
V8 The Bayesian Network Representation 

  
Our goal is to represent a joint distribution P over some  
set of random variables X = { X1, X2, … Xn }. 
 
Even in the simplest case when these variables are binary-valued,  
a joint distribution requires the specification of 2n – 1 numbers –  
the probabilities of the 2n  different assignments of values x1, x2, … xn . 
 
(Since their sum is 1, the number of free parameters is 2n - 1 .) 

 
For all but the smallest n the explicit representation  
of the joint distribution is unmanageable. 
 
These problems could only be overcome after methods  
such as the Bayesian networks were developed. 
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Independent Random Variables 

  
Let us start by considering a simple setting were we know  
that each Xi represents the outcome of a toss of coin i. 
 
We typically assume that the different coin tosses are marginally  
independent, so that the distribution P will satisfy (Xi ⊥ Xj ) for any i, j. 
 
More generally we assume that the distribution satisfies (X ⊥ Y)  
for any disjoint subsets of the variables X and Y.  
 
Therefore P(X1, X2, … Xn ) = P(X1) P(X2) … P(Xn) 
 
If we use the standard representation of the joint distribution,  
this independence structure is obscured and the representation  
requires 2n  parameters. 
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Independent Random Variables 

  
However, we can use a more natural set of parameters  
for specifying this distribution.  
 
If i is the probability with which coin i lands heads,  
the joint distribution P can be specified using the n parameters 1… n . 
These parameters implicitly specify the 2n probabilities in the joint distribution. 
 
For example, the probability that all of the coin tosses land heads is simply 
   1  2  … n .  
 
More generally, letting 𝜃#$ = 𝜃& when 𝑥& = 𝑥&( and 𝜃#$ = 1 − 𝜃& when 𝑥& = 𝑥&+ 
we can define 

𝑃 𝑥(,… , 𝑥/ =0𝜃#$
&

 

(This means that we have used for each coin the fact that the probabilities need to sum up to 1). 
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Independent Random Variables 

  
This representation is limited, and there are many distributions  
that we cannot capture by choosing values for 1… n . 
 
This is quite obvious because the space of all joint distributions is  
(2n -1 )- dimensional and we can in general not cover this by  
an n–dimensional manifold. 
 
This only worked in this case of n independent random variables. 
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Conditional parametrization 

  
Consider the problem faced by a company trying  
to hire a recent college graduate. 
 
The company‘s goal is to hire intelligent employees,  
but there is no way to test intelligence directly. 
 
Let‘s assume that the company has access to the student‘s SAT score. 
 
Our probability space is now induced by the two random variables  
Intelligence (I) and SAT (S). 
 
For simplicity, we assume that each of these takes 2 values: 
 
- Val(I) = { i1 , i0 } which represent high and low intelligence 
- Val(S) = { s1 , s0 } which represent the values high and low score. 
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Conditional parametrization 

  
The joint distribution has 4 entries. E.g.  
 
 
 
 
 
 
 
There is an alternative and more natural way of representing the same joint 
distribution. Using the chain rule of conditional probabilites we have 
 

𝑃 𝐼, 𝑆 = 𝑃 𝐼  𝑃 𝑆|𝐼  
 
Thus, instead of specifying the various joint entries P(I,S),  
we can specify it in the form of P(I) and P(S|I). 
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I S P(I,S) 
i0 s0 0.665 
i0 s1 0.035 
i1 s0 0.06 
i1 s1 0.24 



Conditional parametrization 

  
E.g. we can represent the previous joint distribution by the following  
2 tables, one representing the prior distribution over I and the other  
the conditional probability distribution (CPD) of S given I: 
 
 
 
 
 
 
Thus, a student of low intelligence is very unlikely to get a high SAT score  
(P (s1 | i0 ) = 0.05). 
 
On the other hand, a student of high intelligence has a good chance  
to get a high SAT score (P (s1 | i1 ) = 0.8) but this is not certain. 
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i0 i1 
0.7 0.3 

I s0 s1 
i0 0.95 0.05 
i1 0.2 0.8 



Conditional parametrization 

  
How can we parametrize this alternative representation? 
 
Here, we are using 3 binomial distributions,  
one for P(I), and 2 for P(S| i0) and P(S| i1). 
 
We can parametrize this representation using 3 independent parameters. 
 
Our representation of the joint distribution as a 4-outcome multinomial  
also required 3 parameters. → The new representation is not more compact. 
 
The figure on the right shows     fig. 3.1.a 
a simple Bayesian network  
for this example. 
 
Each of the 2 random variables I and S has a node, 
and the edge from I to S represents the direction 
of dependence in this model. 
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The student example: new variable grade 

  
We will now assume that the company also has access  
to the student‘s grade G in some course. 
 
Then, our probability space is the joint distribution of the  
3 relevant random variables I, S, and G. 
 
Assuming I and S as before and G takes on 3 values g1 , g2, g3 representing  
the grades A, B and C, respectively. The joint distribution has 12 entries.  
 
In this case, independence (of variables) does not help. 
 
The student‘s intelligence is clearly correlated both  
with his/her SAT score and his/her grade. 
 
The SAT score is also correlated with the grade.  
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The naive Bayes model 

  
We expect that for our distribution P  P( g1| s1 ) > P(g1 |  s0)  
 
However, it is quite plausible that our distribution P  
satisfies a conditional independence property:  
 
If we know that the student has high intelligence, a high grade on the SAT  
no longer gives us information about the student‘s performance in the class. 
 
 P( g | i1 ,s1 ) = P(g | i1)  
  
More generally, we may well assume that  P |= (S  G | I) 
 
This independence statement only holds if we assume  
that the student‘s intelligence is the only reason  
why his/her grade and SAT score might be correlated. 
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The naive Bayes model 

  
By simple probabilistic reasoning we also have that 
 
 P(I,S,G) = P(S,G | I) P(I) 
 
The previous eq. P |= (S  G | I) implies that   P(S,G | I) = P(S | I) P(G | I) 
 
Hence, we get    P(I,S,G) = P(S | I) P(G | I) P(I) 
 
Thus, we have factorized the joint distribution P(I,S,G) as  
a product of 3 conditional probability distributions (CPDs). 
 
P(I) and P(S | I) can be re-used from p.7.  
 
P(G | I) could, e.g., have the   
following form 
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I g1 g2 g3 
i0 0.2 0.34 0.46 
i1 0.74 0.17 0.09 



The naive Bayes model 
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Together, these 3 CPDs fully specify the joint distribution 
(assuming P |= (S  G | I)  ). 
 
For example P(i1, s1, g2 ) = P(i1 ) P(s1 | i1 ) P(g2 | i1 ) = 0.3  0.8  0.17 = 0.0408 
 
This probabilistic model is represented using the Bayesian network shown below. 
 
In this case, the alternative parametrization    
is more compact than the joint. 
 
The 3 binomial distributions P(I), P(S | i1) 
and P(S | i0) require 1 parameter each. 
The 3-valued multinomial distributions P(G | i1)  
and P(G | i0) require 2 parameters each. 
This makes 7 parameters, compared to the  Another advantage is the 
joint distribution with 12 entries, and thus  modularity. We could re-use 
11 independent parameters.    the previous tables from p.7. 



The naive Bayes model: general model 

  
The naive Bayes model assumes that instances fall into one  
of a number of mutually exclusive and exhaustive classes. 
 
Thus, we have a class variable C that takes on values in some set {c1 , c2 , …, ck }. 
 
In our example, the class variable is the student‘s intelligence I  
and there are 2 classes high and low. 
 
The model also includes some features X1 , … Xn  
whose values are typically observed. 
 
The naive Bayes assumption is that the features  
are conditionally independent given the instance‘s class.  
 
In other words, within each class of instances,  
the different properties can be determined independently. 
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The naive Bayes model: general model 

  
Formally we have   (Xi  Xj | C) for all i and j  i. 
 
This model can be presented by  
 
Here, darker oval represent variables   Fig. 3.2 
that are always observed when the 
network is used. 
 
We can show that the model factorizes as 

𝑃 𝐶, 𝑋(, … , 𝑋/ = 𝑃 𝐶 0𝑃 𝑋&|𝐶
/

&7(
 

 
We can represent the joint distribution by a prior distribution P(C) and a set of 
CPDs, one for each of the n finding variables. 
The number of required parameters is linear in the number of variables, not 
exponential as for the explicit representation of the joint. 
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Side remark on naive Bayesian models 

  
Naive Bayesian models were often used in the early days of medical diagnostics. 
 
However, the model makes several strong assumptions that are generally not true, 
specifically that the patient can have at most one disease, and that given the patient‘s 
disease, the presence or absence of different symptoms, and the values of different tests, 
are all independent. 
 
Experience showed that the model tends to overestimate the impact by certain evidence by 
„overcounting“ it. E.g. both high blood pressure and obesity are strong indicators of heart 
disease. But these 2 symptoms are themselves highly correlated. 
 
It was found that the diagnostic performance of naive Bayesian models  
decreased as the number of features was increased. 
 
→ more complex Bayesian models were developed. 
 
Still, naive Bayesian models are useful in a variety of applications. 
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Bayesian Analysis of Protein-Protein Complexes 

Science 302 (2003) 449 
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Noisy Data — Clear Statements? 
For yeast:  ~ 6000 proteins   →   ~18 million potential interactions 
   rough estimates:          ≤ 100000 interactions occur 

→  1 true positive for ca. 200 potential candidates  = 0.5% 
    →  decisive experiment must have accuracy <<  0.5% false positives 

But different experiments detect different interactions 
For yeast:   80000 interactions known, 
               only 2400 found in > 1 experiment 

TAP 

HMS-PCI 

Y2H 

annotated: 
septin complex 

see: von Mering (2002) 

Y2H:  → many false positives 
     (up to 50% errors) 

Co-expression: → gives indications at best 

Combine weak indicators = ??? 
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Review: Conditional Probabilities 
Joint probability for "A and B": 

P(A) 

P(B) 

P(A ⋂ B) Solve for conditional probability for "A when B is true" 
→ Bayes' Theorem: 

P(A) = prior probability (marginal prob.) for "A"   → no prior knowledge about A 

P(B) = prior probability for "B"   → normalizing constant 

P(B | A) = conditional probability for "B given A" 

P(A | B) = posterior probability for "A given B" 

→  Use information about B to improve knowledge about A 
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What are the Odds? 
Express Bayes theorem 

in terms of odds: 

• Also consider case "A does not apply": 

• odds for A when we know about B  
(we will interpret B as information or features): 

posterior odds for A prior odds for A likelihood ratio 

Λ(A | B) →  by how much does our knowledge about A improve? 

P(A) 

P(B) 

P(A ⋂ B) 
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2 types of Bayesian Networks 

Encode conditional dependencies between evidences 

=  "A depends on B"  
    with the conditional probability P(A | B) 

(1) Naive Bayesian network 
→ independent odds 

(2) Fully connected Bayesian network 
→ table of joint odds 

B !B 

C 0.3 0.16 

!C 0.4 0.14 

Evidence nodes can have a variety of types:  numbers, categories, … 
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Improving the Odds 
Is a given protein pair AB a complex (from all that we know)? 

prior odds for a 
random pair AB to be a 

complex 

likelihood ratio: 
improvement of the odds when 
we know about features f1, f2, … 

Features used by Jansen et al (2003): 
• 4 experimental data sets of complexes 
• mRNA co-expression profiles 
• biological functions annotated to the proteins (GO, MIPS) 
• essentiality for the cell 

Idea: determine from known complexes and 
use for prediction of new complexes estimate (somehow) 
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Gold Standard Sets 
To determine 

Requirements for training data: 
i) should be independent of the data serving as evidence 
ii) large enough for good statistics 
iii) free of systematic bias 

Gold Standard Negative Set (GN): 
2708746 (non-)complexes formed by proteins from different cellular compartments 
(assuming that such protein pairs likely do not interact) 

Gold Standard Positive Set (GP): 
8250 complexes from the hand-curated MIPS catalog of protein complexes 
 (MIPS stands for Munich Information Center for Protein Sequences) 

→  use two data sets with known features f1, f2, … for training 
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Prior Odds 

Jansen et al: 
• estimated ≥ 30000 existing complexes in yeast 
• 18 Mio. possible complexes →  P(Complex) ≈ 1/600 

→  The odds are  600 : 1  against picking a complex at random 

→  Oprior = 1/600 

Note: Oprior is mostly an educated guess 

→  expect 50% good hits (TP > FP) with  ≈ 600  
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Essentiality 
Test whether both proteins are essential (E) for the cell or not (N) 
→ we expect that for protein complexes, EE or NN should occur more often 
 
pos/neg: # of gold standard positives/ 
negatives with essentiality information 

Essentiality pos neg P(Ess|pos) P(Ess|neg) L(Ess) 
EE 1114 81924 5,18E-01 1,43E-01 3,6 
NE 624 285487 2,90E-01 4,98E-01 0,6 
NN 412 206313 1,92E-01 3,60E-01 0,5 
sum 2150 573724 1,00 1,00 

possible 
values of the 

feature 

probabilities for each 
feature value 

likelihood 
ratios 

= 0,5 0.19 
0.36 

overlap of gold 
standard sets with 

feature values 
1114 
2150 = 0,518 
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mRNA Co-Expression 

Publicly available expression data from 
• the Rosetta compendium 
• the yeast cell cycle 

Jansen et al, Science 302 (2003) 449 
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Biological Function 
Use MIPS function catalog and Gene Ontology function annotations 
• determine functional class shared by the two proteins; small values (1-9) 
Indicate highest MIPS function or GO BP similarity 
• count how many of the 18 Mio potential pairs share this classification 

Jansen et al, Science 302 (2003) 449 
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Experimental Data Sets 
In vivo pull-down: 

HT-Y2H: 

Gavin et al, Nature 415 (2002) 141 
Ho et al,  Nature 415 (2002) 180 

Uetz et al, Nature 403 (2000) 623 
Ito et al,  PNAS 98 (2001) 4569 

31304 pairs 
25333 pairs 

981 pairs 
4393 pairs 

4 experiments on overlapping PP pairs  
→  24 = 16 categories   —  fully connected Bayes network 

Jansen et al, Science 302 (2003) 449 
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Statistical Uncertainties 

1)  L(1111) < L(1001) 

statistical uncertainty: 

Overlap with all experiments is smaller →  larger uncertainty 

2)  L(1110) = NaN? 

Use conservative lower bound → assume 1 overlap with GN 
 → L(1110) ≥ 1970 

Jansen et al, Science 302 (2003) 449 



29 

Overview 

Jansen et al, Science 302 (2003) 449 
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Performance of complex prediction 

Re-classify Gold standard complexes: 
Ratio of true positives to false positives 
→ None of the evidences alone was enough 

Jansen et al, Science 302 (2003) 449 
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Verification of Predicted Complexes 

Jansen et al, Science 302 (2003) 449 

Compare predicted 
complexes with available 
experimental evidence and 
directed new TAP-tag 
experiments 

→ use directed experiments 
to verify new predictions 
(more efficient) 
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Follow-up work: PrePPI (2012) 

Given a pair of query proteins that potentially interact (QA, QB), representative structures for the individual 
subunits (MA, MB) are taken from the PDB, where available, or from homology model databases.  
 
For each subunit we find both close and remote structural neighbours. A ‘template’ for the interaction exists 
whenever a PDB or PQS structure contains a pair of interacting chains (for example, NA1–NB3) that are 
structural neighbours of MA and MB, respectively. A model is constructed by superposing the individual 
subunits, MA and MB, on their corresponding structural neighbours, NA1 and NB3.  
 
We assign 5 empirical-structure-based scores to each interaction model and then calculate a likelihood for 
each model to represent a true interaction by combining these scores using a Bayesian network trained on the 
HighConfidence and the NonInteracting interaction reference sets.  
We finally combine the structure-derived score (SM) with non-structural evidence associated with the query 
proteins (for example, co-expression, functional similarity) using a naive Bayesian classifier. 

Zhang et al, Nature (2012) 490, 556–560 
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Results of PrePPI 
Receiver-operator characteristics (ROC) 
for predicted yeast complexes. 
 
Examined features:  
- structural modeling (SM),  
- GO similarity,  
- protein essentiality (ES) relationship,  
- MIPS similarity,  
- co‐expression (CE),  
- phylogenetic profile (PP) similarity. 
 
Also listed are 2 combinations:   
- NS for the integration of all non‐structure 
clues, i.e. GO, ES, MIPS, CE, and PP, 
and  
- PrePPI for all structural and 
non‐structure clues).  
 

This gave 30.000 high-confidence PP 
interactions for yeast and 300.000 for 
human. 

Zhang et al, Nature (2012) 490, 556–560 



Bayesian networks (BN) 

  
Similar to the naive Bayes models, Bayesian networks (BN) also exploit conditional 
independence properties of the distribution in order to allow a compact and natural 
representation. 
 
However, they are not restricted to representing distributions  
satisfying the same strong independence assumptions. 
 
The core of the BN representation is a directed acyclic graph  
(DAG) G whose nodes are the random variables in our domain  
and whose edges correspond to the direct influence of one node on another 
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Revised student example as BN 

  
Consider a slightly more complex scenario. 
 
The student‘s grade now depends not only on his/her intelligence but also  
on the difficulty of the course, represented by the random variable D. 
 
 Val(D) = {easy, hard} 
 
Our student then asks his professor for a recommendation letter. 
 
The professor is absentminded (typical of professors) and never  
remembers the names of her students (not typical). 
 
She can look at his/her grade, and writes the letter based only on the grade. 
The quality of the letter is a random variable L. 
 
 Val (L) = {strong, weak} 
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Revised student example: random variables 

  
We therefore now have 5 random variables: 
 
- The student‘s intelligence I 
- The course difficulty D 
- The grade G 
- The student‘s SAT score S 
- The quality of the recommendation letter L 

 
All of the variables except G are binary-values. G has 3 possible values. 
 
Hence, the joint distribution has 2  2  2  2  3= 48 entries 
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Student example revised as BN 

  
The most natural network structure (DAG) for this example may be the one below. 
 
 
The course difficulty and the student‘s    put fig. 3.3 
intelligence are determined  
independently, and before any of the  
other variables of the model. 
 
The grade depends on both these factors. 
 
The SAT score depends only on the student‘s intelligence. 
 
The quality of the professor‘s recommendation letter  
depends (by assumption) only on the student‘s grade.  
 
Intuitively, each variable depends directly only on its parents. 
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Student example revised as BN 

  
The second component of the BN representation is a set  
of local probability models that represent the nature of  
the dependence of each variable on its parents. 
 
We will reuse P(I) and P(S | I) from p.7. 
 
P(D) represents the distribution of difficult and easy classes. 
 
The distribution over the student‘s grade is a conditional distribution P(G | I,D). 
 
Shown on the next slide is again the structure of the BN  
together with a choice of the CPDs. 
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Student example revised as BN 

  
 
 
 put fig. 3.4 
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Student example revised as BN 

  
What is the probability of e.g. i1, d0, g2, s1, l0? 
 
(the student is intelligent, the course is easy, the probability that a smart student 
gets a B in an easy class, the probability that a smart students gets a high score 
on his SAT, and the probability that a student who got a B in the class gets a weak 
letter.) 
 
The total probability for this is 
P(i1, d0, g2, s1, l0)  = P(i1) P(d0) P(g2 | i1, d0) P(s1 | i1) P(l0, g2) = 
  = 0.3   0.6        0.08          0.8        0.4 = 0.004608 
 
We can use the same process for any state in the joint probability space.  
This is an example of the chain rule for BN: 
 
 P(I,D,G,S,L) = P(I) P(D) P(G | I,D) P(S | I) P(L | G). 

 
40 

SS 2014 - lecture 8 Mathematics of Biological Networks 



Basic independencies in BN 

  
In the student example, we used the intuition  
that edges represent direct dependence.  
 
E.g. we stated that the professor‘s recommendation letter depends  
only on the student‘s grade. There were no direct edges to L except from G. 
 
We can formally express this by a conditional independence statement 
   (L  I,D,S | G) 
 
This means once we know the student‘s grade, our beliefs about the quality  
of the letter are not influenced by information about other variables. 
 
In the same way   (S  D,G,L | I) 
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Basic independencies in BN 

  
Now let us consider G.  
Is G also indepdendent from all other variables excepts its parents I and D? 
 
Let us consider the case  i1, d1, a smart student in a difficult test. 
 
Is G indepdent of L in this setting? No! 
 
If we observe l1 (strong letter), then our probability in g1 should go up.  
 
Thus we expect  P(g1 | i1, d1, l1) > P(g1 | i1, d1)  
 
(see CPD: right side is 0.5; left side turns out to be 0.712) 
 
→ we do not expect a node to be conditionally independent  
of all other nodes given its parents. 
It can still depend on its descendants as well. 
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Basic independencies in BN 

  
Can G depend on other nodes than L? No. 
 
E.g. when knowing that the student has high intelligence, knowing his SAT score 
gives us no additional information that is relevant for predicting his grade. 
 
(G  S | I,D) 
 
In the same way, I is not independent of its descendants G, L or S.  
The only nondescendant of I is D.  
This makes sense. Intelligence and Difficulty of a test are indepdent. 
 
(I  D) 
 
For D, both I and S are nondescendants.  
 
(D  I, S) 
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BN semantics 

  
Definition: A Bayesian network structure G is a directed acyclic graph  
whose nodes represent random variables X1 , … Xn. 
Let 𝑃𝑎;$< denote the parents of Xi in G and  NonDescendants;$ denote the 
variables in the graph that are not descendants of Xi . 
Then G encodes the following set of conditional independence assumptions,  
called the local independencies, and denoted by Il(G): 
 
 For each variable Xi : (Xi  NonDescendants;$ | 𝑃𝑎;$< ) 
 
In other words, the local independencies state that each node Xi is  
conditionally independent of its nondescendants given its parents. 
 
In the student example, the local Markov independencies  
are precisely the once given before. 

 
44 

SS 2014 - lecture 8 Mathematics of Biological Networks 


