1,…) that
has eigenvalue 0.

Which eigenvector should we choose instead?

33

SS 2014 - lecture 3 Mathematics of Biological Networks

Choose eigenvector with smallest eigenvalue

 𝑅 = 1
4 s

TL s = 1
4 x

TL x = 1
4𝛼 x

Tx

We also have xTx = sTs + pq sT𝟏 + 𝟏Ts + p$
q$ 𝟏

T𝟏

= 𝑛 − 2𝑛) − 𝑛*𝑛 𝑛) − 𝑛* + 𝑛) − 𝑛* *

𝑛* 𝑛

= 𝑛 − 𝑛) − 𝑛* *

𝑛 + 4𝑛)𝑛*𝑛 − 4𝑛)𝑛*𝑛 = 𝑛 − 𝑛) + 𝑛* *

𝑛 + 4𝑛)𝑛*𝑛 = 4𝑛)𝑛*𝑛

and hence

 𝑅 = !#!$
! 𝛼

Thus, the cut size is proportional to the eigenvalue .

Since our goal is to mimize R, we should choose x to be the eigenvector
corresponding to the smallest allowed eigenvalue of the Laplacian.

34

SS 2014 - lecture 3 Mathematics of Biological Networks

Optimal network division

We have already shown that x must be orthogonal to the eigenvector 1 with the
smallest eigenvalue 0.

The best thing we can do is choose x proportional to eigenvector v2 corresponding
to the second lowest eigenvalue.

Finally we recover the best value for the network division s :

s = x + 𝑛) − 𝑛*𝑛 𝟏
or equivalently

𝑠1 = 𝑥1 +
𝑛) − 𝑛*

𝑛

This gives us the optimal relaxed value of s.

35

SS 2014 - lecture 3 Mathematics of Biological Networks

Network partitioning with constraints

There is, however, an additional constraint that the elements of s should have the
values of +1 and -1.
Moreover, exactly n1 of them should be +1 and n2 should be -1.

Thus, the values of s cannot exactly take on the values 𝑠1 = 𝑥1 + !#(!$
! .

Let us do the best we can and choose s as close as possible to these ideal values
subject to its contraints by making the product

sT 𝒙 + 𝑛) − 𝑛*𝑛 1 =/𝑠1 𝑥1 +
𝑛) − 𝑛*

𝑛1

as large as possible.

This is achieved by assigning si = +1 for the vertices with the larges (i.e most

positive) values of 𝑥1 + !#(!$
! and thus largest values of xi and si = -1 to the

remaining ones.

36

SS 2014 - lecture 3 Mathematics of Biological Networks

Algorithm for spectral partitioning

There is a further subtlety. It is arbitrary which group we call group 1 and which we
call group 2. Thus, if the sizes of the two groups are different there are two
different ways of making the split. We solve this in a pragmatic way, see below.

Thus our final algorithm is as follows:

1. Calculate the eigenvector v2 corresponding to the second smallest eigenvalue

of the graph Laplacian.
2. Sort the elements of the eigenvector in order from largest to smallest.
3. Put the vertices corresponding to the n1 largest elements in group 1, the rest in

group 2 and calculate the cut size.
4. The put the vertices corresponding to the n1 smallest elements in group 1, the

rest in group 2 and calculate the cut size.
5. Between these 2 divisions of the network, choose the one that gives the

smaller cut size.

37

SS 2014 - lecture 3 Mathematics of Biological Networks

Results and complexity of spectral partitioning

38

SS 2014 - lecture 3 Mathematics of Biological Networks

For this network, the cut-size of the Kernighan-Lin algorithm is 40, whereas
spectral partitioning cuts 46 edges.

Spectral partitioning tends to find divisions of a network that have „the right general
shape“.

Speed: The time-consuming part of spectral partitioning is computation of the
eigenvector which takes time O(mn) or O(n2) on a sparse network.
This is an order of magnitude better than the Kernighan-Lin algorithm (O(n3)).

