
V4 Matrix algorithms and graph partitioning 

  
 
- Community detection 

 
- Simple modularity maximization 

 
- Spectral modularity maximization 

 
- Division into more than two groups 

 
- Other algorithms for community detection 

 

 
1 

SS 2014 - lecture 4 Mathematics of Biological Networks 



Community detection 

  
Basic goal of community detection: 
 
We want to separate the network into groups of vertices              
that have few connections between them. 
 
The important difference to graph partitioning is that  
the number or size of the groups is not fixed anymore. 

 
Simplest task: divide graph into 2 groups or communities  
but without any constraint on the size of the groups. 
 
First idea: choose division with minimum cut size. 
 
BUT this will not work. An optimal solution would be to simply put all vertices  
into one group and none into the other one. Then the cut size R is zero. 
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Community detection 

  
Another way would be to impose some loose constraint                
on the sizes of the groups n1 and n2. 
 
One example of this kind is ratio cut partitioning where  

one minimizes the ratio  
!

"#"$
. 

 
The denominator n1  n2 has its largest value when both groups are equal size. 
 
1  9 =   9  This biases the optimization always to solutions 
2  8 = 16  where the groups have roughly equal size. 
3  7 = 21 
4  6 = 24  However, there is not particular reason 
5  5 = 25  behind such an optimization principle. 
6  4 = 24 … 
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Community detection 

  
What different measures could be used to quantify the quality of a division             
besides the simple cut size or its variants? 
 
A good division is one where there are fewer than expected edges between 
groups. 
 
→ apply the modularity measure used for assortative mixing (see V2). 
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Review (V2): Quantify assortative mixing 
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Find the fraction of edges that run between vertices of the same type 
and subtract from this the fraction of edges we would expect if edges 
were positioned at random without considering the vertex type. 
 
ci : class or type of vertex i   , ci  [1 … nc] 
nc : total number of classes 
 
The total number of edges between vertices of the same type is 
 

% 𝛿 𝑐(, 𝑐* = 1
2%𝐴(*𝛿 𝑐(, 𝑐*

(*edges  (,*
 

 
Here (m,n) is the Kronecker delta ( is 1 if m = n and 0 otherwise). 
The factor ½ accounts for the fact that every vertex pair i,j is counted 
twice in the sum. 



(Review V2): Quantify assortative mixing 
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As expected number of edges between all pairs of vertices                                
of the same type we derived 

………   12%
𝑘(𝑘*
2𝑚 𝛿 𝑐(, 𝑐*

(*
 

where the factor ½ avoids double-counting vertex pairs. 
 
Taking the difference between the actual and expected number of edges gives 
7
8∑ 𝐴(*𝛿 𝑐(, 𝑐*(* − 7

8∑
;<;=
8> 𝛿 𝑐(, 𝑐*(* = 78∑ 𝐴(* −

;<;=
8> 𝛿 𝑐(, 𝑐*(*  

 
Typically one does not calculate the number of such edges but the fraction, 
which is obtained by dividing this by m 

𝑄 = 1
2𝑚% 𝐴(* −

𝑘(𝑘*
2𝑚 𝛿 𝑐(, 𝑐*

(*
 

This quantity Q is called the modularity.  



Modularity maximization by Kernighan-Lin algorithm 

  
We will design an analog of the Kernighan-Lin algorithm where we are not required 
to swap pairs of vertices at every step. Instead we now swap single vertices. 
 
- At each step, we select the vertex whose movement would most increase, or 

least decrease, the modularity. In a full cycle, each vertex is moved exactly once. 
 
- Then go back over the states through which the network has passed              

and select the one with the highest modularity. 
 

- Use this state as starting condition for another round of the algorithm. 
 

- Repeat this until the modularity no longer improves. 
 

The complexity is now lower, O(mn), because when moving single vertices we only 
have to consider O(m) possible moves at each step, in contrast to O(m2) pairs. 
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Example: „karate club“ network of Zachary 

  
Example for application of Kernighan-Lin modularity maximization. 
 
 
 
 
 
 
Pattern of friendship between 34 members of a karate club at a US university. 
 
At a later point in time, a dispute arose between the members of the club whether 
the club‘s fees should be raised.  
This led to a splitting up of the club into two parts with 16 and 18 members each. 
The „true“ groups after the division are colored black and white in the figuure. 
 
The communities detected by modularity maximization                
correspond almost perfectly to the formed groups. 
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There is also an analog of the spectral graph partitioning algorithm                       
for community detection. 
 
The modularity of a division can be rewritten into: 

𝑄 = 1
2𝑚% 𝐴(* −

𝑘(𝑘*
2𝑚 𝛿 𝑐(, 𝑐*

(*
= 1
2𝑚%𝐵(*𝛿

(*
𝑐(, 𝑐*  

    with 𝐵(* = 𝐴(* −
;<;=
8>  

where Bij has the property 

%𝐵(* =%𝐴(* −
𝑘(
2𝑚%𝑘* = 𝑘( −

𝑘(
2𝑚 2𝑚 = 0

***
 

Since every edge in an undirected graph has 2 ends, m edges have 2m ends. 

Spectral modularity maximization 
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We will start again by dividing the network into 2 parts and define 

𝑠( = C+1 if vertex 𝑖 belongs to group 1
−1 if vertex 𝑖 belongs to group 2 

Then 78 𝑠(𝑠* + 1 = C1 if 𝑖 and 𝑗 are in the same group
0 if 𝑖 and 𝑗 are in different groups 

 
Substituting this into the previous equation gives 

𝑄 = 1
2𝑚%𝐵(*𝛿

(*
𝑐(, 𝑐* = 1

4𝑚%𝐵(* 𝑠(𝑠* + 1 =
(*

1
4𝑚%𝐵(*𝑠(𝑠*

(*
 

where we have used ∑ 𝐵(* = 0*  
 

In matrix notation, we can write this as       𝑄 = 7
W> s

XB s 
 
B is also called the modularity matrix. 

Spectral modularity maximization 
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This equation is similar to the former expression in V3                
for the cut size of a network in terms of the graph Laplacian. 
 
→ we can derive a spectral algorithm for community detection                             
that is closely analogous to the spectral partioning method. 
 
We wish to find a division s of the network that maximizes                                     
the modularity Q for a give modularity matrix B. 
 
The elements of s are constrained to take values of +1 and -1. 
 
Contrary to before, the number of elements with +1 and -1 values is now not fixed. 
 
As before, we will relax the constraint that s must point into                                   
the corners  of a hypercube and allow it to point in any direction                     
subject to the constraint that its length is kept the same: sXs = ∑ 𝑠(8 = 𝑛(  

Spectral modularity maximization 
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To find the maximum of 𝑄 = 7
W> s

XB s    we differentiate and                          

impose the constraint with a single Lagrangian multiplier  

[
[\<

∑ 𝐵*;𝑠*𝑠; + 𝛽 𝑛 − ∑ 𝑠*8**; = 0  
 
This gives   2∑ 𝐵(*𝑠* − 2𝛽𝑠( = 0*   or in matrix notation B s =  s  
 
In other words, s is one of the eigenvectors of the modularity matrix. 
 
With this solution, the modularity then becomes 

𝑄 = 1
4𝑚 sXB s = 1

4𝑚𝛽sXs = 𝑛
4𝑚𝛽 

 
For maximum modularity, we should choose s to be the eigenvector u1 
corresponding to the largest eigenvalue of the modularity matrix. 

Spectral modularity maximization 
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But as before, we typically cannot choose s = u1                                                
since the elements of s are subject to the constraint si = 1. 
 
Instead we will do the best we can and choose s as close to u1                             
as possible by maximizing their scalar product: 

sXu7 =%𝑠( u7 (
(

 

where [u1]i is the i-th element of u1. 
 
The maximum is achieved when each term in the sum is non-negative, i.e. when 

𝑠( = C+1 if   u7 ( > 0
−1 if   u7 ( < 0 

 
If a vector element is exactly zero, either value of si is equally good. 

Spectral modularity maximization 
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This yields the following simple algorithm: 
- Calculate the eigenvector of the modularity matrix corresponding to the largest 

(most positive) eigenvalue 
- Then assign vertices to communities according to the signs of the vector 

elements, positive signs in one group and negative signs in the other. 
 

In practice, this works very well. E.g. the karate club is perfectly classified. 
 
 
In practical applications, it is worthwhile to use spectral modularity maximization as 
a first step, followed by the Kernighan-Lin method to get some small further 
improvements. 

Spectral modularity maximization 
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In general, networks have an arbitrary number of communities. 
 
Modularity is supposed to be largest for the best division of the network. 
 
As first method, we could start by dividing the network into 2 parts,                     
and then further subdivide those parts into smaller ones, and so forth. 
 
However, the modularity of the complete network does not break up (as the cut 
size does) into independent contributions from the separate communities. 
 
The individual maximization of the modularities of these communities treated as 
separate networks will generally not produce the maximum modularity for the 
network as a whole. 

Division into more than 2 groups 
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We must consider explicitly the change Q in the modularity of the entire network 
upon further bisecting a community c of size nc. 
 
By comparing the modularity after and before the division, we find (without 
derivation) 

∆𝑄 = ⋯ = 1
4𝑚 sXB b s 

B(c) is the nc  nc matrix with elements 

𝐵(* b = 𝐵(* − 𝛿(*%𝐵(;
;∈b

 

Division into more than 2 groups 
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The equation  ∆𝑄 = 7
W> s

XB b s     has the same form as before. 

  
Thus, we can apply our spectral approach to this generalized modularity matrix to 
maximize Q, find the leading eigenvector and divide the network according to the 
signs of its elements. 
 
In repeatedly subdividing a network in this way, an important question is when to 
stop. 
 
The answer is simply when we are unable to find a (further) division with a positive 
change Q in the modularity. 
 
In that case, the bisection algorithm will put all vertices in one of its 2 groups and 
none in the other, effectively „refusing“ to further subdivide the network.  
 
At this point we should stop. 

Division into more than 2 groups 
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The repeated bisection method works well in many situations, but it is by no means 
perfect. 
 
A particular problem is that there is no guarantee that the best division of a network 
in, say 3 parts, can be found by first finding the best division into 2 parts and then 
subdividing one of them. 
 
 
 
 
 
(a) shows the best subdivision of this linear graph with 8 vertices and 7 edges into 

two groups with 4 vertices each. 
(b) Shows the best subdivision into 3 groups with 3, 2, 3 vertices each. 
 
A repeated bisection algorithm would never find solution (b). 

Division into more than 2 groups 
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An alternative way of finding communities of vertices in a network is to loook for 
the edges that lie between communities.  
 
If we can find and remove these edges, we will be left with isolated communities. 
 
One common way to define „betweenness“ is to use betweenness centrality 
(V1). 

Other algorithms for community detection 
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Review (V2): Betweenness Centrality 

  
Let us assume an undirected network for simplicity. 
 
Let nst

i be 1 if vertex i lies on the geodesic path from s to t  
and           0 if it does not or if there is no such path. 
 
Then the betweenness centrality xi is given by 
 
 𝑥( = ∑ 𝑛\e(\e  
 
This definition counts separately the geodesic paths in either direction between 
each vertex pair. 
 
The equation also includes paths from each vertex to itself.  
Excluding those would not change the ranking of the vertices in terms of betweenness. 
 
Also, we assume that vertices s and t belong to paths between s and t. 
 
If there are two geodesic paths of the same length between 2 vertices,  
each path gets a weight equal to the inverse of the number of paths. 
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Vertices A and B are 
connected by 2  
geodesic paths. 
Vertex C lies on both 
paths. 



Review (V2): Betweenness Centrality 

  
We may redefine nst

i to be the number of geodesic paths from s to t that pass through 
vertex i, and define gst to be the total number of geodesic paths from s to t. 
 
Then, the betweenness centrality of xi is 

 𝑥( = ∑ "fg<
hfg\e  

 
where we adopt the convention that nst

i / gst = 0 if both nst
i  and gst are zero. 

 
 
 
 
 
 

 
21 

SS 2014 - lecture 2 Mathematics of Biological Networks 

In this sketch of a network, vertex A lies on a bridge 
joining two groups of other vertices.  
All paths between the groups must pass through A, 
so it has a high betweenness even though its degree 
is low. 



Define edge betweenness as the number of geodesic paths that run along 
particular edges. 
 
We expect that edges that lie between communities will have high values of this 
edge betweenness. 
 
 
In this example, two edges run between 
the vertices in the two dashed circles. 
All shortest paths between vertices of 
the two groups will run along one of  
these two edges. 
 
Edge betweenness is computed by determining the geodesic paths between every 
pair of vertices in the network and count how many such paths go along each 
edge. This takes O(n(m + n)). 

Use edge betweenness for community detection 
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1. Calculate betweeness score of all edges 
2. Find the edge with the highest score and remove it. 
Because removing this edge will change the betweenness scores of some edges, 
any shortest paths that previously traversed the removed edge will now have to be 
rerouted. Thus we have to go back to step 1. 
 
The progress of the algorithm can be represented using a tree. 
 
The progressive fragmentation of the  
network as edged are removed one by one 
is represented by the successive branching 
of the tree. 
 
If we stop at the dashed line,  the  
network is split into 4 groups of 
6, 1, 2, and 3 vertices. 

Betweenness algorithm 
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Network division by edge betweenness produced a dendrogram that is remiscent 
of clustering methods. 
 
Hierarchical clustering is an entire class of algorithms. 
It is an agglomerative technique where we start with the individual vertices of a 
network and join them together to form groups. 
 
We need a measure of vertex similarity. For this, we can use the measures 
introduced in V1 and V2, e.g.  
- cosine similarity,  
- correlation coefficients between rows of the adjacency matrix,  
- or the so-called Euclidian distance. 
 
Having many choices for similarity measures is both a strength and                        
a weakness of hierarchical clustering methods. 
 
It gives the method flexibility, but the results will differ from one another. 

Hierarchical clustering 
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Once a similarity is chosen we calculate the similarity of all pairs of vertices in the 
network. 
 
Then we would like to connect the 
most similar vertices. 
 
However, there may be conflicting 
situations. 
Should A and C be in the same group or not? 
 
The basic strategy of hierarchical clustering is to start by joining those pairs of 
vertices with the highest similarities. These then form groups of size 2. 
This step involves no ambiguity. 
 
Then we further join together the groups that are most similar to form larger 
groups, and so on. 

Hierarchical clustering 
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During this process we now require a measure for the similarity of groups. 
 
There are 3 common ways of combining vertex similarities to give similarity scores 
for groups:  - single-linkage 
  - complete-linkage 
  - average-linkage clustering. 
 
Consider 2 groups of vertices, group 1 and group 2, with n1 and n2 vertices, 
respectively. 
 
Then there are n1n2 pairs of vertices such that one vertex is in group 1 and the 
other in group 2. 
 
In the single-linkage clustering method, the similarity between the 2 groups is 
defined as the similarity of the most similar of these n1n2 pairs of vertices. 

Hierarchical clustering 
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In the single-linkage clustering method, the similarity between the 2 groups is 
defined as the similarity of the most similar of these n1n2 pairs of vertices. 
 
As the other extreme, complete-linkage clustering defines the similarity between 
the 2 groups as the similarity of the least similar pair of vertices. 
 
In between these two extremes is the average-linkage clustering where the 
similarity of two groups is defined to be the mean similarity of all pairs of vertices. 

Hierarchical clustering 

 
27 

SS 2014 - lecture 4 Mathematics of Biological Networks 



This is how hierarchical clustering is done: 
 
1. Choose a similarity measure and evaluate it for all vertex pairs. 
2. Assign each vertex to a group of its own, consisting of just that one vertex. The 

initial similarities of the groups are simply the similarities of the vertices 
 

3. Find the pair of groups with the highest similarity and join them together into a 
single group. 
 

4. Calculate the similarity between the new composite group and all others using 
one of the 3 methods above (single, complete, average-linkage) 
 

5. Repeat from step 3 until all vertices have been joined into a single group. 

Hierarchical clustering 
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Partitioning of the karate club network by average linkage hierarchical clustering 
using cosine similarity as our measure of vertex similarity. 

Hierarchical clustering applied to the karate club 
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For this example, hierarchical clustering found the perfect division of the club. 
 
However, hierarchical clustering does not always work as well as here. 



A large number of approaches have been developed to maximize modularity for 
divisions into any number of communities of any sizes. 

Comparison of modularity maximization methods 
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Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005) 



One way to test the sensitivity of these methods is to see how well a particular 
method performs when applied to ad hoc networks with a well known, fixed 
community structure. Such networks are typically generated with n = 128 nodes, 
split into 4 communities containing 32 nodes each.  
 
Pairs of nodes belonging to the same community are linked with probability pin 
whereas pairs belonging to different communities are joined with probability pout. 
The value of pout is taken so that the average number of links a node has to 
members of any other community, zout, can be controlled.  
 
While pout (and therefore zout) is varied freely, the value of pin is chosen to keep the 
total average node degree, k constant, and set to 16. 

Comparison of modularity maximization methods 

 
31 

SS 2014 - lecture 4 Mathematics of Biological Networks 

Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005) 



As zout increases, the communities become more and more diffuse and harder to 
identify, (see figure).  
Since the “real” community structure is well known in this case, it is possible to 
measure the number of nodes correctly classified by the method of community 
identification. 

Comparison of modularity maximization methods 
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Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005) 



One of the most successful approaches is simulated annealing. 
 
The process begins with any initial partition of the nodes into communities.  
At each step, a node is chosen at random and moved to a different community, 
also chosen at random.  
If the change improves the modularity it is always accepted, otherwise it is 
accepted with a probability exp(Q/kT).  
The simulation will start at high temperature T and is then slowly cooled down. 
 
Several improvements have been tested. 
Firstly, the algorithm is stopped periodically, or quenched,  
and Q is calculated for moving each node to every community that is not its own.  
Finally, the move corresponding to the largest value of Q is accepted. 

Other modularity maximization methods 
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Comparison of modularity maximization methods 
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Danon, Duch, Diaz-Guilera, Arenas, J. Stat. Mech. P09008 (2005) 


