
V3 Matrix algorithms and graph partitioning 

  
 
- Dividing networks into clusters 
 
- Graph partitioning 
 
- The Kernighan-Lin algorithm 
 
- Spectral partitioning 

 
1 

SS 2014 - lecture 3 Mathematics of Biological Networks 



Motivation: Cellular networks are modular! 

  
      Adam Arkin / UC Berkeley 
 
Modularity is one way to reconcile the seemingly incompatible  
objectives of complexity and evolvability.  
 
Modularity has been shown to underlie biological function e.g. 
at the levels of transcription and embryonic development.  
 
Over half of all functional modules (in the form of transcriptional modules, protein 
complexes, and metabolic pathways) have coevolving components.  
 
Modularity is hierarchical. 
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Evolutionary modules in chemotaxis 

  
Orthologs of 61 B. subtilis 
chemotaxis genes from 207 
microbial species. The resulting 
gene content matrix was 
hierarchically clustered along both 
genes (rows) and species 
(columns).  
Genes were then colored 
according to which dynamic-control 
role they occupy in the network. 
The clustering reveals that genes 
group into 5 statistically significant 
evolutionary modules (A–E).  
(i) flagellar genes (flg, fli, flh) are 
conserved among motile bacteria 
but not among motile Archaea;  
(ii) the full complement of signal 
transducers (mcp, tlp) and 
regulators (che) is absent in many 
intracellular pathogens. 
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FBA-optimized network on glutamate-rich substrate 
High-flux backbone for FBA-optimized metabolic 
network of E. coli on a glutamate-rich substrate.  
Metabolites (vertices) coloured blue have at least one 
neighbour in common in glutamate- and succinate-rich 
substrates, and those coloured red have none. 
Reactions (lines) are coloured blue if they are identical 
in glutamate- and succinate-rich substrates, green if a 
different reaction connects the same neighbour pair, and 
red if this is a new neighbour pair. Black dotted lines 
indicate where the disconnected pathways, for example, 
folate biosynthesis, would connect to the cluster through 
a link that is not part of the HFB. Thus, the red nodes 
and links highlight the predicted changes in the HFB 
when shifting E. coli from glutamate- to succinate-rich 
media. Dashed lines indicate links to the biomass 
growth reaction.  
 

Almaar et al., Nature 427, 839 (2004) 

(1) Pentose Phospate  (11) Respiration   
(2) Purine Biosynthesis  (12) Glutamate Biosynthesis  (20) Histidine Biosynthesis 
(3) Aromatic Amino Acids  (13) NAD Biosynthesis   (21) Pyrimidine Biosynthesis 
(4) Folate Biosynthesis  (14) Threonine, Lysine and Methionine Biosynthesis  
(5) Serine Biosynthesis  (15) Branched Chain Amino Acid Biosynthesis  
(6) Cysteine Biosynthesis  (16) Spermidine Biosynthesis  (22) Membrane Lipid Biosynthesis 
(7) Riboflavin Biosynthesis  (17) Salvage Pathways   (23) Arginine Biosynthesis 
(8) Vitamin B6 Biosynthesis (18) Murein Biosynthesis   (24) Pyruvate Metabolism  
(9) Coenzyme A Biosynthesis (19) Cell Envelope Biosynthesis  (25) Glycolysis  
(10) TCA Cycle  
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RNA polymerases I, II and III 

Again: modular decompositon easier 
to comprehend than graph 
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Dividing networks into clusters 

  
We like to divide the vertices of a graph so that vertices in one group have many 
edges to other vertices inside the same group and only a few edges to vertices in 
other groups. 
 
 
Network of Co-authorships in a  
university department. 
Vertices are scientists and edges 
link pairs of scientists who have 
co-authored scientific 
publications. 
 
The network has clear clusters 
or „communities“ that likely 
reflect divisions of interests 
and research groups. 
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Graph partitioning 

  
Graph partitioning and community detection are distinguished from one 
another by whether the number and size of the groups is fixed by the experimenter 
or whether it is unspecified. 
 
Graph partitioning is a classic problem in computer science, studied since the 
1960s.  
It is the problem of dividing the vertices of a network into a given number of non-
overlapping groups of given sizes such that the number of edges between groups 
is minimized. 
 
One important application is the optimal distribution of vertices onto cores of a 
parallel computer in order to mimimize the amount of communication required 
when solving e.g. a system of coupled equations. 

 
7 

SS 2014 - lecture 3 Mathematics of Biological Networks 



Community detection 

  
In community detection, the number and size of the groups into which the 
network is divided are not specified by the experimenter but by the network itself. 
 
The goal of community detection is to find the natural fault lines along which a 
network separates. 
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Algorithms for graph partitioning 

  
Why is partitioning hard? 
 
The simplest graph partitioning problem is the division of a  
network into just 2 parts. This is sometimes called graph bisection. 
 
If we can divide a network into 2 parts, we can also divide  
it further by dividing one or both of these parts … 
 
The graph bisection problem is the problem of dividing the vertices of a network 
into 2 non-overlapping groups of given sizes such that the number of edges 
running between vertices in different groups is minimized. 
 
The number of edges between groups is called the cut size. 
 
Thus, one could simply look through all possible divisions of the network  
into 2 parts and choose the one with smallest cut size. 
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Algorithms for graph partitioning 

  
But this exhaustive search is prohibitively expensive! 
 

Given a network of n vertices. There are  
!!

!#!!$!
   different ways of dividing it 

into 2 groups of  n1 and n2 vertices. 
 
The amount of time to look through all these divisions will go up roughly 
exponentially with the size of the system. 
 
Only values of up to n = 30 are feasible with current computers. 
 
In computer science, either an algorithm can be clever and run quickly, but will fail 
to find the optimal answer in some (and perhaps most) cases, or it will always find 
the optimal answer, but takes an impractical length of time to do it. 
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The Kernighan-Lin algorithm 

  
This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the 
simplest and best known heuristic algorithms for the graph bisection problem. 
(Kernighan is also one of the developers of the C language). 
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(a) The algorithm starts with any division of the vertices of a network into two 
groups (shaded) and then searches for pairs of vertices, such as the pair 
highlighted here, whose interchange would reduce the cut size between the 
groups. 
(b) The same network after interchange of the 2 vertices. 



The Kernighan-Lin algorithm 

  
(1) Divide the vertices of a given network into 2 groups (e.g. randomly) 

 
(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the 

second group, calculate how much the cut size between the groups would 
change if i and j were interchanged between the groups. 
 

(3) Find the pair that reduces the cut size by the largest amount. 
 

      If no pair reduces it, find the pair that increases it by the smallest amount. 
 
Repeat this process, but with the important restriction that each vertex in the 
network can only be moved once. 
 
Stop when there is no pair of vertices left that can be swapped. 
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The Kernighan-Lin algorithm (II) 

  
(3) Go back through every state that the network passed through during the 

swapping procedure and choose among them the state in which the cut size 
takes its smallest value. 
 

(4) Perform this entire process repeatedly, starting each time with the best division 
of the network found in the last round. 
 

(5) Stop when no improvement on the cut size occurs. 
 

Note that if the initial assignment of vertices to group is done randomly, the 
Kernighan-Lin algorithm may give different answers when it is run twice on the 
same network. 
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The Kernighan-Lin algorithm (II) 

  

(a) A mesh network of 547 vertices of the kind commonly used in finite element 
analysis. 
(b) The best division found by the Kernighan-Lin algorithm when the task is to split 
the network into 2 groups of almost equal size.  
This division involves cutting 40 edges in this mesh network and gives parts of 273 
and 274 vertices. 
(c) The best division found by spectral partitioning (second half of V3). 
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Runtime of the Kernighan-Lin algorithm 

  
The number of swaps performed during one round of the algorithm is equal to the 
smaller of the sizes of the two groups  [0, n / 2]. 
 
→ in the worst case, there are O(n) swaps. 
 
For each swap, we have to examine all pairs of vertices in different groups to 
determine how the cut size would be affected if the pair was swapped. 
 
In the worst case, there are n / 2  n / 2 = n2 / 4 such pairs, which is O(n2). 
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Runtime of the Kernighan-Lin algorithm (ii) 

  
When a vertex i moves from one group to the other group, any edges connecting it 
to vertices in its current group become edges between groups after the swap. 
 
Let us suppose that are ki

same such edges. 
 
Similarly, any edges that i has to vertices in the other group, (say ki

other ones) 
become within-group edges after the swap. 
 
There is one exception. If i is being swapped with vertex j and they are connected 
by an edge, then the edge is still between the groups after the swap 
 
→ the change in the cut size due to the movement of i is ki

other - ki
same – Aij 

 
A similar expression applies for vertex j.  
 
→ the total change in cut size due to the swap is ki

other - ki
same +kj

other - kj
same – 2Aij 
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Runtime of the Kernighan-Lin algorithm (iii) 

  
For a network stored in adjacency list form, the evaluation of this expression 
involves running through all the neighbors of i and j  in turn, and hence  
takes time on the order of the average degree in the network,  
or O (m/n) with m edges in the network. 
 
→ the total running time is O ( n  n2  m/n ) = O(mn2) 
 
On a sparse network with m  n, this is O(n3) 
 

On a dense network (with  𝑚 → ! !()
* ) , this is O(n4) 

 
This time still needs to be multiplied by the number of rounds the algorithm is run 
before the cut size stops decreasing. 
For networks up to a few 1000 of vertices, this number may be between 5 and 10. 
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Spectral partitioning 

  
This method was presented by Fiedler (1973) and makes use of the matrix 
properties of the graph Laplacian. 
 
Again we will apply this algorithm to the graph bisection problem. 
 
Given a network of n vertices and m edges and a divsion into group 1 and group 2. 
 
We can write the cut size for the division as 

𝑅 = 1
2 / 𝐴12

1,2 in
differentgroups

 

 
The factor ½ compensates for counting each edge twice in the sum. 
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Spectral partitioning 

  
Let us define a set of quantities si , one for each vertex i, which represent the 
division of the network thus: 
 

𝑠1 = A+1 if vertex 𝑖 belongs to group 1
−1 if vertex 𝑖 belongs to group 2 

 

Then )* 1 − 𝑠1𝑠2 = A1 if 𝑖 and 𝑗 are in different group𝑠
0 if 𝑖 and 𝑗 are in the same group  

 
This allows to rewrite the cut size as  
 

𝑅 = 1
4/𝐴12

1,2
1 − 𝑠1𝑠2  

where the sum now runs over all values of i and j. 
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Spectral partitioning 

  𝑅 =
)
O∑ 𝐴121,2 1 − 𝑠1𝑠2                       The first term in the sum is  

 ∑ 𝐴12 = ∑ 𝑘1 = ∑ 𝑘1𝑠1* = ∑ 𝑘1𝛿12𝑠1𝑠2121112  
 
where ki is the degree of vertex i , ij is the Kronecker symbol.  
 
We have also used the fact that ∑ 𝐴12 = 𝑘12  and si

2 = 1 
 
Substituting this back into the above equation gives 
 

𝑅 = )
O∑ 𝑘1𝛿12 − 𝐴12 𝑠1𝑠2 = )

O∑ 𝐿12𝑠1𝑠21212      or    𝑅 = )
O s

TL s 
 
in matrix form, where s is the vector with elements si  and   
Lij = ki ij  – Aij  is the ij-th element of the graph Laplacian matrix. 
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Insert: graph Laplacian 

  
The graph Laplacian is defined in analogy to the diffusion process. 
 

Diffusion processes are normally treated by the diffusion equation  
VW
VX = 𝐷 V$W

VZ$ 
 
But one can also consider diffusion processes that take place on networks.  
 
There, the rate at which the amount of substance i at vertex i changes is 
determined by the flow from and to other vertices j that are connected to i. 
 

This gives  
[\]
[X = 𝐶 ∑ 𝐴12 𝜎2 − 𝜎12  .  By splitting the 2 terms we can write 

 

𝑑𝜎1
𝑑𝑡 = 𝐶/𝐴12𝜎2 − 𝐶𝜎1/𝐴12 = 𝐶/𝐴12𝜎2 − 𝐶𝜎1𝑘1

222
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Insert: graph Laplacian 

  
We can write this equation   [\][X = 𝐶 ∑ 𝐴12𝜎2 − 𝐶𝜎12 𝑘1 
in matrix form 

𝑑𝜎
𝑑𝑡 = 𝐶 A − D 𝜎 

 
where  is the vector with components i , A is the adjacency matrix and 
D is a diagonal matrix with the vertex degrees on the diagonal. 
 
It is common to define a new matrix L = D - A  so that the above equation takes on 
the form of the ordinary diffusion equation 
 

  
[\
[X − 𝐶 L 𝜎 = 0  VWVX − 𝐷

V$W
VZ$ = 0 

 
Here, the Laplacian operator of the second spatial derivatives is replaced by L.  
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Insert: eigenvectors of the graph Laplacian 

  
Consider an undirected network with n vertices and m edges. 
 
Let us designate one end of each edge to be end 1 and the other to be end 2. 
 
Now let us define the m  n incidence matrix B with elements as follows 
 

𝐵12 = e
+1 if end 1 of edge 𝑖 is attached to vertex 𝑗
−1 if end 2 of edge 𝑖 is attached to vertex 𝑗 
0 otherwise                                                    

 

 
Thus, each row of B has exactly one +1 and one -1 element. 
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Insert: eigenvectors of the graph Laplacian 

  
Let us now consider the sum ∑ 𝐵h1𝐵h2h  that runs over all edges for the  
vertex pair  i and j. 
 
If i  j , the only non-zero terms in this sum occur if both Bki and Bkj are non-zero. 
 
In that case, edge k connects vertices i and j, and the product will be -1. 
 
For a simple network, there is at most one edge between any pair of vertices. 
Thus, the entire sum will be -1 if there is an edge between i and j and 0 otherwise. 
 
If i = j , then the sum is ∑ 𝐵h1*h  which contributes a value of +1 for every edge 
connected to vertex i, so the whole sum is just equal to degree ki  of vertex i. 
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Insert: eigenvectors of the graph Laplacian 

  
Thus the sum ∑ 𝐵h1𝐵h2h  is precisely equal to an element of the Laplacian 

/𝐵h1𝐵h2
h

= 𝐿12 

The diagonal elements Lii are equal to the degrees ki and the off-diagonal terms 
Lij are -1 if there is an edge (i,j) and zero otherwiwse. 
 
In matrix form, we can write L = BT B 
 
Now let vi be an eigenvector of L with eigenvalue i. 
 
Then vi

T BT  B  vi  = vT
i  L vi = i vT

i vi = i 
 
where we assumed that the eigenvector vi is normalized to that  
its inner product with itself is 1.  
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Insert: eigenvectors of the graph Laplacian 

  
Thus any eigenvalue i of the Laplacian is equal to (vi

T BT) (B  vi ). 
 
This quantity is just the product of a real vector with itself. It is the sum of the 
squares of the real elements of that vector and hence cannot be negative. 
 
It follows that all eigenvalues of the graph Laplacian are non-negative.  
The smallest possible eigenvalue is 0. 
  
Let us consider the vector 1 = (1,1,1,…). 
 
If we multiply this vector by the Laplacian, the i-th element has the value 

/𝐿12 × 1 =/ 𝛿12𝑘1 − 𝐴12 = 𝑘1 −/𝐴12 = 𝑘1 − 𝑘1 = 0
222

 

 
Thus the vector 1 is always an eigenvector of L with the smallest possible 
eigenvalue 0. 
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Back to spectral partitioning 

  
R was the cut size for the division, i.e., the number of edges running between the  
2 groups: 

𝑅 = 1
4 s

TL s 
 
where s is the vector with elements si and  Lij = ki ij  – Aij  is the ij-th element of the 
graph Laplacian matrix. 
 
The matrix L specifies the structure of the network and the vector s defines a 
division of that network into groups. 
 
Our goal is to find the vector s that minimizes the cut size for given L. 
 
In general, this mimization problem is not easy to solve because the values si are 
restricted to +1 and -1.  
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Relaxation method 

  
If  the values si  could take on any real value, we could compute the derivative, set 
this to zero, and find the minimum. 
 
We will solve this problem with the relaxation method where we will relax these 
restraints. 
 
This is one of the standard methods for finding approximate solutions of vector 
optimization problems.  
 
The allowed values of si are actually subject to 2 constraints. 
 
First, each individual element si  can only have the values +1 and -1. 

 
If we regard s as a vector in Euclidian space then this constraint means that the 
vector always points to one of the 2n corners of an n-dimensional hypercube 
centered on the origin. It always has the same length 𝑛. 
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Back to spectral partitioning 

  
Let us now relax the constraint on the vector‘s 
direction, so that it can point in any direction 
in its n-dimensional space. 
 
We will however still keep its length the same. 
 
So s will be allowed to take any value, 
subject to the constraint s = 𝑛  or ∑ 𝑠1* = 𝑛1  
 
The second constraint on the si is that the numbers of them that are equal to +1 
and -1 respectively must be equal to the desired sizes of the 2 groups. 
 
If these 2 sizes are n1 and n2 , this second constraint can be written as  
∑ 𝑠1 = 𝑛) − 𝑛*1  or in vector notation 1Ts = 𝑛) − 𝑛* where 1T = (1,1,1, …) 
 
We keep this second constraint unchanged. 
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Minimize cut size subject to constraints 

  
Our task is therefore to mimize the cut size  

𝑅 = 1
4/𝐿12𝑠1𝑠2

12
 

subject to the 2 constraints 
 ∑ 𝑠1* = 𝑛1  

/𝑠1 = 𝑛) − 𝑛*
1

 

 
We differentiate R with respect to the elements si  and enforce the constraints 
using two Lagrange multipliers which we denote  and 2 
 

𝜕
𝜕𝑠1

/𝐿2h𝑠2𝑠h + 𝛼 𝑛 −/𝑠2*
2

+ 2𝜇 𝑛) − 𝑛* −/𝑠2
22h

= 0 
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Back to spectral partitioning 

  𝜕
𝜕𝑠1

/𝐿2h𝑠2𝑠h + 𝛼 𝑛 −/𝑠2*
2

+ 2𝜇 𝑛) − 𝑛* −/𝑠2
22h

= 0 

 
Performing the derivatives, we then find that 

/𝐿12𝑠2 +/𝐿1h𝑠h − 2𝛼𝑠1 − 2𝜇
h

= 0
2

 

/𝐿12𝑠2 = 𝛼𝑠1 + 𝜇
2

 

or in matrix notation 
    L s =  s +  1 
 
We can calculate the value of  by recalling that 1 is an eigenvector of the 
Laplacian with eigenvalue 0 so that L  1 = 1T L = 0. 
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Relationship to eigenvectors of Laplacian 

  
Multiplying  L s =  s +  1    from the left by 1T gives 
 

𝟏TL s =  𝛼𝟏T s + 𝜇 𝟏T𝟏 
with 1Ts = 𝑛) − 𝑛* we get 
   0 = 𝛼 𝑛) − 𝑛* + 𝜇 𝑛 
or 

   𝜇 = −!#(!$
! 𝛼 

 

If we define the new vector x = s + p
q 𝟏 = s − !#(!$

! 1 
 

then L x = L s + p
q 𝟏 = L s = 𝛼 s + 𝜇 𝟏 = 𝛼 x 

 
In other words, x is an eigenvector of the Laplacian with eigenvalue . 
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Which eigenvector should be choose? 

  
We are still free to choose which eigenvector it is. 
 
We should choose the one that gives the smallest value of the cut size R. 
 

Notice that 1Tx = 𝟏Ts + p
q 𝟏

T𝟏 = 𝑛) − 𝑛* − !#(!$
! 𝑛 = 0 

 
Thus, x is orthogonal to 1.  
 
While x should be an eigenvector of L , it cannot be the eigenvector (1,1,1,…) that 
has eigenvalue 0. 
 
Which eigenvector should we choose instead? 
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Choose eigenvector with smallest eigenvalue 

  𝑅 = 1
4 s

TL s = 1
4 x

TL x = 1
4𝛼 x

Tx 
 

We also have   xTx = sTs +  pq sT𝟏 + 𝟏Ts + p$
q$ 𝟏

T𝟏 

= 𝑛 − 2𝑛) − 𝑛*𝑛 𝑛) − 𝑛* + 𝑛) − 𝑛* *

𝑛* 𝑛 

= 𝑛 − 𝑛) − 𝑛* *

𝑛 + 4𝑛)𝑛*𝑛 − 4𝑛)𝑛*𝑛   = 𝑛 − 𝑛) + 𝑛* *

𝑛 + 4𝑛)𝑛*𝑛 = 4𝑛)𝑛*𝑛  

and hence 

  𝑅 = !#!$
! 𝛼 

 
Thus, the cut size is proportional to the eigenvalue . 
 
Since our goal is to mimize R, we should choose x to be the eigenvector 
corresponding to the smallest allowed eigenvalue of the Laplacian. 
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Optimal network division 

  
We have already shown that x must be orthogonal to the eigenvector 1 with the 
smallest eigenvalue 0. 
 
The best thing we can do is choose x proportional to eigenvector v2 corresponding 
to the second lowest eigenvalue. 
 
Finally we recover the best value for the network division s : 

s = x + 𝑛) − 𝑛*𝑛 𝟏 
or equivalently 

𝑠1 = 𝑥1 +
𝑛) − 𝑛*

𝑛  

 
This gives us the optimal relaxed value of s. 
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Network partitioning with constraints 

  
There is, however, an additional constraint that the elements of s should have the 
values of +1 and -1. 
Moreover, exactly n1 of them should be +1 and n2 should be -1. 
 

Thus, the values of s cannot exactly take on the values  𝑠1 = 𝑥1 + !#(!$
! . 

 
Let us do the best we can and choose s as close as possible to these ideal values 
subject to its contraints by making the product 

sT 𝒙 + 𝑛) − 𝑛*𝑛 1 =/𝑠1 𝑥1 +
𝑛) − 𝑛*

𝑛1
 

as large as possible. 
 
This is achieved by assigning si = +1 for the vertices with the larges (i.e most 

positive) values of 𝑥1 + !#(!$
!   and thus largest values of xi and si = -1 to the 

remaining ones. 
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Algorithm for spectral partitioning 

  
There is a further subtlety. It is arbitrary which group we call group 1 and which we 
call group 2. Thus, if the sizes of the two groups are different there are two 
different ways of making the split. We solve this in a pragmatic way, see below. 
 
Thus our final algorithm is as follows: 
 
1. Calculate the eigenvector v2 corresponding to the second smallest eigenvalue 

of the graph Laplacian. 
2. Sort the elements of the eigenvector in order from largest to smallest. 
3. Put the vertices corresponding to the n1 largest elements in group 1, the rest in 

group 2 and calculate the cut size. 
4. The put the vertices corresponding to the n1 smallest elements in group 1, the 

rest in group 2 and calculate the cut size. 
5. Between these 2 divisions of the network, choose the one that gives the 

smaller cut size. 
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Results and complexity of spectral partitioning 
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For this network, the cut-size of the Kernighan-Lin algorithm is 40, whereas 
spectral partitioning cuts 46 edges. 
 
Spectral partitioning tends to find divisions of a network that have „the right general 
shape“. 
 
Speed: The time-consuming part of spectral partitioning is computation of the 
eigenvector which takes time O(mn) or O(n2) on a sparse network. 
This is an order of magnitude better than the Kernighan-Lin algorithm (O(n3) ). 


