Lecturer: Prof. Dr. Volkhard Helms
Dates: March 11 – March 15, 12:30 pm – 7:00 pm, Building E2 1, room 007
Place: building E2 1, room 007
Tutors: Ruslan Akulenko, Mohamed Hamed, Po-Hsien Lee, Nadine Schaadt
Requirements: Knowledge corresponding to semester 4 (proseminar) or knowledge corresponding to BSc degree (seminar)
Preliminary discussion and placement of the topics: Friday, February 1, 4:00 pm, E2 1, room 007; the topics are going to be announced one week before.
Condition for certification: successful presentation, regular participation.
Maximum number of participants: to be decided
Leistungspunkte/Credits:
5 (proseminar) or 7 (seminar)
Important Hints for your seminar presentation.
If you want us to print your handouts, please send them to Kerstin Gronow-Pudelek until 10 am
on the day of your talk (for those who give their talk on Friday, please send the handouts also until Thursday).
TOPICS:
- Austin DJ, Kakehashi M, and Anderson RM (1997) Proc. R. Soc. B, 264, 1629-1638. The transmission dynamics of antibiotic–resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption.
- Austin DJ, Kristinsson KG, and Anderson RM (1999) PNAS, 96, 1152-1156. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance.
- Handel A, Regoes RR, and Antia R (2006) PLOS Comp. Biol. 2, 1262-1270. The role of compensatory mutations in the emergence of drug resistance.
- Liu B and Pop M (2009) Nucleic Acids Res., 37, D443-D447. ARDB—Antibiotic Resistance Genes Database.
- Takatsuka Y, Chen C, and Nikaido H, (2010) PNAS, 107, 6559-6565; doi:10.1073/pnas.1001460107, Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli
- Vargiu, A.V. and Nikaido, H. (2012) PNAS, 109, 20637-20642. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations.
- Zhao Y, Wu J, Yang J, Sun S, Xiao J, and Yu J (2012) Bioinformatics, 28,416-418. PGAP: Pan-Genomes Analysis Pipeline.
- Greulich P, Waclaw B, and Allen RJ (2012) Physical Review Letters, 109, 088101. Mutational pathway determines whether drug gradients accelerate evolution of drug-resistant cells.
- Fozard JA, Lees M, King JR, Logan BS (2012) Biosystems 109, 105-114. Inhibition of quorum sensing in a computational biofilm simulation.
- Luciani F, Sisson SA, Jiang H, Francis AR, and Tanaka MM (2009) PNAS 106, 14711-14715. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis.
- Kinnings SL, Xie Li, Fung KH, Jackson RM, Xie Lei, Bourne PE (2010) PLoS Comp. Biol., 6, e1000976. The Mycobacterium tuberculosis drugome and Iits polypharmacological implications.
- Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE (2009) PLoS Comput. Biol., 5, e1000423. Drug discovery using chemical systems biology: Repositioning the safe medicine comtan to treat multi-drug and extensively drug resistant tuberculosis.
- Murphy JT, Walshe R, and Devocelle M (2008) J. Theor. Biol., 254, 284-293. A computational model of antibiotic-resistance mechanisms in Methicillin-Resistant Staphylococcus aureus (MRSA).
- Kouyos RD, Abel zur Wiesch P, and Bonhoeffer S (2011) PLoS Pathogens, 7, e1001334. On being the right size: The impact of population size and stochastic effects on the evolution of drug resistance in hospitals and the community.
- Wozniak M, Tiuryn J, and Wong L (2012) BMC Genomics, 13:S23. An approach to identifying drug resistance associated mutations in bacterial strains.
- Muller A, Mauny F, Talon D, Donnan PT, Harbarth S, and Bertrand X (2006) J. Antimicrobial Chemotherapy, 58, 878-881. Effect of individual- and group-level antibiotic exposure on MRSA isolation: a multilevel analysis.
- Goldstein H, Pan H, and Bynner J (2003) Understanding Statistics, 3, 85-99. A Flexible Procedure for Analyzing Longitudinal Event Histories Using a Multilevel Model.
- Nielsen KL, Pedersen TM, Udekwu KI, et al. (2012) J. Antimicrobial Chemotherapy, 67, 1325-1332. Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic.
- Ruffing U, Akulenko R, Bischoff M, Helms V, Herrmann M, and von Müller L (2012) PLoS ONE, 7, e52487. Matched-cohort DNA microarray diversity analysis of methicillin sensitive and methicillin resistant Staphylococcus aureus isolates from hospital admission patients.
- Blower SM and Chou T (2004) Nature Medicine, 10 (10), 1111-1116, DOI: 10.1038/nm1102. The emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance.
- Izu A, Cohen T, Mitnick C, Murray M, De Gruttola V (2011) Stat Med. 30, 2708-20. DOI: 10.1002/sim.4287.
Bayesian methods for fitting mixture models that characterize branching tree processes: An application to development of resistant TB strains. - Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD, Science 2013, 339, 91-95 DOI: 10.1126/science.1229858 Dynamic persistence of antibiotic-stressed mycobacteria.
- Kussell E and Leibler S (2005) Science 309, 2075, DOI: 10.1126/science.1114383
Phenotypic diversity, population growth, and information in fluctuating environments. - Pauling J, Röttger R, Neuner A, Salgado H, Collado-Vides J, Kalaghatgi P, Azevedo V, Tauch A, Pühler A, and Baumbach J (2012) Integr. Biol., 4, 728-733. On the trail of EHEC/EAEC—unraveling the gene regulatory networks of human pathogenic Escherichia coli bacteria.
- Korves T and Colosimo ME (2009) Trends in Microbiology, 17, 279–285, Controlled vocabularies for microbial virulence factors.
- Kumar V, Sun P, Vamathevan J, Li Y, Ingraham K, Palmer L, Huang J, and Brown JR (2011) Antimicrob. Agents Chemother, 55:4267-4276; doi:10.1128/AAC.00052-11 Comparative Genomics of Klebsiella pneumoniae Strains with Different Antibiotic Resistance Profiles.
- Padiadpu J, Vashisht R, and Chandra N (2010) Systems and Synthetic Biology, 4, 311-322. Protein–protein interaction networks suggest different targets have different propensities for triggering drug resistance.
- Zheng L-L, Li Y-X, Ding J, Guo X-K, Feng K-Y, et al. (2012) PLoS ONE 7(8): e42517. A Comparison of Computational Methods for Identifying Virulence Factors. DOI:10.1371/journal.pone.0042517
- Zhu, W, Zhang, Y, Sinko, W, Hensler, ME, Olson, J, et al. (2013), 110, 123-128. Antibacterial drug leads targeting isoprenoid biosynthesis.
- Nübel, U, Nachtnebel, M, Falkenhorst, G, Benzler, J, Hecht, J, et al. () PLoS ONE 8(1): e54898. doi:10.1371/journal.pone.0054898. MRSA transmission on a neonatal intensive care unit: epidemiological and genome-based phylogenetic analyses.
- Gladki, A, Kaczanowski, S, Szczesny, P, and Zielenkiewicz, P. (2013) BMC Bioinformatics, 14:36. The evolutionary rate of antibacterial drug targets.
- Holden, MTG, Hsu, L-Y, Kurt, K, et al. (2013) Genome Research, doi:10.1101/gr.147710.112. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic.